
Predicting Parking Lot Availability by
Graph-to-Sequence Model: A Case Study with

SmartSantander

Yuya Sasaki1, Junya Takayama1, Juan Ramón Santana1, Shohei Yamasaki1,
Tomoya Okuno1, and Makoto Onizuka1

Osaka university sasaki@ist.osaka-u.ac.jp

Abstract. Nowadays, so as to improve services and urban areas livabil-
ity, multiple smart city initiatives are being carried out throughout the
world. SmartSantander is a smart city project in Santander, Spain, which
has relied on wireless sensor network technologies to deploy heteroge-
neous sensors within the city to measure multiple parameters, including
outdoor parking information. In this paper, we study the prediction of
parking lot availability using historical data from more than 300 outdoor
parking sensors with SmartSantander. We design a graph-to-sequence
model to capture the periodical fluctuation and geographical proximity
of parking lots. For developing and evaluating our model, we use a 3-year
dataset of parking lot availability in the city of Santander. Our model
achieves a high accuracy compared with existing sequence-to-sequence
models, which is accurate enough to provide a parking information ser-
vice in the city. We apply our model to a smartphone application to be
widely used by citizens and tourists.

Keywords: Deep neural network · Internet of Things · Smart city ·
Spatio-temporal analysis

1 Introduction

Smart city projects use information and communication technologies to ob-
tain real-time data to manage their services more effectively. Santander, Spain,
started its smart city project called SmartSantander1, which envisioned a large-
scale deployment of more than 12,000 Internet of Things (IoT) sensors such as
traffic, environmental, and parking sensors [19–22]. The aim of such deployment
is to improve the city livability and support tourism in Santander.

One of the services provided in Santander is guiding drivers to available park-
ing lots. Thanks to the outdoor parking information gathered from the Smart-
Santander deployment, drivers are informed about available parking lots through
two means. First, ten parking panels, deployed at the entrance to streets in the
city center, show the number of available parking lots in the city center as well as
each of the streets where they are deployed. Second, several applications provide
1 http://www.smartsantander.eu/

ar
X

iv
:2

20
6.

10
16

0v
1

 [
cs

.L
G

]
 2

1
Ju

n
20

22

2 Authors Suppressed Due to Excessive Length

0
2 3

4
5

6

7

8

9

10

11

12 23

22

21

20
13

18
19

14

15

16

17

24

25

26
1

Fig. 1: Parking sensors in Santander. (top) locations of parking lots with clus-
ter IDs, (bottom-left) a parking sensor with a car, (bottom-center) the parking
sensor, and (bottom-right) a parking panel to guide drivers.

this information remotely. Hence, drivers can plan whether to take their own
cars or use the public transportation services based on the real-time parking
information.

Figure 1 shows the deployment carried out in Santander, including the lo-
cation of parking lots equipped with sensors, parking sensors, and the parking
panels deployed in the city. Such services providing parking lot availability im-
prove the efficiency and usefulness of the parking system.

Motivation: Despite the benefits provided by this deployment, SmartSan-
tander is limited to offer real-time information to the users about available park-
ing lots. A prediction service based on historical data can benefit the system de-
ployed in Santander. Such prediction service would allow drivers to know whether
there are available parking lots or not beforehand, even if the service has been
accessed long before the arrival to the parking lot. Furthermore, SmartSantander
can keep offering parking guiding service by predicting the number of available
parking lots based on historical data, even if the service stops due to several
issues, such as deployment maintenance or urban works.

There are two requirements to start a service that predicts parking availabil-
ity in Santander: (1) predicting the number of available parking lots for both, the
whole city center (i.e., all parking lots) and each of the streets; and (2) predicting
their availability at multiple time steps without pre-defined time steps (e.g., in

Title Suppressed Due to Excessive Length 3

15, 30, and 60 minutes, and more). To the best of our knowledge, there is no
former work that predicts the availability of parking lots per street at several
time steps.

Contribution: In this paper, we study the problem on the prediction of
parking lot availability with SmartSantander. To this end, we design a graph-to-
sequence neural network model that can predict parking lot availability at multi-
ple time steps by using historical data from parking lots. Our graph-to-sequence
model consist of two components: encoder and decoder. For the encoder, we de-
velop a graph neural network (GNN) encoder to capture the characteristics of
parking lot availability: (1) temporal, as parking lot availability trends change
periodically and (2) spatial, as the availability of each parking lot is also affected
by nearby parking lots. Our decoder is based on a recurrent neural network
(RNN) that uses time information (e.g. a day) as well as historical parking lot
availability data to learn the impact of holidays and weekdays.

We demonstrate that our model is able to accurately predict the number of
available parking lots in periods of 15, 30, 60 and 120 minutes. Our model out-
performs existing sequence-to-sequence models. We also develop a smartphone
application with our prediction model to provide accurate prediction to citizens
and tourists.

Reproducability: We open our source code in Github and parking data
under requests2.

Organization: The remainder of this paper is organized as follows. Section 2
describes the parking sensors in Satander. Section 3 presents our approach, and
then Section 4 shows the results obtained from the experiments. Section 5 shows
our smartphone application with the prediction model. Section 6 introduces the
related work. Finally, Section 7 summarizes the paper and describes the future
work.

2 Parking sensors with SmartSantander

As aforementioned, we develop our prediction model for parking sensors deployed
in Santander. There are 323 parking sensors manufactured by Nedap3 and each
sensor corresponds to a single parking lot. All these sensors are connected to a
wireless network based on the standard IEEE802.15.4. The parking deployment
follows a three-layered architecture composed of the following elements:

– Parking sensors: they are buried under the asphalt and monitor the status
of the parking lots by measuring the change of the magnetic field on top of
them. If the magnetic field measurement exceeds the calibrated threshold,
they send a data frame with the new status to the closest relay node.

