
The New Face of Design for Manufacturability

214 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

SEMICONDUCTOR TECHNOLOGY ADVANCES have

enabled designers to integrate more functionality in a sin-

gle chip. As design complexity increases, many new design

techniques are developed to optimize chip area and power

consumption, as well as performance. Traditionally, yield

improvement has been achieved through process improve-

ment. However, in deep-submicron technologies, process

variations are difficult to control. As a result, many design

decisions significantly affect yield. Therefore, designers

should consider yield-related issues during the design

phase.

Timing failure is a major cause of yield loss for high-

performance circuits. Although designers have used

clock skew scheduling to increase operation frequen-

cy, there is little research addressing its impact on yield.

We propose a novel clock-skew-scheduling scheme that

improves yield without sacrificing performance. The

scheme achieves this by combining accurate path delay

information using our efficient sensitizable-critical-path

search algorithm and a proportional slack distribution

heuristic. Our experimental results show substantial

yield improvement in many of the ISCAS89 and ITC99

benchmark circuits, and in one case improvement is as

high as 50%.

Existing methods
In a zero-skew design, the circuit’s longest path delay

limits the shortest clock period. Properly

assigning clock arrival times to each

sequential element or introducing clock

skew at various storage elements can help

operate a circuit at a higher clock fre-

quency.1,2 Because timing failure is the

major cause of yield loss, proper clock

skew assignment for performance and

yield is extremely important. Previous works attempted to

reduce susceptibility to delay defects caused by process

variations by finding a clock skew schedule that mini-

mizes the number of paths with small slack.3,4 However,

as we show in this article, these approaches might not

always improve yield, and the researchers did not verify

their results with a yield model.

Clock period optimization
To increase operation frequency, designers have

adopted techniques such as circuit retiming and pipelin-

ing to balance path delays in different parts of the circuit.

Because path delays usually cannot be perfectly bal-

anced, the application of clock skew scheduling can fur-

ther optimize the clock period.1-3 Figure 1a shows an

example circuit with three flip-flops. The maximum and

minimum path delays between FFi and FFj are Dij and dij,

respectively. CP is the clock period, and Tsetup and Thold are

the FF setup and hold times. Without clock skew sched-

uling and with zero slack, this design will have CP =

max{Dij} + Tsetup. For this example, the value of CP is 4

where Tsetup = Thold = 0. However, to determine the optimal

clock period with clock skew scheduling, we first define

the clock arrival time to FFi as Ti and the clock skew

between FFi and FFj as sij = Ti – Tj. By absorbing the FF

delays as part of the path delays, we can write the hold

time and setup time constraints as

Yield-Driven,
False-Path-Aware
Clock Skew Scheduling

Editor’s note:
This article proposes clock skew scheduling as a tool to address causes of
performance-related circuit yield loss. It is an interesting example of how
managing circuit-level parameters can have a direct impact on yield metrics
and, therefore, a clear example of the direction of DFM research.

—Juan-Antonio Carballo, IBM Corporate Strategy, Venture Capital Group

Jeng-Liang Tsai, Dong Hyun Baik,

Charlie Chung-Ping Chen, and Kewal K. Saluja

University of Wisconsin-Madison

sij ≥ Thold – dij

and

sij ≤ CP – Dij – Tsetup.

There are also two sets of constraints stemming from

the clock skew definition sij = Ti – Tj. Path constraints

require the sum of clock skews for paths having the

same starting and ending flip-flop to be the same. Cycle

constraints require the sum of clock skews of all cycles

to be zero. Since all the constraints are linear, we can

calculate the optimal clock period with linear pro-

gramming solvers.1

Deokar and Sapatnekar use a graph-theoretic

approach to solve the optimization problem.2 They cre-

ate a timing graph by replacing the hold time constraint

of sij with an h-edge with cost –(Thold – dij) from FFi to FFj,

and by replacing the setup time constraint of sij with an

s-edge with cost (CP – Dij – Tsetup) from FFj to FFi. Figure

1b shows the timing graph of the circuit in Figure 1a

with zero Thold and Tsetup. Clock period CP is feasible if

the timing graph contains

no negative cost cycles.

Therefore, we can obtain

the optimal clock period

through a binary search

between [0, max{Dij} +

Tsetup] by applying the

Bellman-Ford algorithm to

the timing graph. In Figure

1b, the optimal clock peri-

od is 3, and the three

s-edges form a zero-cost

cycle. This is substantially

better than a zero-skew

clocking scheme.

