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Abstract—Micro-mobility services (e.g., e-bikes, e-scooters) are
increasingly popular among urban communities, being a flexible
transport option that brings both opportunities and challenges.
As a growing mode of transportation, insights gained from
micro-mobility usage data are valuable in policy formulation and
improving the quality of services. Existing research analyses pat-
terns and features associated with usage distributions in different
localities, and focuses on either temporal or spatial aspects. In
this paper, we employ a combination of methods that analyse
both spatial and temporal characteristics related to e-scooter
trips in a more granular level, enabling observations at different
time frames and local geographical zones that prior analysis
wasn’t able to do. The insights obtained from anonymised,
restricted data on shared e-scooter rides show the applicability
of the employed method on regulated, privacy preserving micro-
mobility trip data. Our results showed population density is
the topmost important feature, and it associates with e-scooter
usage positively. Population owning motor vehicles is negatively
associated with shared e-scooter trips, suggesting a reduction
in e-scooter usage among motor vehicle owners. Furthermore,
we found that the effect of humidity is more important than
precipitation in predicting hourly e-scooter trip count. Buffer
analysis showed, nearly 29% trips were stopped, and 27% trips
were started on the footpath, revealing higher utilisation of
footpaths for parking e-scooters in Melbourne.

Index Terms—micro-mobility, spatio-temporal analysis, regres-
sion methods, buffer analysis

I. INTRODUCTION

Micro-mobility is an emerging transportation option that
offers convenience and flexibility in travelling while reduc-
ing fuel consumption, traffic congestion, and environmental
pollution [1], [2]. Many cities, including Paris, Barcelona,
New York, Washington, London, and Milan have embraced
micro-mobility into their urban transport system. An e-scooter
sharing system is one such micro-mobility service where
individuals rent e-scooters using the service provider’s mobile
application. Riders can scan the QR code displayed on an e-

scooter to start a trip and leave it locked within the operational
area at the end of the trip.

Considering the growing rate of these services, there is a
need to explore the usage patterns and the spatio-temporal
factors impacting the usage of micro-mobility services to in-
form better policies to increase usage, safety and convenience.
Previous work aimed at urban policy formulation showed that
micro-mobility trip distribution, usage, and their association
with spatio-temporal features vary based on the locality [3],
[4]. For example, in Austin, US, higher e-scooter usage was
measured later in the week, whereas the usage stays stable on
different days of the week in Minneapolis, US. While one-
million e-scooter rides were reached in Melbourne, Australia,
within four months, it took nearly one year to get the same
number of rides in London, UK, a city with almost twice
the population and more than twice the number of shared
e-scooters [5]. Therefore, a better understanding of the city-
specific associations of spatio-temporal features with micro-
mobility rides is needed to assist in decision making (e.g.,
enabling road rules, re-distributing vehicles, assigning parking
points) towards service quality improvement.

Generally, the association between shared e-scooter rides
and related spatio-temporal features were explored using re-
gression models [3], [6]–[8]. The existing methods mostly
deploy a single model, which limits the ability to compare
prediction accuracy and model fitness. It reduces the reliability
of outputs that are interpreted based on coefficients [1], [4].
Moreover, the impact of either spatial or temporal variables
were explored, providing a partial view of the spatio-temporal
features associated with micro-mobility trips [1], [3], [4],
[7]. Rigorously analysing the influence of both spatial and
temporal features of the phenomenon is important to generate
a more precise picture, leading to better decisions. Another
limitation in the existing literature is developing an individual
global model with aggregated trip data relevant to the entire
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study area or duration [1], [3]. It limits the capability of
gaining potential insights into temporal and spatial dynamics
of the relationship between micro-mobility service usage and
related factors. In general, freely available micro-mobility
trip data does not contain comprehensive information due to
privacy concerns. Nonetheless, most findings from existing
studies are based on detailed trip data, enriched with duration
and distance of rides [6], [8]. Such studies cannot be easily
conducted on real-world trip data, which has limitations.

Addressing the challenges noticed in the existing work, we
deployed a collection of methods to investigate the features
associated with e-scooter ridership both spatially and tempo-
rally. Further, we extended the analysis to a more granular
level and explored the temporal variations of spatial-feature
relationships and the spatial dynamics of temporal-feature
relationships. Also, a buffer analysis was conducted to gain
additional insights into the relationships between Points Of
Interest (POIs), and micro-mobility trip origin/destination lo-
cations in different time frames. To understand the association
between spatio-temporal attributes and micro-mobility usage,
we used a dataset consisting of 175,609 e-scooter trip-starts,
and 180,373 trip-stops that occurred during 3 months from 1st,
August 2022 in Melbourne, Australia.