– Relay nodes: they are installed in the lampposts and building facades. They
provide coverage to parking sensors and forward data frames to the data
collector.

2 https://github.com/yuya-s/SatanderParking
3 https://nedap.com/en/

https://github.com/yuya-s/SatanderParking
 https://nedap.com/en/

4 Authors Suppressed Due to Excessive Length

– Data collectors: they forward the information received from relay nodes to
the central servers where data is stored, by using wide area network tech-
nologies (e.g. 3G, fiber ring).

Monitored parking lots are located in a special area in the city center, in which
the drivers have to pay park fee from 10:00 to 14:00 and 16:00 to 20:00 during
weekdays and Saturday morning. Parking time is restricted to two hours per
vehicle, except for those citizens who live nearby and have a special permission.
Therefore, the status of parking lots changes frequently in these periods. Parking
lots show a high occupancy for the full day, even over night.

3 Prediction model

In this section, we first explain the requirements and problem definition that we
solve in this paper. Then, we explain the preprocessing for the parking data.
Finally, we explain our graph-to-sequence neural network model and its training
method.

3.1 Requirements and Problem Definition

As we described in Section 1, we have two requirements to start the prediction
services in Santander. First, we need to predict the number of available parking
lots for both, the whole city center (i.e., entire parking area) and per street.
While, we do not need to predict the status of each parking lot because the
parking services in Santander provides street-based parking availability. Second,
we need to predict the number of available parking lots at multiple time steps
instead of a single time step. These time steps should not be defined in advance,
because people may move from further areas to the city center by their cars and
the distances are unsure.

We here formally define the problem we solve in this paper. We have the set
P of historical parking lot data for each parking lot. pi ∈ P is a vector whose
size is the number of parking lots and it consists of 0/1 values, where 1 and 0
represent whether each parking lot is available or not at time step i, respectively.
We define that 〈pi, . . . , pj〉 is a sequence of vectors from time step i to j.
Problem Definition: Given the set of historical parking lots data P , we build
a model to accurately predict the parking lot availability. In this model, given a
sequence of vectors 〈pt−M , . . . , pt−1〉 as input, it outputs the number of available
parking lots per street from time step t to t′ (t′ is not given in advance).

3.2 Preprocessing

As preprocessing of parking lots data, we cluster the parking lots and construct
a graph based on the closeness among parking lots .
Clustering. It is effective because nearby parking lots are likely to have a similar
behavior, as we do not have specific parking lots but specific areas where we can

Title Suppressed Due to Excessive Length 5

park our cars. We cluster the parking lots per street, considering that this is
how SmartSantander provides the available parking lots to citizens. After this
process, we obtain 27 different clusters. Figure 1(top) shows these clusters, where
different colors represent each one of them. The number of parking lots differs for
each of the clusters. For instance, clusters 2, 9, and 19 in Figure 1(top) include
5, 20, and 29 parking lots, respectively.

We normalize the values in the vector dividing them by the number of parking
lots in the cluster in order to reduce unnecessary effects of the clusters that
include large numbers of parking lots. Finally, we have the set of vectors S that
contains a vector si whose size is 27 and values are from 0 to 1 at time step i.
We input 〈st−M , . . . , st−1〉 to models, and the models output 〈st, . . . , st′〉.
Graph construction. We build a graph whose vertices are clusters of parking
lots and two vertices have an edge if the parking lots represented by the two
vertices are closer than a given spatial threshold. We assume that parking lots
represented by the two vertices are affected each other if both vertices have edges.
So as to locate each cluster, we use the centroid of the locations of parking lots
that belong to that cluster. Two vertices have edges if the Euclidean distance
between them is 95 meters, which is decided based on the length of streets.

3.3 Graph-to-Sequence model

Our graph-to-sequence model consists of a GNN encoder and an RNN decoder.
The GNN encoder maps the input to a vector of a fixed dimensionality by graph
neural networks, and the RNN decoder receives and decodes it to generate the
sequence of predicted parking lots availability.
GNN encoder model. Our GNN encoder model captures the temporal per-
spective by 1D-convolution and the spatial perspective by graph convolution,
which captures local trends of nearby parking lots in stead of global trends.

Figures 2 and 3 show our GNN encoder model and the input data for this
model, respectively. Our GNN encoder model combines gated graph neural net-
works (GGNN for short) [14] with gated convolutional neural network (GCNN
for short) [9]. The GGNN takes graph convolution to capture spatial perspective
and the GCNN takes 1D-convolution to capture temporal perspective. Propaga-
tion model in the GGNN conducts graph convolution that learns about the effect
from neighbor clusters (i.e., vertices connected by edges). Consecutive GCNNs
after the GGNN emphasizes the characteristics by gradually reducing the size
of the vector. Our GNN encoder has three input parameters, parking ai, hidden
state hi, and set of edges E of the graph. ai is a vector whose values are the
number of available parking lots of cluster i at M steps, and hi is a vector that
is extended from ai and the extended area has zero values.

In the following, we describe our GNN encoder model in detail. [;] and ⊗
denote concatenation and element-wise multiplication, respectively .

Our GNN encoder model first applies GCNNs to ai and hi, respectively. The
GCNNs have two 1D-convolutional layers; the top 1D-CNN computes the impor-
tance via a sigmoid function and the bottom one computes values themselves.