Clock skew
optimization

The optimal clock peri-

od and the clock skew

schedule just discussed

will result in low-yield

designs because many

skew values are on the

upper or lower bounds of

their feasible range and have zero slack. If the feasible

skew region (FSR) of sij is [Thold – dij, CP – Dij – Tsetup], the

choice of clock period affects only the region’s right

boundary. Figure 2a shows the FSRs of Figure 1 for clock

period CP = 4; the FSRs of s12, s23, and s31 are [–2, 2], [–3,

1], and [–1.5, 0]. When CP is reduced, the right bound-

215May–June 2005

D Q

Q

SET

CLR

D Q

Q

SET

CLR

D Q

Q

SET

CLR

FF1

FF1 FF3

FF2

CP − 4

CP − 2 CP − 3

FF2

d31 = 1.5
D31 = 4

d12 = 2
D12 = 2

d23 = 3
D23 = 3

FF3

2 3

1.5

(a)

(b)

Figure 1. Example circuit (a) and its timing graph (b).

Feasible skew region

Optimize CP Reduce CP

Reduce CPOptimize CP

S12

S23

S31

−S12−S23

−5 −4 −3 −2 −1 0 1 2 3 4 5

S12

S23

S31

−S12−S23

−5 −4 −3 −2 −1 0 1 2 3 4 5

S12

S23

S31

−S12−S23

−5 −4 −3 −2 −1 0 1 2 3 4 5

S12

S23

S31

−S12−S23

−5 −4 −3 −2 −1 0 1 2 3 4 5

CP = 4 CP´ = 3

Timing uncertainty

CP = 5 CP´ = 4.5

(a)

(b)

Figure 2. Clock period optimization: without timing uncertainty consideration (a) and

with timing uncertainty consideration (b).

aries of the FSRs of s12, s23, and s31 move to the left while

the left boundary of –s12–s23 moves to the right. Cycle

constraint s31 = –s12–s23 requires the FSR of s31 to overlap

with the range of –s12–s23 for a feasible solution. Therefore,

optimal clock period CP ′ is 3 (1 time unit less than CP),

and clock skew schedule (s12, s23, s31) = (1, 0, –1), indi-

cated by the dashed line, has zero slack.

Process variation introduces timing uncertainty to

path delays. Assume that the maximum timing uncer-

tainties of the minimum and maximum delays are

both ±1 time unit. A simple way to guarantee that the

clock skew schedule will have slack at least as large

as the maximum timing uncertainty, is to preallocate

timing margins of 1 time unit at both ends of the FSRs

and then perform clock period optimization. In Figure

2b, the dashed line indicates one of the feasible clock

skew schedules (s12, s23, s31) = (0, 0.5, –0.5), and opti-

mal clock period CP ′ is 4.5. The slacks on (e12, e23, e31)

are (2, 1, 1). This approach increases the optimal clock

period by an amount no less than the preallocated tim-

ing margin (1.5× in this example). Allocating a timing

margin of maximum timing uncertainty is undesirable

because the actual timing uncertainty cannot be accu-

rately obtained, the maximum timing uncertainty is

too pessimistic, and the ratio of clock period increase

versus timing uncertainty can be large. In practice,

product requirements usually determine the clock

period, and we must find a clock skew schedule that

maximizes yield.

A simple observation suggests that, to maximize

slack, skew values should be chosen as close as possi-

ble to the middle points of their FSRs. Neves et al. for-

mulate the skew optimization problem as a least-square

error problem in which the error is defined as the dif-

ference between the skew and the middle point of the

permissible range.4 However, the formulation might

reduce the slack of some skew values to zero to mini-

mize the total error. Therefore, the resulting clock skew

schedule might not be optimal in terms of yield.

Albrecht et al. adopted a minimum-balance algorithm

to maximize the slack of all skew values iteratively.3 In

each iteration, a parametric shortest-path algorithm

solves a slack optimization problem that maximizes the

minimum slack. The algorithm contracts the critical

cycle that has the minimum average slack into a single

vertex and repeats the process until all skew values are

assigned. This algorithm ensures that the slacks along

the timing-critical cycle are the same. However, it does

not consider path delay differences between cycle

edges, and its implementation is complex. Nevertheless,

this slack-balancing clock-skew-scheduling algorithm is

the most plausible method in the existing literature.

Yield-driven clock skew scheduling
In contrast to existing methods, our clock-skew-

scheduling scheme takes path delays and false-path

information into consideration to improve yield. First we

solve the slack optimization problem using a minimum-

mean-cycle algorithm. Then we use a new slack distrib-

ution method that distributes slack along the most

timing-critical cycle proportional to path delays. Finally,

we use an efficient sensitizable-critical-path search algo-

rithm for clock skew scheduling.

Iterative slack optimization
To solve the clock skew optimization problem, we

must

■ identify the circuit’s most timing-critical cycle,

■ distribute the slack along the cycle,

■ freeze the clock skews on the cycle, and

■ repeat the process iteratively.