Our main contributions can be summarised as follows:
• We provided a comprehensive analysis that helps to

understand the spatial and temporal factors impacting
micro-mobility services. Our analysis is built based on
multiple models, therefore, generating more reliable out-
puts. Generally, we cover the following relations (1) E-
scooter trip occurrence and spatial features. (2) E-scooter
trip occurrence and temporal features. (3) POIs and e-
scooter trip start/end locations

• We explored the relationships on a multi-resolution scale,
where different time frames and spatial zones were mod-
eled. Our in-depth analysis helps to identify the dynamics
and heterogeneity of spatial and temporal features asso-
ciated with micro-mobility trips.

• Finally, we provided insights using real-world
anonymized e-scooter trip data, which will assist
in better decision making towards service quality
improvement and policy making.

II. RELATED WORK

Our work relates to the growing literature on micro-mobility
services, coming from a wider range of disciplines, including
transportation, law, sociology, and computer science. Prior
work has studied the micro-mobility usage patterns, and their
associated features, primarily in the transportation domain,
where the researchers have examined the spatial and temporal
determinants of micro-mobility usage separately.

A. Micro-mobility services and associated spatial features

Research has studied the spatial distribution of shared e-
scooters in different cities. In Hosseinzadeh et al. [3], the
influence of factors relating to demographics, diversity, and
design on e-scooter trips were evaluated. They implemented a

Geographically Weighted Regression model, considering data
from 159 traffic analysis zones in Louisville, KY. According
to the global coefficient values of the model, 18-29 age
population, male percentage, commercial land use, and mixed
land use were identified as significant features related to e-
scooter trips. A study conducted in Minneapolis [8] analysed
the usage of e-scooters and their association with populations
of different age groups, lane design, land use, and POI counts.
The researchers used street segments as the geographical unit
of analysis. They deployed Negative Binomial Regression
(NBR) models for four different time frames on weekdays and
another model for weekend trips, arguing the impact on related
features vary based on the time of e-scooting. According to
their findings, e-scooters are more popular among the 18-34
age group. Residential land use affects more morning and night
trip generation, while commercial land use shows a higher
impact on weekend and weekday-midday models. Bai and
Jiao [4] compared e-scooter usage in Austin and Minneapolis,
and explored whether the features affecting usage differ in
the two cities. By implementing NBR models, they observed
some features such as proximity to the city center, land use
diversity, and transit accessibility positively correlate with e-
scooter rides in both cities, while features like commercial land
use and park availability were significant only in one city.

For our study, we selected spatial features from the literature
[3], [4], [8] and added family composition as a new feature,
since it was identified as an influential factor in travel mode
selection [9], [10]. Without being limited to a single regression
model, we experimented with four machine learning models
and selected the model with the least error metrics in predic-
tion. Then the selected model was used to find most associated
features with e-scooter trips. Tokey et al. [8] points out the
importance of implementing additional models to different
time frames, since the influence on POIs and other features
may be dynamic in different temporal dimensions. Seeing
the temporal variation of e-scooter usage in Melbourne, we
implemented models dividing trip data into 10 (5-weekday
and 5-weekend) segments.

B. Micro-mobility services and associated temporal features

When exploring the factors impacting shared e-scooter us-
age, researchers also looked at dynamically changing features
such as weather and gasoline price. Hosseinzadeh et al. [1]
investigated the influence of the day of the week, weather,
and holidays for shared e-scooter and bike share trips in
Louisville. They estimated the daily trip frequency using a
Negative Binomial Generalized Additive model. Based on the
coefficients of the model, weather features (e.g., rainfall, wind
speed, mist) were associated with a decrease in the number of
trips, and holiday was a factor that increases the trip count.
Another study analysed the sensitivity of weather, gas prices,
and holidays on the number of shared e-scooter and station-
based bike share rides in Washington, D.C [6]. In that work,
the authors implemented NBR models for both micro-mobility
systems separately and compared the determinants. According
to their findings, warmer weather increases the instances of



trips, while humidity and precipitation negatively impact trip
counts. However, they observed that e-scooter trips are less
sensitive to weather changes compared to bike rides. Lesser
physical effort needed and the convenience of parking for e-
scooters were the possible reasons given for that observation.
Holidays and gas prices showed a positive effect on both e-
scooter and bike share trips.

Since we observed sufficient variations in the number of e-
scooter rides hourly as seen in Figure 1, we choose to build
the model with hourly granular data instead of daily. With
the availability of data in Melbourne, we selected a set of
weather features from the literature [1], [6]. In addition to
the global model to estimate the number of hourly rides in
the study area, we implemented three models for selected
Statistical Areas. The expectation was to analyse the variation
of temporal trip determinants (weather, time, day) in different
geographical zones.

C. Buffer Analysis

Tokey et al. [8] and Heumann et al. [11] highlighted the
importance of examining the presence of POIs when analysing
e-scooter usage patterns. E-scooter riders participated in in-
terviews of a study expressed that they can reach closer to
their destinations with e-scooters because of the free-floating
nature of the vehicle [2]. Li et al. [12] states trip data from
dockless services such as e-scooters can be much closer to real
origin and destination locations of user trips. Based on these
reasons, we decided that POIs near trip start and end locations
can reveal important information about usage patterns and
trip intentions. Therefore, we conducted a buffer analysis to
explore the impacts on POIs in different temporal dimensions.