6 Authors Suppressed Due to Excessive Length

𝐸

𝑎

ℎ

1D-CNN

1D-CNN

 𝜎

1D-CNN

1D-CNN

 𝜎
Propagation

Model

MLP 𝑡𝑎𝑛ℎ

1D-CNN

1D-CNN

 𝜎 1D-CNN

1D-CNN

 𝜎 1D-CNN

1D-CNN

 𝜎

401

1D-CNN

1D-CNN

 𝜎

GCNN
GGNN

Fig. 2: GNN encoder model. Our GNN encoder consists of one GGNN and six
GCNN layers.

1

2

4

3

0.3

0.2

0.1

0.1
0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

𝐸
0.3 0.2 0.2𝑎 0.3 0 0 0 0 0.2 0 0 0 0 0.2 0 0 0 0ℎ1

2

4

3

0.2

0.1

0.1

0.2
1

2

4

3

0.2

0.1

0.2

0.3

𝑠 𝑠 𝑠

Parking data Input data to GNN encoder model

0.2 0.1 0.1𝑎 0.2 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0ℎ
0.1 0.2 0.3𝑎 0.1 0 0 0 0 0.2 0 0 0 0 0.3 0 0 0 0ℎ
0.1 0.1 0.2𝑎 0.1 0 0 0 0 0.1 0 0 0 0 0.2 0 0 0 0ℎ

Fig. 3: Input data to the GNN encoder model

This is the same structures of the original GCNNs. a′i and h′i are outputs of the
GCNNs, which are calculated as follows:

a′i = (ai ∗ Γa,f + ba,f)⊗ σ(ai ∗ Γa,g + ba,g) (1)
b′i = (bi ∗ Γh,f + bh,f)⊗ σ(hi ∗ Γh,g + bh,g) (2)

where σ denotes sigmoid function. Γa,f , Γa,g and Γh,f , Γh,g are 1-dimensional
convolution operators for annotations and hidden states, respectively. ba,f , ba,g
and bh,f , bh,g are correspondence biases.

The GGNN aggregates hidden states of neighbors at each time step (Eq.
(4)), and then updates the hidden states like GRU (Eqs. (5)–(8)) [8]. Then, an
output of message passing is applied to MLP layer (Eq. (9)). The propagation
model aggregates and updates repeatedly by the following equations:

h(0) = h′i (3)
X(j) = E[h(j−1)W1 + b1; . . . ;h(j−1)WM + bM] (4)
r(j) = σ(M(j)Wr + h(j−1)Ur) (5)
z(j) = σ(M(j)Wz + h(j−1)Uz) (6)

ĥ(j) = tanh(M(j)Wh + (h(j−1) ⊗ r(j)Uh)) (7)

h(j) = (1− z(j))⊗ h(j−1) + z(j) ⊗ ĥ(j) (8)

where j denotes the time of iterations and X, r, z denote the message, reset gate,
and update gate, respectively. W1, . . . ,WM ,Wr, Ur,Wz, Uz,Wh, Uh and b1, . . . ,
bM are learnable parameters. The parameters W1, . . . , WM , b1, . . . , bM are for
message passing.

Title Suppressed Due to Excessive Length 7

We apply an output model to the I times-propagated hidden state h(I). An
output Og of the GGNN is calculated as follows:

Og = tanh([h(I); a
′
i]WO + bO) (9)

where WO, bO are learnable parameters. We then repeatedly apply four GCNNs
to Og that equations are the same as Eq. (1).

We explain parameters of our GNN encoder in detail. In the 1D-convolutional
layers for ai, the number of filters, filter size, and stride length are 1, 2, and 1,
respectively. In the 1D-convolutional layers for hi, the number of filters, filter
size, and stride length are 2, 10, and 5, respectively. Four consecutive 1D-CNNs
after the GGNN have 4, 115, 60, and 65 as the filter sizes, 2, 5, 5, and null as
the stride length, and 5, 10, 20, and 40 as the number of filters, respectively. We
use null as the stride length, as the filter is of the same size as the matrix size.
Finally, our GNN encoder outputs a vector whose size is 40, which is the input
for our decoder model.

Our GNN can capture spatial perspective for every parking lot because we
input the data for each single parking lot one by one along with the graph that
represents the closeness of parking lots. Therefore, our GNN model captures
local spatial perspective effectively.
RNN Decoder. Our RNN decoder employs a multilayered Long Short-Term
Memory (LSTM) [10] to output the sequence of predicted parking lots availabil-
ity without pre-defined time steps. We use time information dt as input for the
decoder in order to capture the periodical fluctuation. dt includes four values
that represent the time, day, month, and weekday. Due to the use of time infor-
mation in the decoder, our model effectively handles the periodical fluctuation,
such as weekdays and weekends.

In our RNN decoder, each function is computed by the same equations of
basic LSTM [10], with the exception that we use a ReLU function for embedding
the inputs, and a sigmoid function for the output. In more concretely, our decoder
model consists of the follow equations:

ŝt = ReLU(Wsst + bs) (10)

d̂t = ReLU(Wddt + bd) (11)

ft = σ(Wf [ht; ŝt; d̂t] + bf)

lt = σ(Wi[ht; ŝt; d̂t] + bl)

C̃t = tanh(WC [ht, ŝt, d̂t] + bC)

Ct+1 = ft ⊗ Ct + ltC̃t

ot = σ(Wo[ht; ŝt; d̂t] + bo)

ht+1 = ot ⊗ tanhCt+1

st+1 = σ(Ws′Ct+1 + bs′) (12)

These equations are the same for basic LSTM cells except for Eqs. (10)–(12).
Eqs. (10) and (11) are for embedding, and Eq. (12) is for output. Both ht and
Ct are initially set to the output of encoder.

