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Abstract—Detection of fishing activities in trajectory data is
important for authorities to develop fishery management policies
and combat illegal, unreported, and unregulated (IUU) fishing
at sea. However, the complex movement patterns of fishing
activities challenge existing trajectory segmentation approaches,
which may not identify complete fishing activities. In light of this,
we propose a window-based trajectory segmentation algorithm
which aims to detect fishing activities as completely as possible.
Firstly, we introduce a visualization-based technique TPoSTE to
help design features characterizing different movement patterns.
Secondly, a window-based segmentation algorithm WBS-RLE
is proposed to split a trajectory into fishing and non-fishing
segments. WBS-RLE first utilizes a pre-trained classifier to label
windows in a trajectory as fishing or non-fishing, then it uses the
run-length encoding technique to merge those labeled windows
into complete fishing activities. The effectiveness of our approach
and its advantages over existing approaches are evaluated on a
real-world trajectory dataset.

I. INTRODUCTION

The sustainable utilisation of ocean resources has been chal-

lenged by illegal, unreported and unregulated (IUU) fishing in

recent years [1]. IUU fishing not only causes over-exploitation

of fishing stocks but also damages the marine environment.

Given this, governments like the EU have set up regulations1

to track and fight IUU fishing. To enforce these regulations,

an important step is to identify when and where ships have

conducted fishing activities. And this step can be naturally

modeled as a trajectory segmentation problem to split ship

trajectories into fishing and non-fishing segments.

Although many trajectory segmentation algorithms have

been proposed in the literature [2], [3], [4], [5], [6], some

limitations exist when they are applied to detect fishing efforts.

Firstly, some of them [4], [5] view trajectories as moving

objects travelling among different places, and thus aim to split

trajectories into a series of stops and moves. However, fishing

activities at sea can exhibit complex movement patterns and

may not be simply treated as stops or moves. For example,

the complete fishing activity in Fig. 1 was composed of three

petal-like parts with alternating high and low speeds, and

between every two consecutive parts the ship stopped for some

time. So one of our goals in this work is to detect as complete

fishing activities as possible.

1https://ec.europa.eu/oceans-and-fisheries/fisheries/rules/illegal-fishing en

adefghi  a  gh

ia d

f d

hi hd d  g gh

Fig. 1. A typical trajectory by a fishing ship in three stages: steaming to the
fishing ground, fishing, and returning to the port

Fig. 2. Overall workflow of the proposed methodology

Secondly, most existing work [2], [3], [6], [7] does not

provide labeling annotations. So these approaches can not tell

immediately if there are any fishing activities in corresponding

trajectories. In light of this, we resort to a supervised approach

in this work so that returned trajectory segments contain

explicit labels regarding if fishing activities have happened.

Thirdly, one common assumption in the literature (e.g.,

[8], [2]) is that the resulting segments should have high

homogeneity w.r.t. some spatiotemporal criteria or features of

trajectory points within segments. For example, two features

including speed and direction variation are used in [2] to find

suitable partitioning positions in the trajectory. However, ships

may move at both high and low speeds during fishing as shown

in Fig. 1, and moving at low speeds does not necessarily mean

ongoing fishing activities (the right box in Fig. 1). In addition,

the movement patterns of fishing efforts at sea may differ

greatly depending on the gear type used [1] and the situation

on the spot, hence it is non-trivial to design effective criteria

to capture the variety of fishing movement patterns.
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With the above considerations, the goal of this work is to

provide a general approach to detect complete fishing activities

in ship trajectories. To this end, our main contributions are:

• a technique based on visualization to design features char-

acterizing different movement patterns.

• a semantic segmentation method WBS-RLE that can split a

ship’s trajectory into fishing and non-fishing segments.

• the effectiveness of our approach is evaluated on a real world

trajectory dataset.

II. RELATED WORK

There are mainly two lines of research closely related to our

work. The first line of research focuses on trajectory points and

try to assign each trajectory point a label of fishing or non-

fishing [9], [10]. The second line of research [6], [7], [2], [3],

[11], [4], [5] deals with the trajectory segmentation problem

and aims to partition trajectories into a series of segments

according to some spatiotemporal criteria or a cost function.