Buffer analysis is a common approach used in Geographic
Information Systems to examine proximity [13]. It creates a
polygon around a feature of interest that contains an area of a
specified width. Jin et al. [14] employed buffer analysis to
find the spatio-temportal relationship between Uber pickup
locations and public transit coverage in New York City.
They analysed the number of pickups within three buffer
areas around public transit stops and found that Uber both
compete with and compliment public transport. In particular,
their analysis on different time frames revealed competition is

Fig. 1: Hourly e-scooter trip distribution

evident mostly in daytime, in areas with good public transit
coverage, while Uber acts as a complement at midnight in
areas with less public transit service. Another study used buffer
analysis to explore the impact on shared e-scooters on public
bus ridership [15]. They implemented regression models to
estimate route level bus ridership, using the variables derived
from buffer analysis such as the number of e-scooter start-trips,
end-trips and population within the buffer area.

Given that e-scooter trip start/end locations are closer to
riders’ actual origin/destination, we explored the difference
between the number of trips started and ended having POIs
within the buffer for multiple time frames on weekends and
weekdays. Further, the number of trips started and ended
within three buffer zones near paths (footpath, cycle lane, and
shared path) were compared to explore the effect of e-scooter
parking on different types of paths.

III. DATASETS

A. E-scooter trip data

The city of Melbourne, Australia started an e-scooter
trial partnered with Lime and Neuron micro-mobility service
providers on 1st February 2022. Although the trial started
with a fleet of 750 e-scooters for each provider, due to the
growing demand, providers increased the number of e-scooters
deployed in the city [16].

We accessed e-scooter trip details using the General Bike-
share Feed Specification API1 provided by Lime. The free bike
status API endpoint provides a real-time snapshot of available
e-scooters in Melbourne. The API response consists of a
unique ID for each e-scooter, the geographical coordinates,
and the battery level of the vehicle. We were able to derive
trip-starts, and trip-ends by continuously collecting these API
responses in regular time intervals as proposed by McKenzie
[17]. For example, an e-scooter that appears in the available
vehicle list at t = 0, does not appear in the available list from
t = 1 to t = 3 and reappears at t = 4 indicates that the
particular e-scooter was in use from t = 1 to t = 3. Hence,
t = 1 can be identified as a trip-start and t = 3 as a trip-end.

We implemented a scheduled python script to retrieve data
from the API every minute. One limitation we observed
in the dataset is, the unique ID assigned to each e-scooter
was changed every 15 minutes for data security purposes.
Due to this limitation, we could not identify complete trips
(i.e., match each trip-start with a unique trip-end) from the
dataset. As a solution, we aggregated trips into 15-minute
time intervals and analysed trip-starts and trip-ends separately.
Hence, the aforementioned limitation does not impact the
analysis presented in this paper.

This study used shared e-scooter trip data collected from
1st August 2022 to 30th October 2022. The city of Melbourne
trial operating zone consists of 350 Statistical Areas (SA) [18].
Figure 2 shows the distribution of e-scooter trip density over
the study area. We presented the trip density (trips/sq. km.)

1A standardized data feed for shared mobility system availability:
https://github.com/MobilityData/gbfs



instead of the trip count, since the area of different SAs are
not uniform. Trip density TD was calculated for each SA as
follows:

TD(r) =
T (r)

A(r)
(1)

Where T (r) is the number of trips that occurred in region r
and A(r) is the area of that region. We used trip-start locations,
and trip-start timestamps to conduct our spatial analysis.

B. Explanatory Variables of the Spatial analysis

To find the spatial factors most associated with e-scooter
trips, we modeled a set of demographic and land use variables
representing each SA. These variables were selected based on
the literature [3], [4], [8]. Population, gender, age distribution,
vehicle ownership, and family composition were collected
from the platform of the Australian Bureau of Statistics
[18]. These demographic-related data for the year 2021 were
available for Statistical Area 2 zones (SA2 is an aggregation
of SAs). We converted these values to SA level by dividing
the values by the number of SAs in each SA2 zone.

To represent the land use distribution, we collected POI
data from the CLUE (Census of Land Use and Employment)
project of the City of Melbourne Open Data Portal [19].
It includes information about land use from 2002 and is
updated annually. We selected records in census year 2020,
as it was the most updated dataset. Each record contained
the coordinates of POIs. Locations of the tram stops in
the study area were acquired from the Open Street Map
[20]. We calculated two design indices used in the previous
studies: Shanon’s entropy, which quantifies the diversity of a
region, and the Mixed used Index (MXI), which captures
the variance between residential and other POIs [3], [4]. The
Shanon’s entropy E and the MXI of a region are calculated
as equations (2) and (3), respectively.