8 Authors Suppressed Due to Excessive Length

2014-06 2014-10 2015-02 2015-06 2015-10 2016-02 2016-06 2016-10 2017-02
Date

0

20

40

60

80

100

120

140

N
um

be
r o

f a
va

ila
bl

e
pa

rk
in

g
lo

ts

Train
Valid
Test

Fig. 4: Number of available parking lots

3.4 Training

We use the mean absolute error (MAE) as the measure to quantify errors for our
training data. Hence, we minimize the MAE measure in the objective function
over training data. Our loss function is defined as follows:

Loss =
1

N ′ · |s|

N ′∑
i=1

|s|∑
j=1

abs(s′i,j − si,j) (13)

where, |s| denotes the size of vector s (i.e., 27), and s′i,j and si,j denote the
predicted and measured values of cluster j at time step i, respectively. N ′ is a
predefined parameter for model training, and we set N ′ to a random value. To
reduce overfitting, we apply dropout with a probability of 0.3 to the encoding.

4 Experiment

In this section we evaluate our graph-to-sequence model to predict parking lot
availability from Santander dataset.

4.1 Setting

We provide an overview of our experimental set up, including the dataset, com-
petitors, and parameters.
Dataset.We use a dataset with three years of parking data from Santander. The
number of parking lots covered in this dataset are 323, with data from 29th April
2014 to 29th January 2017. We sample the data each 15 minutes. Figures 1(top)
and 4 show the location of parking lots and the number of available parking
lots in the whole city, respectively. In Figure 4, there are some periods in which
there are few changes in the number of available parking lots are caused by
maintenance.
Competitors. We evaluate our graph-to-sequence model compared with two
sequence-to-sequence models and two traditional auto-regressive (AR) models.

Title Suppressed Due to Excessive Length 9

Table 1: MAE of available parking lots in the entire parking area. The bold font
indicates the best accuracy.

15 min 30 min 60 min 120 min
ARIMA 15.31 14.95 15.415 15.26
SARIMA 11.79 12.04 10.97 11.49
RNN 10.95 11.18 11.16 12.13
CNN 4.166 4.173 5.102 7.466
GNN 2.511 3.301 4.608 7.242

In sequence-to-sequence models, we use two types encoders RNN and CNN
with the same decoder of our model. The RNN encoder consists of LSTM
as same as the decoder. The CNN encoder convolutes a matrix containing
〈st−M , · · · , st−1〉 to a fixed size vector. We describe the detailed architectures of
RNN and CNN encoders in a supplementary file.

In AR models, we use ARIMA and SARIMA [4], two of the most widely
used methods for time series forecasting. ARIMA model assumes that the future
value of a time series is a linear combination of historical values. SARIMA model
takes into account seasonality as well.

Parameter. We divide the dataset into a training set from April 29th, 2014,
to December 29th, 2016; a validation set from December 29th, 2016, to January
19th, 2017; and a test set from January 19th, 2017, to January 29th, 2017. The
input size of historical data M is 48. That is, we use parking data for 12 hours
(i.e, 48 · 15 min) as historical data. We predict the parking data in 15 min to
2 hours. During our preliminary experiments, we tested different input sizes for
the model: 4, 24, 48, and 96 as M , from which the chosen input size achieved
the high accuracy in average. We also set the number I of propagation in the
GGNN to five based on our preliminary experiment.

When we train the model, we set the size of batch and epoch as 512 and
50, respectively. Then, in the test phase we choose the same parameters that
provide the highest accuracy in the validation phase averagely.

4.2 Experimental results

Comparing our models with baselines. We first compare prediction perfor-
mance for our model and the four baselines. We evaluate MAE in 15, 30, 60, and
120 minutes time steps. Table 1 shows the MAE of the whole city for each time
step and model. The GNN and CNN encoders achieve the best and second best
accuracy for all time steps, respectively. The accuracy of RNN encoder is almost
the same accuracy of the SARIMA model. The GNN and CNN encoders capture
the spatial perspective effectively. While, RNN encoder and SARIMA are able
to capture the seasonality effect, but they cannot capture spatial perspectives
well. From these results, we can confirm that spatial perspective are effective to
parking prediction. In addition, the parking lot prediction becomes more accu-

10 Authors Suppressed Due to Excessive Length

Table 2: MAE of available parking lots per street. The numbers within paren-
theses at Cluster ID denote the numbers of parking lots in clusters. The bold
font indicates the best accuracy.
Cluster ID RNN CNN GNN