In the first line of research, speed has been used as the

main criterion to recognize fishing activities. Such methods

detect fishing activities by using fixed speed ranges [10], or

by modeling the speed range as a bi-modal distribution [9].

However this assumption mainly works for trawlers and does

not apply to other gear types. Moreover, Fig. 1 highlights

that speed alone may not be sufficient to decide if a ship is

conducting fishing activities. So this line of research is more

suitable for deriving the overall spatiotemporal distribution

of fishing efforts as in [9], [10], but not appropriate for the

detection of complete fishing activities.

The second line of research falls into two broad categories:

(A) studies in [4], [5], [11] follow the conceptual model of

trajectories in [12] and aim to split a trajectory into a sequence

of stops and moves; whereas (B) other work in [6], [7], [3],

[2] does not follow this model and splits trajectories based on

some spatiotemporal criteria or homogeneity within segments.

For example, CB-SMoT [4] uses speed as the main criterion

to detect stops, and it modifies DBSCAN [13] in two aspects:

(1) a point’s neighborhood is defined along the trajectory; (2)

a point is considered a core point only when the passing time

within its neighborhood is above a specified time threshold.

However, CB-SMoT is not applicable to our problem because

a low speed does not necessarily represent ongoing fishing

activities. In comparison, DB-SMoT [5] uses direction change

as the main criterion to detect fishing stops. However, DB-

SMoT ignores the fact that a complete fishing activity may

also include points with little direction change (Fig. 1). For

the same reason, the method in [11], which is a combination

of CB-SMoT and DB-SMoT, does not apply to our problem.

Among approaches that do not follow the model of stops

and moves, Warped K-Means [6] is a variant of the K-Means

algorithm to cope with the sequential nature of trajectory data

and its main characteristic is that only two clusters are checked

in each step. The main limitation of Warped K-Means is

that it also requires the number of segments to be given as

input, which is usually unknown in practice. SWS [7] is a

segmentation algorithm that only relies on point coordinates. It

first generates an error signal to indicate the deviation of each

point from its expected location by using some interpolation

kernel. Then the trajectory is partitioned into segments by

choosing a threshold value in this signal. In contrast with

the unsupervised SWS, a classification-aided improvement

of SWS called WS-II is proposed in [3]. As with SWS,

firstly WS-II uses the same procedure to generate an error

signal, but secondly, WS-II uses a window-based classifier to

determine if a point indicates a partitioning position. However,

the segments returned by WS-II still do not contain labels.

GRASP-UTS [2] is a segmentation algorithm based on the

minimum description length (MDL) principle. It splits the

trajectory by minimizing a cost function which considers both

homogeneity within segments and separation of landmarks of

segments. In summary, the main limitation with these studies is

that the returned segments do not have labels regarding fishing

activities. So in this work, we are not only interested in finding

the partitioning positions, but also in assigning appropriate

labels for the segments.

III. PROPOSED METHODOLOGY

The trajectory data used in this work comes from the Au-

tomatic Identification System (AIS). One trajectory object is

an ordered sequence of timestamped geospatial points (pi, ti).
Given a trajectory T of a fishing ship, this work aims to

split T into a sequence of k adjacent segments <(S1,l1), . . . ,
(Sk,lk)>, where Si is a continuous sequence of points in T ,

and li is the label of segment ∈ {fishing, non-fishing}.
The methodology proposed in this work comprises two

stages Fig. 2. Firstly, we introduce a technique based on

visualization to help design features characterising movement

patterns. Secondly, an algorithm is proposed to split each

trajectory into fishing and non-fishing segments by combining

a pre-trained classifier and the run-length encoding technique.

A. Feature Design by TPoSTE

In this section, we introduce a visual exploration technique

called TPoSTE to help design features characterising differ-

ent movement patterns. The motivation is that a ship’s move-

ment during fishing can be complex and irregular, making

it non-trivial to devise effective spatiotemporal criteria for

the segmentation purpose. Given a trajectory T , TPoSTE
is carried out in three steps:

1) choose spatiotemporal events of interest in T .