E(r) = Σi

(
Ni(r)

N(r)
× log

Ni(r)

N(r)

)
(2)

Ni(r) is the POI count of type i in region r and N(r) is the
total POI count in region r.

MXI(r) = |P (r)− 50| (3)

Fig. 2: E-scooter trip density distribution over statistical areas

P (r) is the residential percentage in region r.

C. Explanatory Variables of the Temporal analysis

To explore how temporal and weather factors influence
trip frequency in Melbourne, we collected hourly weather
data from the Australian Government Bureau of Meteorology
platform [21]. The day of the week and the time of the day
were also modeled as variables. We selected these variables
according to the literature.

Figure 1 illustrates the number of e-scooter trips started
hourly on different days of the week. There is a clear variation
between the number of trips that occurred on weekdays and
weekends. Two noticeable peaks are visible on weekday trips,
one around 8 am and the other around 5 pm. The number
of trips started in the afternoon is higher than the number of
trips started in the morning irrespective of the day. A similar
observation of higher afternoon trips was common in a few
other cities such as Minneapolis, Washington D.C. and Berlin
[6], [8], [11].

Table I and Table II summarise all the variables used in the
spatial and temporal analysis respectively.

IV. METHOD

Different to previous work where the association of either
spatial or temporal features with micro-mobility services were
analysed, we employed a combination of analytic methods
with buffer analysis. Through this approach, we gained mean-
ingful insights on micro-mobility usage and associated fea-
tures. When exploring the features related to micro-mobility
trips, we examined spatial features and temporal features sepa-
rately. The main reason is, the temporal features are dynamic
variables that vary with time, whereas spatial features (e.g.,
population, POI percentage etc.) are unchanged during the
study period. Combining dynamic and static features together
can reduce the predictive power of static features, that might
obscure the importance of them [22].

The proposed methodology can be easily extended to other
localities and other micro-mobility trip data sets. The method-
ology workflow seen in Figure 3 is explained below.

A. Spatial Analysis - Regression Models

This section discusses the method employed to analyse
associations between spatial features and e-scooter usage. We
explored the relationship between the independent and depen-
dent variables shown in Table I, using regression models. Then
the analysis was extended on different time frames. Through
this, we expected to investigate the temporal dynamics of the
spatial features associated with e-scooter trips.

1) Regression Model for total trips: We implemented four
machine learning models (negative binomial regression, sup-
port vector regression, neural network, and random forest
regression) to estimate the e-scooter trip density in a SA, and
their performance was evaluated with error values such as
MAE, MSE, RMSE, and MAPE. The best model was used
to derive the features having a larger effect on the output
prediction. The dataset consisting of features representing 350



TABLE I: Descriptive statistics of dependent and independent variables of the spatial analysis

Reference Study variable Description Mean Std Min Max
[3] Trip Density (DV) Total trips occurred with in a square km in a SA 17869.9 21144.0 77.3 216428.5
[3], [4] Population Density Number of people within a square km in a SA 11289.0 8289.8 0.0 31052.4
[3] Female% Percentage of females in a SA 49.6 4.9 0.0 52.5
[3] Male% Percentage of males in a SA 49.4 4.8 0.0 61.5
[3] Age 5-14% Percentage of people between 5 and 14 years old in a SA 2.8 2.0 0.0 7.4
[3] Age 15-29% Percentage of people between 15 and 29 years old in a SA 41.9 13.5 0.0 65.1
[3] Age 30-39% Percentage of people between 30 and 39 years old in a SA 25.7 5.7 0.0 34.0
[3] Age 40-49% Percentage of people between 40 and 49 years old in a SA 10.4 3.1 0.0 20.7
[3] Age 50-64% Percentage of people between 50 and 64 years old in a SA 10.0 4.6 0.0 20.6
[3] Age 65Above% Percentage of people above 65 years old in a SA 8.0 5.7 0.0 24.0
[8] Car Ownership% Percentage of dwellers owning motor vehicles in a SA 55.8 20.1 0.0 88.0

New Without Children% Percentage of families with no children in a SA 73.8 11.0 0.0 100.0
New With Children% Percentage of families with children in a SA 25.2 8.9 0.0 42.5
[8] Cafe% Percentage of cafe and restaurant in a SA 60.6 40.3 0.0 100.0
[8] Shop% Percentage of retail shops in a SA 0.5 2.9 0.0 50.0
[4] Office% Percentage of offices in a SA 2.1 6.4 0.0 100.0
[3], [4] Recreation Count Number of Leisure/Recreation places in a SA 0.2 0.8 0.0 12.0
[3] Campus Count Number of universities in a SA 0.0 0.1 0.0 1.0
[3], [4] Entropy Entropy calculated using equation (2) 0.6 0.47 0.0 2.2
[3], [4] MXI MXI calculated using equation (3) 40.5 13.5 0.0 50.0
[3] Tram Density Number of trams stops within a square km in a SA 18.2 40.0 0.0 357.1
[3], [4] Bus Density Number of bus stops within a square km in a SA 20.3 56.7 0.0 714.2
[3] Train Density Number of metro stations within a square km in a SA 0.2 1.7 0.0 24.6

DV - Dependent variable

Fig. 3: Methodology workflow

SAs were randomly split into training (70%) and testing (30%)
datasets. For all the implemented models, hyperparameters
were determined using the training set and model selection
was performed using the testing set.