15 min 30 min 60 min 120 min 15 min 30 min 60 min 120 min 15 min 30 min 60 min 120 min
0 (10) 0.749 0.734 0.769 0.769 0.468 0.497 0.540 0.606 0.293 0.392 0.502 0.640
1 (15) 0.803 0.816 0.822 0.843 0.552 0.556 0.579 0.647 0.301 0.367 0.472 0.576
2 (5) 0.404 0.392 0.416 0.429 0.088 0.095 0.117 0.155 0.069 0.081 0.110 0.139
3 (13) 0.911 0.899 0.911 0.904 0.669 0.717 0.773 0.844 0.243 0.319 0.444 0.606
4 (6) 0.265 0.291 0.302 0.301 0.126 0.148 0.175 0.231 0.104 0.123 0.171 0.223
5 (6) 1.015 0.978 0.968 0.975 0.513 0.530 0.587 0.632 0.247 0.337 0.448 0.591
6 (14) 0.806 0.786 0.791 0.803 0.579 0.645 0.675 0.806 0.284 0.379 0.495 0.673
7 (15) 0.913 0.936 0.966 1.042 0.510 0.561 0.599 0.738 0.241 0.342 0.465 0.629
8 (6) 0.631 0.703 0.765 0.847 0.415 0.539 0.640 0.769 0.243 0.368 0.524 0.673
9 (20) 1.550 1.585 1.611 1.666 0.589 0.653 0.715 0.817 0.244 0.358 0.521 0.696
10 (12) 0.560 0.543 0.549 0.540 0.279 0.288 0.342 0.449 0.131 0.184 0.244 0.327
11 (6) 0.422 0.405 0.401 0.417 0.240 0.261 0.281 0.321 0.088 0.121 0.168 0.251
12 (10) 0.982 0.974 0.953 0.966 0.722 0.733 0.756 0.808 0.301 0.400 0.539 0.699
13 (5) 0.804 0.846 0.874 0.948 0.178 0.204 0.256 0.371 0.127 0.179 0.265 0.370
14 (18) 1.976 2.214 2.331 2.372 0.669 0.708 0.894 1.115 0.248 0.361 0.554 0.806
15 (10) 0.744 0.838 1.011 1.175 0.245 0.278 0.363 0.457 0.131 0.170 0.252 0.339
16 (10) 0.806 0.886 0.912 1.001 0.314 0.331 0.399 0.490 0.126 0.187 0.275 0.402
17 (11) 0.819 0.821 0.839 0.860 0.502 0.528 0.594 0.711 0.229 0.309 0.399 0.586
18 (16) 1.203 1.197 1.193 1.167 0.701 0.725 0.758 0.821 0.297 0.391 0.505 0.658
19 (29) 1.276 1.317 1.397 1.494 0.940 0.940 1.053 1.221 0.759 0.890 1.038 1.238
20 (7) 0.581 0.623 0.787 0.892 0.157 0.182 0.278 0.389 0.066 0.108 0.212 0.351
21 (12) 0.796 0.824 0.834 0.850 0.524 0.526 0.593 0.680 0.185 0.259 0.367 0.508
22 (10) 0.882 0.929 0.980 1.108 0.835 0.818 0.929 1.088 0.580 0.737 0.944 1.211
23 (10) 1.510 1.444 1.226 1.154 0.395 0.448 0.547 0.650 0.191 0.295 0.429 0.572
24 (18) 1.352 1.165 1.004 1.036 0.572 0.653 0.736 0.907 0.403 0.546 0.694 0.879
25 (17) 3.172 3.200 3.145 3.120 0.859 0.889 1.107 1.504 0.346 0.509 0.816 1.258
26 (12) 0.925 0.956 0.985 1.057 0.567 0.628 0.702 0.833 0.417 0.549 0.707 0.929

rate when using nearby parking lots than the entire parking area because the
GNN encoder achieves higher accuracy than the CNN encoder.

In our graph-to-sequence and sequence-to-sequence models, MAE increases
as time steps increase, while in AR models the MAE value remains constant.
This is due to the fact that graph- and sequence-to-sequence models accumulate
errors in the previous steps, thus the error becomes larger as time steps increase.

We evaluate prediction performance of GNN, CNN, and RNN encoders for
the number of available parking lots per cluster. Table 2 shows the MAEs for
each cluster. In the table, the numbers in brackets denote the number of parking
lots in each of the clusters. Since the MAEs of ARIMA and SARIMA are larger
than those of our models (see Table 1), we do not show these results.

The predicted errors are quite small even for the 120 minutes time step. Since
absolute errors are mostly less than one, each model often accurately predicts
the number of available parking lots. The GNN and CNN encoders outperform
the RNN encoder model for all clusters at each time step as they are able to
capture the spatial perspective more precisely than the RNN models. Comparing
the GNN encoder with the CNN encoder, the GNN encoder achieves higher
accuracy than the CNN encoder at most cases.

Title Suppressed Due to Excessive Length 11

 0

 5

 10

 15

 20

0.5 1 1.5 2

M
A

E

Years of training data

RNN
CNN
GNN

(a) 15 min

 0

 5

 10

 15

 20

0.5 1 1.5 2

M
A

E

Years of training data

RNN
CNN
GNN

(b) 30 min

 0

 5

 10

 15

 20

0.5 1 1.5 2

M
A

E

Years of training data

RNN
CNN
GNN

(c) 60 min

 0

 5

 10

 15

 20

0.5 1 1.5 2

M
A

E

Years of training data

RNN
CNN
GNN

(d) 120 min

Fig. 5: Impact of training data sizes

From these results, we can see that our graph-to-sequence model accurately
predicts the number of available parking lots in the entire parking area and
outperform baselines.
Impact of training data size.We evaluate the prediction performance varying
the size of training data. Figure 5 shows the MAE using different training data
sizes for all the time steps and models. We use the same test and validation
datasets, and the same date for the end of the training dataset. For instance, to
obtain one year of training data, we train the models by data from December
29th, 2015 to December 29th, 2016.

From these results, the performance slightly changes for our GNN and the
RNN encoders, even with smaller training datasets. On the other hand, the
prediction performance of the CNN encoder is lower when the training data
size is only half of the years. This indicates that the CNN encoder needs a
larger training dataset to be fine tuned. Our GNN encoder always achieves the
best performance among the models even with a small training dataset. We can
confirm that our GNN encoder captures temporal and spatial perspective more
effectively than the other encoders.
Error analysis at each time step. We finally analyse the transitions of the
difference between measured and predicted values in GNN, CNN, and RNN
encoders. Figure 6 shows the difference between measured and predicated values
on RNN, CNN, and GNN encoders. Dashed lines represent measured values,
while solid lines represent predicted values, and same colors represent same time
period. So, if dashed and solid lines with the same color are vertically close,
prediction is accurate. We note that each solid line with each color indicates
predicted values for eight steps (i.e., for 2 hours) and two neighbor solid lines
with different colors are not overlapped.