2) for each event, find all occurrences of it in T and plot

those occurrences using the start time and the end time.

Occurrences for different events are plotted parallel.

3) observe and gain some insights which can help design

useful features. If needed, go back to the first step and

choose new events of interest.

It is worth mentioning that the idea of using visual analysis

to guide the feature engineering has been in use in the

visualization community, e.g., [14].

Next, we use an example to illustrate how TPoSTE can

be used to design features characterising movement patterns.
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event type

1 AM 3 AM 5 AM 7 AM 9 AM 11 AM 1 PM 3 PM 5 PM 7 PM

gap
speedChange

smoothTurn
stop

slowMotion
speed5to6
speed6to7
speed7to8
speed8to9

speed9to10
speed10Plus

Fig. 3. Temporal profiling of events in a trajectory on Nov 16, 2021 by the ship with mmsi#220051000.

Step #1. In this step, we have chosen events related to speed,

heading change, and temporal gap. Among them, speed and

heading change have been used a lot in the literature [5], [4]

to analyse ship behaviors. The temporal gap is considered here

because AIS signals may be lost due to lack of coverage in

some regions or manually switching-off of AIS.

In this work, based on multiple trials, a temporal gap event

means that between two consecutive observations a gap of 30

minutes or more is observed. The smoothTurn event means

that the heading at a point (pi, ti) has deviated from the mean

heading of recent movement by an angle larger than a thresh-

old, e.g., 10°, where the mean heading is calculated based on

the k preceding points (here k=7), similar to [15]. We also

introduce several events using speed ranges (in knots/hour):

the stop event for speed range [0,1), the slowMotion event

for speed range [1,5), then six events speed5to6, speed6to7,
speed7to8, speed8to9, speed9to10, speed10Plus that are

defined analogously. Finally, the speedChange event means

that the speed at a point has deviated from the mean speed in

the previous m=7 points by more than 25%.

Step #2. In this step, all occurrences of the above events

are identified in a trajectory, and each occurrence is associated

with its start and end time, and added to the plot. The

speedChange events are not plot when the speed is below 1

knot/h, because in such case a ship’s location has much noise,

making the heading change unreliable. Fig. 3 illustrates this

step when applied to the trajectory in Fig. 1. Each rectangle

in Fig. 3 represents an occurrence of the corresponding event.

Different events are drawn in parallel to account for the fact

that multiple events can happen simultaneously.

Step #3. This is the most important step where we try to

gain some insights from the result in Step #2. These insights

will help us design features to distinguish movement patterns.

The trajectory in Fig. 1 shows four main parts, as captured

in Fig. 3 by the four black line segments at the top. Firstly

there is a two-hour anchorage at midnight, where the ship’s

location remained almost the same. So a long stop event was

shown at the left in Fig. 3. Secondly, the ship left the port

and steamed to the fishing ground. It took about 1.5 hours to

arrive there. The main characteristic in this part was that the

ship sailed mostly at relatively high speeds (6-7 knots/h). Also,

there were fewer smoothTurn and speedChange events in

between than the two ends of this part.

The third part was a twelve-hour fishing activity in the

fishnig ground until late afternoon. Fig. 3 shows that there

were some recurrent patterns during this period, which were

evidenced by the three petal-like rings in Fig. 1. Within each

ring, the ship first stopped for about two hours (maybe for

some preparatory work). Then it began to sail at speeds

between 6 and 10 knots/h, and one noticeable difference was

that there seemed to be more smoothTurn and speedChange
events during this time compared to steaming in the second

part. Next, the ship slowed down to between 1 and 5 knots/h

and returned to the origin to finish the ring. Finally, the ship

prepared and started its next ring. Overall, the ship took about

4 hours to complete each ring.