Negative Binomial Regression (NBR) is the most commonly
used modeling approach in micro-mobility literature, since it
fits the overdispersed (variance exceeding mean) data better.
For NBR, we used the log link function. Alpha (estimate
of dispersion parameter) was calculated using an auxiliary
Ordinary Least Squares regression model. As a kernel based
model, we implemented Support Vector Regression (SVR)
with Radial Basis kernel function. An exhaustive search proce-
dure based on grid search was adopted for optimizing gamma
and C (penalty factor for error term) parameters. The optimal
settings for our model were gamma of 0.01 and C of 5. As

the third model, we developed a feed forward neural network
(NN) with two hidden layers. Identifying the optimal batch
size and epochs of the NN was conducted using a grid search.
As an ensemble regression method, Random Forest Regression
(RFR) was implemented. It was optimized using grid search
over a range of hyperparameters. We found that the optimal
settings for our model were a 20 of estimator number, 17 of
minimum sample leaf, and 10 of minimum sample split. These
hyperparameters were selected based on their performance on
a validation set, using the squared error as the evaluation
metric. We implemented all the models with standardized
features except NBR, because it is a count estimation model.

2) Regression Models on different time frames: According
to Figure 1, there is a notable difference between the patterns
of e-scooter trip occurrences on weekends and weekdays. To



TABLE II: Descriptive statistics of dependent and independent variables of the temporal analysis

Reference Study variable Description Mean Std Min Max
[6] Hourly Trip Count (DV) Total count of trips happened in an hour 131.2 80. 2 7.0 453.0
[6], [1] Day of week Day of Week - - - -
[6] Hour of Day Hour of day - - - -
[6], [1] Humidity Hourly relative humidity in percentage 75.1 13.5 37.5 100.0
[6], [1] Precipitation Hourly average precipitation in mm 0.1 0.2 0.0 3.8
[6], [1] Temperature Hourly average temperature in Celsius 12.9 2.6 5.5 22.8
[6], [1] Wind Speed Hourly average wind speed in mph 5.9 2.7 0.0 15.6

DV - Dependent variable

analyse whether there is a difference between determinants
associated with trip density on weekdays and weekends, we
implemented separate regression models. Then the features
were compared after ordering them based on the effect they
have on a model’s prediction. Observing more granular tempo-
ral variations in the trip occurrence, we extended the analysis
by segregating trip density data into five different time frames
(0-5, 6-10, 11-15, 16-18 and 19-23) and implemented ten
models (e.g., weekday 0-5, weekend 0-5, weekday 6-10 etc).

B. Temporal Analysis - Regression Models

This section describes the method of analysing relationships
between temporal determinants and e-scooter usage. First,
hourly e-scooter trip count in the entire study area was esti-
mated, and the most affected temporal features were derived.
Then we extended the analysis on different SAs (geographical
unit of analysis in this work), to explore spatial dynamics of
the temporal features associated with e-scooter trips.

1) Regression Model for total trips: We implemented NBR,
SVR, NN, and RFR models to estimate the number of e-
scooter trips that occurred hourly. Among the explanatory
variables given in Table II, hourly weather data were repre-
sented as continuous variables, while day of the week (Friday
as reference) and hour of day (0-5 time frame as reference)
was represented as discrete variables in the model. The dataset
consisting of temporal features were randomly split into train-
ing (70%) and testing (30%) datasets. Testing data were used
to evaluate the predicting accuracy of the developed models.
Parameterization of each model was completed taking the
aspects discussed in section IV-A1 into consideration.

2) Regression Model on different spatial zones: Figure 2
shows the variation of e-scooter trip density on different SAs.
To explore whether there is a difference among the temporal
determinants associated with e-scooter trips in SAs, we devel-
oped separate regression models for three SAs. We selected the
SAs having the highest percentage of each POI type (offices,
cafes, and parks), assuming particular SAs consist of most
work-related, leisure-related, and recreational trips. Then we
ranked the features based on how much they contribute in each
model’s prediction. Through this, we aim to explore whether
the gravity of temporal factors such as time of the day, day of
the week and weather differ based on the trip intention.