From the results, we can see that the predicated values generally have a
similar trend as measured values. Figure 6(a) shows that the RNN encoder pre-
dictions often underestimate available parking lots from measured values and
have a large difference between predicted and measured values. In our use case,
underestimated predictions are inadequate for citizens as they would be guided
to streets with occupied parking lots. Figure 6(b) shows that predicted values in
the CNN encoder are closer to measured values than the RNN encoder. However,
the transition sometimes follows an opposite direction, for example, green and
blue lines around 2017-01-26. In the case of the CNN encoder, we can notice

12 Authors Suppressed Due to Excessive Length

2017-01-19 2017-01-21 2017-01-23 2017-01-25 2017-01-27 2017-01-29
Date

20

40

60

80

100

Nu
m

be
r o

f a
va

ila
bl

e
pa

rk
in

g
lo

ts

Measured value
Predicted value

(a) RNN encoder

2017-01-19 2017-01-21 2017-01-23 2017-01-25 2017-01-27 2017-01-29
Date

20

40

60

80

100

120

N
um

be
r o

f a
va

ila
bl

e
pa

rk
in

g
lo

ts Measured value
Predicted value

(b) CNN encoder

2017-01-19 2017-01-21 2017-01-23 2017-01-25 2017-01-27 2017-01-29
Date

40

60

80

100

N
um

be
r o

f a
va

ila
bl

e
pa

rk
in

g
lo

ts Measured value
Predicted value

(c) GNN encoder

Fig. 6: Prediction performance at each time step. Each solid line represent two
hours prediction. The solid and dashed lines with the same colors represent the
same time periods.

from the figures that it cannot capture temporal perspective at some points. Fi-
nally, Figure 6(c) shows that predicted values in the GNN encoder are also close
to measured values. The GNN enconder does not present opposite transitions.
However, it consecutively outputs the same predicted values in several points.
Hence, we can observe that our GNN encoder is conservative.

5 Smartphone application

We apply our graph-to-sequence model to a smartphone application in order
to provide accurate parking prediction to citizen and tourists. Figure 7 shows

Title Suppressed Due to Excessive Length 13

Fig. 7: Screenshot of our smartphone application for parking prediction with
SmartSantander

a screenshot of our smartphone application. The application shows how many
parking lots are currently available and will be available in 15–120 minutes.

We developed our application by Flutter for deploying it on both iOS and
Andoroid platforms. We run prediction models in a server, and then smartphones
access to the server for obtaining and displaying the prediction results. The server
accesses the real-time parking information and the historical ones within 24 hours
though APIs on data collector of SmartSantander. This smartphone application
is helpful to intuitively see the parking lots availability in the current and the
future time.

6 Related work

We review the similar existing works. Since there are a large number of existing
works on parking prediction, please refer a survey paper [15] that summarizes
existing works related to smart parking systems.

Parking prediction. Due to the developments of smart city projects, nowa-
days many cities monitor the status of parking lots, such as Berlin [26], Barcelona
[5], and Santander. There are many works that aim to predict parking lot avail-
ability. Tiedemann et al. [26] developed a system that predicts occupancy for
parking spaces in Berlin, Germany, which collects data from roadside parking
sensors. This system predicts occupancy by using neural gas machine learning
methods combined with data threads. Caicedo et al. [5] developed a real-time
availability forecast (RAF) algorithm for predicting real-time parking lot avail-
ability, located in Barcelona, Spain. Chen et al. [7] tackles the parking problem
by aggregating parking lots in the same way as we do in our problem, in San
Fransisco. They evaluated multiple models, such as ARIMA, linear regression,
support vector regression, and feed forward neural networks, and the neural
network algorithm have achieved the best performance.

14 Authors Suppressed Due to Excessive Length

Several neural network-based prediction models have been proposed nowa-
days [6, 12, 23, 25, 32]4. For example, Shao et al. [23], Jomaa et al. [12], Xiao
et al. [30] use LSTM, CNN, and GCN with GLU, respectively. Existing works
predict the availability of parking lots at either a single step (i.e., current or
near future) or pre-defined multiple steps. As our aim is to predict availability
of parking lots at non pre-defined multiple time steps simultaneously, existing
algorithms are not applicable for our problem. The sequence-to-sequence mod-
els that we used as our baselines can be considered as the extension of existing
works [12,23], and we validated that our method achieves higher accuracy than
them.

Some existing methods use not only historical parking data, but also other
data sources for predicting parking lot availability. For example, data sources
include historical data generated by mobile phones (e.g., [16]), data extracted
from vehicles equipped with GPS receivers (e.g., [17]), and information from web
maps (e.g., [1,31,36]). In this regard, our model could be improved if we include
these extra data. However, such data is difficult to be accessed, and we must
deal with privacy related aspects, as well as to consider that not all the users
use such recent devices and services. So, they are not suitable in the situations
of SmartSantander.

Deep learning on spatial and temporal data prediction. There are
similar works with parking availability prediction such as predicting traffic den-
sity, pollution data, and the general availability of resources [11,18]. These works
are categorized into grid-based and graph-based predictions [11]. The grid-based
prediction divides areas into equal-size grids and predicts the values for each grid
(e.g., [34]). However, equal-size grids are not suitable for our problem because we
aim to predicate the number of available parking lots per street, which cannot
divide equal-size grids.

Our work belongs to the graph-based prediction which estimates attributes
of nodes on graphs (e.g., [13,28,29,33]). Nodes on graphs often represent sensors
such as temperature and traffic volume sensors, and their measurements are
attributes of the nodes. In our study, nodes represent parking clusters and their
attributes are the parking lots availability, so the existing methods can be applied
to parking predictions. Existing methods output either a single step prediction or
fixed multiple step prediction that step sizes are given in advance, and thus they
do not satisfy our requirements (i.e., prediction at multiple time step without
pre-defined time steps)5.