Lastly, the ship returned to the port. It first sailed at speeds

between 6 and 9 knots/h, and again we notice that there

were fewer speedChange and smoothTurn events during

this period compared to that during fishing. Interestingly, then

the ship turned a right angle and slowed down to below 5

knots/h for some unknown reason when it came close to the

port. Finally, the ship arrived at the port and anchored again.

As can be seen, the gap event did not happen at all during

the whole trajectory, and this fact suggests that the gap event

is less useful for our analysis than other events. Also, we see

that a ship tends to move slowly during fishing. However, an

anchored ship also exhibits similar behavior. Since we care

more about ship activities in the open sea, these anchorage

points need to be removed to facilitate later analysis.

On the one hand, the above analysis shows that fishing

activities can be complex and thus it is challenging to design

effective spatiotemporal criteria to detect them. On the other

hand, Fig. 3 indicates that movement patterns can only be

captured by considering a context that contains sufficient

information for profiling ship behaviors. Those two aspects

inspire us to resort to an approach that can learn fishing

patterns and this approach will be presented later in III-B.

Based on the above analysis, we have designed the follow-

ing features to learn fishing and non-fishing patterns.

• Turn Frequency is the average number of smoothTurn
events that happen during a time period.

• Speed-Change Frequency is the average number of

speedChange events that happen within a time period.
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For each of the remaining eight speed-related events, we

design the following features.

• Average Duration is the average time duration of all occur-

rences of an event.

• Duration Ratio is the ratio of the total duration of all

occurrences of an event to the duration of a trajectory.

• Spanning Ratio is the ratio of the temporal gap between the

start time of the first occurrence and the end time of the last

occurrence to the duration of a trajectory.

• Frequency of Events is the average number of occurrences

of an event during a time period.

B. Window-Based Trajectory Segmentation using Run-Length
Encoding: WBS-RLE

The idea of WBS-RLE is to learn fishing and non-fishing

patterns from labelled trajectory data and use learned patterns

to detect fishing activities on new trajectory data. Specifically,

WBS-RLE comprises three steps. Firstly, it trains a classifier

on labelled trajectory data. Secondly, a sequence of windows

are generated from new trajectories and these windows are

classified using the classifier in the first step. Finally, to detect

complete fishing activities, a run-length encoding technique is

used to combine close fishing windows into a fishing activity.

Window Generation. Instead of working with individual

points as in [10], [9], WBS-RLE uses a window as its analysis

unit. A window in this work is a trajectory segment that

has a time duration larger than a threshold and contains at

least a specified number of points. We also require that two

adjacent windows have an overlap of a given percentage of

the points in the window. To learn fishing and non-fishing

patterns, windows are generated from some labelled trajectory

data, then features are extracted from those windows and fed

into some classification model to learn a classifier, which then

can be used on windows from new data.

Run-Length Encoding for Detection of Complete Fishing
Activity. Each window from new trajectory data can be

labelled as fishing or non-fishing by applying the pre-trained

classifier, so a sequence of labelled windows can be obtained.

However, fishing activities can be up to hours and even days,

and it is likely that multiple fishing windows actually belong

to one complete fishing activity. So the last step is to combine

those close fishing windows into complete fishing efforts. To

this end, we adopt the run-length encoding technique to count

the number of consecutive occurrences of fishing and non-

fishing windows. Thus we can get a sequence of alternat-

ing counts like . . . , afishing, bnon−fishing, cfishing, . . ., where

a, b, c are the counts of windows. From the perspective of run-

length encoding, a complete fishing activity A in this work is

defined as a maximal subsequence of counts satisfying:

• A starts and ends with fishing counts.

• each triplet <afishing , bsailing , cfishing> in A fulfills a
≥ b and b ≤ c to correct occasional classification errors.

So the final complete fishing activities are detected using

the above conditions and a trajectory can be split at boundary

points of fishing activities to generate non-fishing activities.

IV. EXPERIMENTS

A. Dataset
In the literature, many algorithms [2], [7], [3] have been

evaluated on a fishing dataset introduced in [2]. The main

problem with this dataset is that the average sampling rate

between two points is 105 minutes [16], so it is very sparse

and may lose important information of movement patterns.