C. Buffer Analysis

Regression analysis helps us recognise the variables that
have an impact on the number of e-scooter trips in terms

of space and time. However, it does not provide insights
into the association between e-scooter usage and POIs. To
better understand the relationship between e-scooter parking
and locations of POIs, we conducted a buffer analysis taking
different time frames into account. The purpose of the buffer
analysis is two-fold;

One is to explore whether there are POIs around trip
start/end locations during different time frames. Figure 4
shows the placement of 60m buffer around trip-start locations
and the availability of POIs. In [8] a 60m buffer was used for
the same purpose of capturing adjacent buildings to e-scooter
parked locations. We used POI location data collected from
CLUE project from the City of Melbourne. The percentage of
trip start/end locations having a given type of POI within the
buffer area was calculated using equation (4).

P (x, t) =
Σj

t=iT (x, t)

Σj
t=iT (t)

(4)

Where T (x, t) is the number of trip start/end locations
having at least one item of POI type x inside the buffer area at
time t and T (t) is the total number of trip start/end locations
at time t. The value of T (t) and the summary of trip start/end
counts during the study period is given in Table III.

Our second objective of buffer analysis is to analyse the
effect of e-scooter parking on different path types. For this,
we collected footpath, shared path, and cycle lane shapefile
datasets from the City of Melbourne open data portal. We
created a 10m buffer around each path type and calculated
the percentage of trips started/ended within the buffer area at
different time frames using equation (4). Here, T (x, t) is the
number of trip start/end locations within the buffer area of
path x at time t and T (t) is the total number of trip start/end
locations at time t. Since we observed different patterns of

Fig. 4: Buffers around e-scooter trip-start/ trip-end locations



Fig. 5: Buffers around footpaths

e-scooter parking around each path type, we extended the
analysis by breaking the 10m buffer into three smaller buffers
as shown in Figure 5; on the path, within 5m buffer, and 5m-
10m buffer. We used the QGIS tool for buffer creation.

Each type of path is dedicated for a certain purpose. For
example, a footpath is designated for pedestrians, a cycle lane
is for cyclists and a shared path can be used by both. The aim
of the extended buffer analysis around paths, is to explore how
each of these path types were affected by e-scooter parking.

V. RESULTS

A. Spatial

To select the best spatial regression model, we assessed
the performance of the implemented models in terms of trip
density prediction. Table IV depicts the regression model
results with respect to the standard error metrics; Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE) and Mean Absolute Percentage
Error (MAPE). We compared the standard errors for the
SVR, NN, RFR models and (non-standardized) NBR, (non-
standardized) RFR separately. Results show that the RFR has
the least MAE, MSE and RMSE among all four machine
learning models. Therefore, we selected RFR to derive the
most influential features among independent variables and for
the further spatial analysis of building regression models for
different time frames.

In a regression model, we can understand the importance of
features based on how they contribute to the model output pre-

TABLE III: Summary of e-scooter trip start and end counts

Trip Start Trip Ends
count % per-day count % per-day

Weekday (WD) 109666 62 1687.2 112354 62 1728.5
Weekend (WE) 65943 38 2536.3 68019 38 2616.2
WD (0-5) 12637 12 194.4 14656 13 225.48
WD (6-10) 15648 14 240.7 15770 14 242.62
WD (11-15) 29440 27 452.9 29860 27 459.38
WD (16-18) 22235 20 342.1 22030 20 338.92
WD (19-23) 29706 27 457.0 30038 27 462.12
WE (0-5) 10562 16 406.2 11914 18 458.23
WE (6-10) 6650 10 255.8 6761 10 260.04
WE (11-15) 18367 28 706.4 17987 26 691.81
WE (16-18) 12308 19 473.4 12701 19 448.50
WE (19-23) 18056 27 694.5 18656 27 717.54

TABLE IV: Results of regression models - spatial analysis

NBR* RFR* RFR NN SVR

MAE 10539.5 7722.6 0.366 0.385 0.381
MSE 26.1e7 14.9e7 0.344 0.350 0.369
RMSE 16.1e3 12.2e3 0.578 0. 591 0.607
MAPE 0.87 0.89 2.38 1.91 2.05

* Values with non standardized variables

diction. We used the Scikit-learn built in feature importances
method to calculate an importance score for each independent
variable. Even though this score quantifies how important
each feature is for the prediction, the direction of correlation
with the output is not visible. Therefore we calculated the
Pearson correlation between e-scooter trip density and each
feature. The feature importance scores of the spatial variables
according to the RFR model is illustrated in Figure 6. Features
represented in blue colour bars are positively correlated with e-
scooter trip density and the red ones are negatively correlated.

As per the spatial regression model for total trips, population
density in a SA is the most important feature in predicting
e-scooter trip density. SAs with higher population tend to
have higher e-scooter usage. Percentage of population owning
motor vehicles is the second important feature according to
the model. It is negatively correlated with the e-scooter trip
density. The percentage of families without children is a new
feature that we added in this study. Being the third important
feature, family composition is an influencing factor for e-
scooter trip prediction. According to our analysis, the most
important age group for predicting e-scooter trip density is
30-39 years old.