Graph-to-sequence models. Graph-to-sequence models have widely studied
recently [2, 3, 24]. They generate a target of sequence from a given graph by
effectively extracting information on the graph. To the best of our knowledge,
there are no works that applied to parking lots availability yet.

4 These works are not coupled with smart city projects.
5 We note that we operated our service for several years, so it is hard to replace our
model to recent models even if new models are developed.

Title Suppressed Due to Excessive Length 15

7 Conclusion

We studied the parking availability prediction with SmartSantander. We devel-
oped a graph-to-sequence neural network model to predict the number of avail-
able parking lots for the entire parking area in the whole city center and per each
of the streets at multiple time steps. We evaluated our model using a dataset
containing three years of real outdoor parking data with SmartSantander, and
our model achieved a highly-accurate prediction performance, which is accurate
enough to develop the service in the city.

As part of our future works, we first plan to develop online-learning methods
for capturing the current trends at real time. In particular, it is worthwhile to
tackle drastic changes of parking, for example, due to spreading COVID-19. Sec-
ond, we plan to use real-time data through user interfaces such as user-feedback
for improving the prediction performance. Third, we plan to use alternative
features, such as traffic volume and weather conditions that are collected in
SmartSantander, to improve the accuracy of the parking prediction.

References

1. Arora, N., Cook, J., Kumar, R., Kuznetsov, I., Li, Y., Liang, H.J., Miller, A.,
Tomkins, A., Tsogsuren, I., Wang, Y.: Hard to park? estimating parking difficulty
at scale. In: KDD. pp. 2296–2304 (2019)

2. Bai, L., Yao, L., Kanhere, S., Wang, X., Sheng, Q., et al.: Stg2seq: Spatial-temporal
graph to sequence model for multi-step passenger demand forecasting. arXiv (2019)

3. Beck, D., Haffari, G., Cohn, T.: Graph-to-sequence learning using gated graph
neural networks. arXiv (2018)

4. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: fore-
casting and control. John Wiley & Sons (2015)

5. Caicedo, F., Blazquez, C., Miranda, P.: Prediction of parking space availability in
real time. Expert Systems with Applications 39(8), 7281–7290 (2012)

6. Camero, A., Toutouh, J., Stolfi, D.H., Alba, E.: Evolutionary deep learning for car
park occupancy prediction in smart cities. In: International Conference on Learning
and Intelligent Optimization. pp. 386–401 (2018)

7. Chen, X.: Parking occupancy prediction and pattern analysis. Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, USA, Tech. Rep. CS229-2014 (2014)

8. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv:1406.1078 (2014)

9. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: ICML. pp. 933–941 (2017)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

11. Jiang, R., Yin, D., Wang, Z., Wang, Y., Deng, J., Liu, H., Cai, Z., Deng, J., Song,
X., Shibasaki, R.: Dl-traff: Survey and benchmark of deep learning models for
urban traffic prediction. In: CIKM. pp. 4515–4525 (2021)

12. Jomaa, H.S., Grabocka, J., Schmidt-Thieme, L., Borek, A.: A hybrid convolutional
approach for parking availability prediction. In: IJCNN. pp. 1–8 (2019)

16 Authors Suppressed Due to Excessive Length

13. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In: ICLR (2018)

14. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

15. Lin, T., Rivano, H., Le Mouël, F.: A survey of smart parking solutions. IEEE
Transactions on Intelligent Transportation Systems 18(12), 3229–3253 (2017)

16. Nandugudi, A., Ki, T., Nuessle, C., Challen, G.: Pocketparker: Pocketsourcing
parking lot availability. In: UbiComp. pp. 963–973 (2014)

17. Pflügler, C., Köhn, T., Schreieck, M., Wiesche, M., Krcmar, H.: Predicting the
availability of parking spaces with publicly available data. Informatik 2016 (2016)

18. Rottkamp, L., Schubert, M.: A time-inhomogeneous markov model for resource
availability under sparse observations. In: SIGSPATIAL. pp. 460–463 (2018)

19. Sanchez, L., Muñoz, L., Galache, J.A., Sotres, P., Santana, J.R., Gutierrez, V.,
Ramdhany, R., Gluhak, A., Krco, S., Theodoridis, E., et al.: Smartsantander: Iot
experimentation over a smart city testbed. Computer Networks 61, 217–238 (2014)

20. Sasaki, Y.: A survey on iot big data analytic systems: Current and future. IEEE
Internet of Things Journal 9(2), 1024–1036 (2021)

21. Sasaki, Y., Hori, K., Nishihara, D., Ohashi, S., Wakuta, Y., Harada, K., Onizuka,
M., Arase, Y., Shimojo, S., Hongdi, H., et al.: Smart city data analysis via visual-
ization of correlated attribute patterns. In: EDBT. pp. 650–653 (2021)

22. Sasaki, Y., Ishikawa, Y., Fujiwara, Y., Onizuka, M.: Sequenced route query with
semantic hierarchy. In: EDBT. pp. 37–48 (2018)

23. Shao, W., Zhang, Y., Guo, B., Qin, K., Chan, J., Salim, F.D.: Parking availability
prediction with long short term memory model. In: International Conference on
Green, Pervasive, and Cloud Computing. pp. 124–137 (2018)

24. Shen, K., Wu, L., Xu, F., Tang, S., Xiao, J., Zhuang, Y.: Hierarchical attention
based spatial-temporal graph-to-sequence learning for grounded video description.
In: IJCAI. pp. 941–947 (2020)

25. Tekouabou, S.C.K., Cherif, W., Silkan, H., et al.: Improving parking availability
prediction in smart cities with iot and ensemble-based model. Journal of King Saud
University-Computer and Information Sciences (2020)