Moreover, it is a small dataset, limited to 5,190 points, so it

can not support fine-grained analysis of fishing trajectories.
Therefore, we chose to use another dataset that has a higher

sampling frequency, and it is publicly available from the

Danish Maritime Authority 2. For our study, we used one-week

AIS data between Nov 14, 2021 and Nov 20, 2021 around

Danish waters. Because this work concerns fishing activities,

we only retain AIS data generated by fishing ships.
Pre-processing. Since AIS data comes with several quality

issues [17], for each ship we removed the AIS records with

duplicate locations, and then averaged the coordinates if there

were multiple AIS records for a single timestamp. Then we

manually labelled 128 trajectories, which contain 1,080,220

points and have an average sampling interval of 10.63 seconds.

B. Classifier Training
To train the classifier for fishing and non-fishing patterns,

we prepared a training dataset including 2,406 fishing windows

and 1,504 non-fishing windows from 31 of the 128 trajectories.

These windows were created with the following parameters:

sizew = 300, tw = 1 hour, and ratio = 5/6. The value of

tw is determined as follows. Firstly, it can not be too large,

otherwise, fishing and non-fishing activities are likely to be

mixed. Secondly, it can not be too small, otherwise a window

will not contain enough information to capture movement

patterns. The value of ratio determines the expected number

of windows a point belongs to, e.g., a ratio of 5/6 means that

each point is expected to be included in 6 windows. A larger

ratio can increase the robustness of our algorithm but also

implies a higher computational cost. So in some sense, ratio
and tw determine the granularity of our analysis.

Using this labelled dataset, we trained a random forest

classifier with 50 trees having a depth of 10, and Table I

shows the top-5 important features. Surprisingly, all of them

are speed-related features. Also it suggests that it was a good

decision to have finer speed ranges. Although some features

(e.g., turn frequency) chosen by TPoSTE were not assigned

high importance, TPoSTE is still a helpful tool, because it

encourages users to devise and try various features of interest.

C. Results
In this section, we report the results by applying WBS-RLE

to the remaining 97 trajectories. Each of them has three ground

truth segments: sailing to fishing ground, fishing, returning to

harbour. For comparison, we have chosen three state-of-the-

art methods: CB-SMoT [4], Warped K-Means [6], SWS [7].

Their implementations are publicly available from Github3.

2https://web.ais.dk/aisdata/
3https://github.com/metemaad/TrajSeg
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Fig. 4. Segment results of four algorithms on the trajectory #220051000-2
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Fig. 5. Segment results of four algorithms on the trajectory #219002136-3

TABLE I
FEATURE IMPORTANCE

feature importance feature importance
slowMotionTimeTotalAvg 0.382 slowMotionTimeAvg 0.201
speed7to8NumberAvg 0.101 speed7to8TimeSpanAvg 0.056
stopTimeSpanAvg 0.039

Parameter Setting. The parameters for the algorithms were

determined as follows. Since many existing work (e.g., [17])

consider ships to be still when the speed is below 1 knot/h,

the speed threshold in CB-SMoT was set as 1 knot/h and

the neighborhood size was set as 500 meters. Because there

are 3 segments in each of the 97 trajectories, we tried two k
values (3 and 6) for Warped K-Means. As recommended in

[16], we adopted the linear regression kernel and a window

size of 7 for SWS, and the percentile in SWS was set as 99.9

because our dataset had a much higher sampling frequency.

For WBS-RLE, we additionally required that each returned

fishing activity must have a duration of at least 2 hours, given

the fact that fishing activities usually last several hours.