To understand the temporal dynamics of spatial features
associated with e-scooter trips, we compared feature impor-
tance scores of the models implemented for different time
frames. Figure 7 shows the feature importance scores of the top
most variables of models developed for weekday and weekend
different time frames. The importance of car ownership and
population of young age groups increases in weekend model
compared to weekday model. Population density is the most
important feature in the weekday morning models and car

Fig. 6: Feature importance of spatial regression model



Fig. 7: Feature importance - spatial analysis on different time frames

ownership % becomes more important in midday, evening and
at night weekday models. The importance of office% is more
evident in the weekday 6-10 model. Tram stop density is an
important feature in all the weekend models except 19-23.
Cafe% is important for e-scooter trip density prediction in 0-5
weekday model and three weekend models.

B. Temporal

The performance of temporal regression models imple-
mented were evaluated using the metrics in section V-A. Based
on the model results shown in Table V, we selected the RFR
model to explore the effectiveness of explanatory variables in
trip count prediction. The same model was chosen for further
temporal analysis of building regression models on different
spatial zones. Figure 8 depicts the feature importance scores
of the temporal variables in the RFR model. Positively cor-
related continuous variables, negatively correlated continuous
variables and discrete variables are represented in blue, red,
and gray respectively. According to the temporal regression
model for total trips, humidity is the most important feature
that affects the output prediction. High humidity levels are
associated with a lower number of e-scooter trips. While
precipitation is the least important weather feature as per the
model, though it also reduces the trip count. Wind speed is
a feature that positive correlates with e-scooter trips. In our
model, the 19-23 time frame is the most important of all
time frames and among days of the week, weekend is more
important than weekdays for e-scooter trip count prediction.

To understand the disparity of temporal determinants in
different spatial zones, we calculated feature importance scores
of models implemented on three SAs. Figure 9 shows the
results. In the first model (SA1: with most offices), weather
features show more importance than time and day features. In
the second model (SA2: with most cafes), time 19-23, 6-10 are
the most important for output prediction. The importance of
weather features are reduced in the second model. In the third
model (SA3: with most recreation), weather features hold more

TABLE V: Results of regression models - temporal analysis

NBR* RFR* RFR NN SVR

MAE 40.25 32.6 0.41 0.41 0.40
MSE 0.32 0.18 0.29 0.30 0.29
RMSE 56.38 42.50 0.53 0.55 0.54
MAPE 0.42 0.37 2.01 2.38 2.04

* Values with non standardized variables

Fig. 8: Feature importance of temporal regression model

importance than day and time. Under the assumption that SA1,
SA2, and SA3 consist of most work-related, leisure-related
and recreational trips, this results demonstrate the impact of
weather on shared micro-mobility usage vary based on the trip
intention. In model 2 and 3, the important scores for Saturday
and Sunday are higher than weekdays, while in model 1,
some weekdays have higher important scores than weekend.
It indicates that weekends are more important in the areas
with leisure-related trips. Overall, the importance of temporal
variables for shared e-scooter trip count prediction is diverse
across geographical areas.

C. Buffer Analysis

In this section, results of the buffer analysis is presented.
We selected residences and offices as the POIs of concern,
since those were the most important according to the total trip
regression model. Figure 10 shows percentage of trips with
offices and residences within the buffer area at different time
frames on weekdays. Comparing the percentage of trip-starts
having offices within the buffer area against relevant trip-stops
shows, 6-10 is the only time frame having more stops (mean

Fig. 9: Feature importance - temporal analysis on different SA



= 41.3%) than starts (mean = 35.7%). The difference between
percentage of trip starts and ends having offices in the buffer
area were statistically significant, confirmed by paired t-test at
0.05 significance level; t=-11.78, p<0.05. In contrast, in the
6-10 time frame, more trip-starts (mean = 64.2%) happened
near residences than trip-ends (mean = 57.3%). A paired t-
test verified the difference between percentage of trip starts
and ends with residences in the buffer area to be statistically
significant at 0.05 significance level; t=10.45, p<0.05. One
possible reason for these observations can be more riders start
e-scooter trips around residences and reach offices in 6-10.

Next, we discuss the results of the buffer analysis around
paths. We first looked at the percentage of trips started/ended
within a 10m buffer area from each type of path. To under-
stand e-scooter parking patterns near different path types, we
compared the percentage of trips originated and ended near
a selected path type on different time frames. One important
thing to note here is, we did not compare the percentage of
trips across path types, because the land coverage of footpaths
is higher than the land coverage of cycle lanes and shared
paths. The percentages of e-scooters trips originated and ended
near footpaths, bike lanes and shared paths at different time
frames in weekdays and weekends are shown in Figure 11.
In all time frames, the percentage of e-scooters stopped near
footpaths (mean = 74.4%) are higher than the trips started
(mean = 71.4%) around a footpath. A paired t-test confirmed
that difference between percentage of stopped and started e-
scooter trips around footpaths were statistically significant at
0.05 significance level; t=-5.26, p<0.05. When comparing e-
scooters parked near bike lanes, higher percentages of trip
starts and stops can be seen at daytime (6-18 mean = 15.3%,
19-5 mean = 13%). Most of the shared paths in Melbourne
are situated around recreation locations such as parks. It can
be the reason for having more trip-starts and trip-ends near
shared paths on weekends compared to weekdays in every
time frame (weekday mean = 3.8%, weekend mean = 4.6%).