26. Tiedemann, T., Vögele, T., Krell, M.M., Metzen, J.H., Kirchner, F.: Concept of a
data thread based parking space occupancy prediction in a berlin pilot region. In:
Workshops at AAAI (2015)

27. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV. pp. 4489–4497 (2015)

28. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
Multivariate time series forecasting with graph neural networks. In: SIGKDD. pp.
753–763 (2020)

29. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. In: IJCAI. pp. 1907–1913 (2019)

30. Xiao, X., Jin, Z., Hui, Y., Xu, Y., Shao, W.: Hybrid spatial–temporal graph con-
volutional networks for on-street parking availability prediction. Remote Sensing
13(16), 3338 (2021)

31. Yang, H., Liu, C., Zhuang, Y., Sun, W., Murthy, K., Pu, Z., Wang, Y.: Truck
parking pattern aggregation and availability prediction by deep learning. IEEE
Transactions on Intelligent Transportation Systems (2021)

32. Yang, S., Ma, W., Pi, X., Qian, S.: A deep learning approach to real-time parking
occupancy prediction in transportation networks incorporating multiple spatio-
temporal data sources. Transportation Research Part C: Emerging Technologies
107, 248–265 (2019)

Title Suppressed Due to Excessive Length 17

33. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In: IJCAI. pp. 3634–3640 (2018)

34. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., Li, T.: Predicting citywide crowd flows
using deep spatio-temporal residual networks. Artificial Intelligence 259, 147–166
(2018)

35. Zhang, Y., Shen, D., Wang, G., Gan, Z., Henao, R., Carin, L.: Deconvolutional
paragraph representation learning. In: NIPS. pp. 4172–4182 (2017)

36. Zhao, D., Ju, C., Zhu, G., Ning, J., Luo, D., Zhang, D., Ma, H.: Mepark: Us-
ing meters as sensors for citywide on-street parking availability prediction. IEEE
Transactions on Intelligent Transportation Systems (2021)

18 Authors Suppressed Due to Excessive Length

LSTM cell

x

 𝑅𝑒𝐿𝑈

 𝜎 𝜎 𝑡𝑎𝑛ℎ 𝜎
x

 𝑡𝑎𝑛ℎ

x +

�̂�

𝑠 𝑠

ℎ

𝐶𝐶

ℎ

𝑓 𝑖 𝐶
𝑜

Fig. 8: RNN encoder architecture

A Baseline Sequence-to-Sequence models

RNN encoder model RNN is a neural network model whose input is a se-
quence of vectors, such as natural language or temporal data. Since parking lot
data is also represented as a sequence of vectors, RNN can be directly used for
our problem. The RNN encoder uses a multilayered Long Short-Term Memory
(LSTM) [10] whose inputs are vectors from st−M to st−1. Figure 8 shows the
RNN encoder.

The RNN encoder follows basic LSTM models except that we embed st−i
with ReLU function because it must be positive to represent the number of
available parking lots. In more concretely, the RNN encoder consists of the follow
equations:

ŝt = ReLU(Wsst + bs) (14)
ft = σ(Wf [ht; ŝt] + bf)

it = σ(Wi[ht; ŝt] + bi)

C̃t = tanh(WC [ht; ŝt] + bC)

Ct+1 = ft ⊗ Ct−1 + itC̃t

ot = σ(Wo[ht−1; ŝt] + bo)

ht+1 = ot ⊗ tanhCt+1

where, W is weight matrix, b is bias vector, and ∗ indicates Hadamard product.
f , i, o, C, and h are forget gate, input gate, output gate, memory cell, and
final states of hidden layer, respectively. These equations are the same for basic
LSTM cells except for Eq. (14).

The RNN encoder can capture the temporal perspective, while it does not
capture the spatial perspective at different time steps because it just inputs the
vector at every single step.

Title Suppressed Due to Excessive Length 19

𝑀

𝑀/2

27
50

50
25 50

1
𝑀/4 𝑀/4

5

27

5

27

1

2

1

Convolution

Convolution Convolution

Max pooling

Fig. 9: CNN encoder architecture

CNN encoder model CNN has been recently reported to outperform RNN
regarding to the prediction of time series data [27]. For the CNN encoder, we em-
ploy 1D-convolution as same as our GNN encoder. Convolutional layers output
matrices that represent the characteristics of parking data with the robustness
of small fluctuations. The CNN encoder outputs the vector to the decoder, sim-
ilarly to the RNN encoder model. Figure 9 shows the CNN encoder that has
three convolutional layers and one max pooling layer. It gradually reduces the
size to obtain aggregated important features.

We explain the CNN encoder in detail. We first transform M vectors (i.e.,
from st−M to st−1) to a single matrix X ∈ RM×|s|, where the i-th column of X is
the st−M+i−1. The design of the convolutional layer is based on the convolutional
encoder architecture [35]. The architecture consists of three convolutional and
one max pooling layers that transform an input matrix into a fixed-length vector.
For each filter, a convolutional operation with stride length r applies filter Wc ∈
Rf×50, where f is the convolutional filter size. Three convolutional layers have 5,
5, and M

4 as the filter sizes, and 2, 2, and null as the stride length, respectively.
The reason of using null is that the filter size is the same as the matrix size.
We use 50 filters in each convolutional layer. In the CNN encoder, we also apply
one dimension max pooling after the second convolutional layer to emphasize
the characteristic of matrix.

The CNN encoder learns the spatial perspective from the whole city globally,
but it often misses local spatial perspective that is observed a set of close parking
lots.

	Predicting Parking Lot Availability by Graph-to-Sequence Model: A Case Study with SmartSantander