Evaluation Metric. For performance evaluation, we

adopted two widely-used indices proposed in [2]: purity and

coverage. Simply speaking, for each returned segment r, purity

TABLE II
PERFORMANCE OF THE FOUR ALGORITHMS ON TWO TRAJECTORIES

trajectory ID method purity coverage
harmonic

mean
# of

segments

220051000-2

WBS-RLE 0.832 0.965 0.894 3
CB-SMoT 0.998 0.634 0.776 10

WKMeans (k=3) 0.888 0.826 0.856 3
WKMeans (k=6) 0.962 0.638 0.767 6

SWS 0.985 0.650 0.783 8

219002136-3

WBS-RLE 0.908 0.991 0.948 3
CB-SMoT 0.861 1 0.925 1

WKMeans (k=3) 0.903 0.861 0.882 3
WKMeans (k=6) 0.984 0.644 0.778 6

SWS 0.998 0.732 0.844 8

TABLE III
AVERAGE PERFORMANCE ON 97 TRAJECTORIES

method purity coverage
harmonic

mean
# of

segments
WBS-RLE 0.890 0.974 0.927 2.670
CB-SMoT 0.859 0.885 0.859 5

WKMeans (k=3) 0.878 0.840 0.855 3
WKMeans (k=6) 0.932 0.619 0.741 6

SWS 0.954 0.759 0.837 9.855

measures the largest proportion of points in r that indeed

belong to a ground truth segment, whereas for each ground
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truth segment g, coverage measures the largest proportion of

points in g that are included in a returned segment. As in

[16], the harmonic mean of purity and coverage was also

used because we want to achieve both high purity and high

coverage. Finally, since one important aspect of our work is to

return complete fishing activities, we also report the number

of returned segments.

To illustrate the results, Fig. 4 and Fig. 5 show the re-

turned segments by different algorithms on two trajectories

#220051000-2 and #219002136-3, and the evaluation metrics

for these two trajectories are shown in Table II.

• For the trajectory #220051000-2, WBS-RLE outperformed

all competitors and had the highest harmonic mean. In terms

of purity, all other algorithms were higher than WBS-RLE

because purity tends to be high when there is a large number

of returned segments. However, it can be seen that CB-

SMoT, WKMeans (k=6) and SWS had a much smaller

coverage than WBS-RLE and WKMeans (k=3), because

they returned too fragmented segments as shown in Fig.

4. In addition, Fig. 4 shows that WBS-RLE returned more

meaningful segments which are close to the ground truth.

• For the trajectory #219002163-3, WBS-RLE again achieved

the highest harmonic mean. Interestingly, CB-SMoT re-

turned only one segment as its result because there were not

many consecutive points in this trajectory that had a speed

smaller than 1 knot/h. Also, Fig. 5 shows that the segments

returned by WBS-RLE were more visually appealing and

closer to the ground truth segments.

Table III shows the average of metrics on all the 97

trajectories. As before, WBS-RLE had the highest harmonic

mean, and its coverage was also the highest. However, one

weakness of WBS-RLE was that it may return the entire

trajectory as one fishing activity when the sampling frequency

on some local parts was low or a ship returned to harbor at

low speeds. This weakness was indicated by an average of

2.67 segments by WBS-RLE. In fact, WBS-RLE returned 1

or 2 segments for 23 of the 97 trajectories. Nevertheless, the

average number of segments by WBS-RLE was still the closest

to that in the ground truth (i.e., 3) among all algorithms.

V. CONCLUSION

The sustainable use of marine resources and combat against

IUU fishing is becoming an increasing concern in recent

years. In this work, we studied the problem of semantic

segmentation of AIS trajectories, and it aims to detect fishing

activities as completely as possible. Our methodology includes

two modules. Firstly, we proposed a technique based on

visualization to help design features that can capture different

movement patterns. Secondly, we proposed a window-based

segmentation algorithm that can utilize both machine learning

and run-length encoding to return semantically meaningful

activities. The performance of our methodology was evaluated

on a real dataset both quantitatively and visually, and results

showed that our method outperformed state-of-the-art methods

and returned more meaningful segments. Our methodology can

be used to discover potential IUU fishing activities, also it can

be used to aid the annotation of large AIS trajectory datasets.

For future research, we plan to investigate the segmentation

of trajectories of other ship types and activities, e.g., ferries,

transit through a canal, etc.
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