We extended the buffer analysis around paths by breaking
the 10m buffer into smaller areas. Through this, we wanted to
explore whether e-scooters are parked ’on the path’ or around
the path. We calculated the percentage of trips started and
ended within three buffer areas in five time frames (similar
time frames used in the spatial regression). Table VI shows
the mean percentage values relevant to trip-starts and trip-
stops of weekdays and weekends. According to the results,

Fig. 10: Percentage of trips having POIs within buffer

Fig. 11: Percentage of trips start/end around paths

parking patterns around footpaths is different to cycle lanes
and shared paths. More trips have started and ended on the
footpath (28.2%) compared to the area around footpaths (5m
= 25.3%, 5m-10m = 19.1%). The opposite is observed for
cycle lanes and shared paths. It indicates the higher utilization
of footpaths for parking e-scooters.

VI. DISCUSSION

The findings of this study have several novelties and are
aligned with literature. Shared e-scooters are mostly used in
highly populated areas, while the percentage of motor vehicle
owners negatively associate with the e-scooter usage. This
indicates the resistance of private motor vehicle owners to
transfer into active transport modes. This study found that e-
scooter trips are more likely to be generated in areas with a
higher population of 30-39 years older adults. It slightly varies
with the understanding of other studies on age composition
and e-scooter usage, where Hosseinzadeh et al. [3] and Tokey
et al. [8] found the percentage of 18-29 and 18-34 years old
population is significant for e-scooter usage in Louisville, US
and Minneapolis, US respectively. Our finding, the importance
of cafe% for e-scooter trip density prediction in three weekend
models, is consistent with [8], which showed the significance
of food related POIs in the weekend. The results of our
study suggest that tram stop density is associated more with
weekend e-scooter trips. It indicated the possible use of shared
e-scooters to get connected to public transit. Further research
in this direction is needed to validate the findings.

This study also found that high humidity levels and precip-
itation are associated with a lower number of e-scooter trips,
and a similar observation was reported in other cities [1], [6],
[7]. Although wind speed is a feature that reduced trip occur-
rence in some studies [1], [7], it shows a positive correlation
with e-scooter trips in our case. Having a lesser maximum
wind speed reported in our study duration compared to the
other studies can be a possible reason for this observation.
The comparison of trip occurrence on different spatial zones



TABLE VI: Percentage of trips started/ended near paths

Footpath Cycle lane Shared path
on path 5m 5m-10m on path 5m 5m-10m on path 5m 5m-10m

weekday-start 27.2% 25.4% 19.6% 1.4% 6.2% 6.6% 0.4% 1.8% 1.6%
weekend-start 26.8% 24.8% 18.6% 1.0% 5.8% 6.4% 1.0% 2.2% 2.0%
weekday-stop 29.6% 25.4% 19.4% 1.6% 6.6% 7.2% 0.6% 2.0% 1.6%
weekend-stop 29.2% 25.8% 18.8% 1.4% 6.4% 7.0% 1.0% 2.2% 2.0%

show that trips occurring in areas with more cafes are less
sensitive to weather features.

These findings will help city planners and e-scooter
providers to determine the areas of future service expansion
and infrastructure development. In terms of infrastructure, we
found that e-scooters are likely to be parked on the footpath,
which might be distracting pedestrians, specially on nar-
row sidewalks. Imposing appropriate limitations on e-scooter
parking and improving required infrastructure to encourage
safe use of e-scooters are crucial steps towards sustainably
integrating micro-mobility into the urban community.

VII. CONCLUSION

In this research, we provided an analysis that helps to
understand the spatial and temporal factors impacting micro-
mobility services, on a multi-resolution scale. We generated
insights that are novel and in line with existing literature,
using real-world anonymised e-scooter trip data. Our find-
ings showed the importance of spatial features and temporal
features towards predicting e-scooter trip occurrence changes
over time and space. While these findings assist in service
quality improvement, this method can be easily extended to
other cities and other micro-mobility trip datasets as long as
the data contains trip start/end geo-locations and time stamps.

One limitation of our work is the available data, where
we conducted the analysis based on three-months of trip data
related to one e-scooter provider in a single city. Even though,
the analysis does not necessarily generate a full picture due
to this limitation, the method we employed can be extended
to incorporate data collected over a long period from multiple
cities and different e-scooter providers.
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