Each slack optimization problem is equivalent to a

minimum-mean-cycle problem, and a well-known

method for solving this problem is Karp’s algorithm.5 We

adopted a faster minimum-mean-cycle algorithm to

solve the clock skew optimization problem.6

After we determine the critical cycle’s skews, the

available slacks for the rest of the graph change accord-

ingly. To determine the optimal slacks and skews for

the rest of the graph, we replace the critical cycle with

super vertex v ′. In-edge euv from outside vertex u to

cycle member v is replaced by in-edge euv′ with cost

w(euv) –Tv. Out-edge evu is replaced by out-edge ev′u with

cost w(evu) + Tv. Multiple edges from u to v ′ or from v ′
to u can exist after edge substitutions. Only the edge

with the lowest cost in each direction must remain

because edge cost is the upper bound of the corre-

sponding skew variable. We can optimize the reduced

graph again. The process continues until the graph is

reduced to a single super vertex.

Figure 3 shows the clock skew optimization steps

with CP = 4.5. It involves two minimum-mean-cycle runs,

and the final clock skew schedule is (s12, s23, s31) = (0.75,

–0.25, –0.5). The slacks on (e12, e23, e31) are (1.75, 1.75,

1). Compared with Figure 1b, which has slacks of (2, 1,

1), this is a better schedule in terms of yield. Because

this algorithm distributes slack evenly along the critical

cycle, we refer to it as Even.

The New Face of Design for Manufacturability

216 IEEE Design & Test of Computers

Slack distribution based on
Gaussian model

The timing uncertainty of a long com-

binational path is usually larger than that

of a shorter path. Therefore, the even

slack distribution along timing-critical

cycles performed by Even is not optimal

for yield if path delays along the cycles

are not the same. A gate’s delay distribu-

tion usually matches a Gaussian distrib-

ution well. Observe that the sum of n(µ,

σ) Gaussian distributions is an (nµ, n1/2σ)

Gaussian distribution. As a rule of thumb,

we would prefer to distribute slack along

the most timing-critical cycle according

to the square root of each edge’s path

delays. We justify this heuristic on the

ground that the longest paths require rel-

atively longer slack for correct function-

ality and improved yield. To achieve this,

we can update the weights of the s-edges

with cost CP – (Dij + αDij
1/2σ) – Tsetup and

h-edges with cost –(Thold – (dij – αdij
1/2σ)),

where α ensures a minimum timing mar-

gin for each timing constraint.

This is equivalent to preallocating tim-

ing margins of αDij
1/2σ and αdij

1/2σ to the

right and left of the FSR for sij. We gradu-

ally increase α and use the Bellman-Ford algorithm to

detect whether CP is still feasible. After we find the max-

imum value of α, the edges along the most timing-criti-

cal cycle will have slacks equal to the preallocated

timing margins. Finding the maximum value of α
requires multiple runs of the Bellman-Ford algorithm,

and each run is as expensive as solving a slack opti-

mization problem. However, many edges in a circuit

have sufficiently large slack. Therefore, we can perform

proportional slack distribution only for the most timing-

critical cycle. We assign the rest of the skews by itera-

tively solving slack optimization problems as described

earlier. We refer to the algorithm described here as Prop.

Finding sensitizable critical paths
We know that many paths in the circuit are func-

tionally unsensitizable (false paths) and that they don’t

affect the circuit’s timing behavior.7-9 Thus, to obtain

superior clock skew schedules, we must find the sensi-

tizable (true) maximum and minimum path delay for

all pairs of flip-flops. Although there are numerous stud-

ies on identifying false paths9 or sensitizable long

paths,10,11 none attempts to find the maximum and min-

imum delays of sensitizable paths between all possible

flip-flop pairs.

We developed a new algorithm to efficiently identi-

fy sensitizable longest and shortest paths between each

pair of flip-flops. For conciseness, we describe the pro-

posed method for finding the longest sensitizable path

only; the same method can be applied to finding the

shortest sensitizable path. We treat source flip-flops as

primary inputs (PIs) and destination flip-flops as primary

outputs (POs) in the following discussion.

Dynamic delay path tree. First, we develop a data

structure called a dynamic delay path tree (DPT) to effi-

ciently identify functionally sensitizable paths. The DPT

dynamically grows and prunes itself during the search

process. The main purpose of using the DPT is to avoid

explicit enumeration and sensitization of all structural

paths that are candidates for the sensitizable longest

path. Fuchs, Fink, and Schulz proposed a similar struc-

ture, called a path tree,8 but its properties and purpose

are different from those of the DPT.

217May–June 2005

0.5

T2

0.5

2.5 1.5

2 3

1.5

(a) (b)

0

0.5

−0.25

0.5

2.5

2.5 3

2 1.5

1.5

2 3

1.5

(d)

0

T2

(c)

2 1.5

−0.25

0

Figure 3. Clock skew optimization using a minimum-mean-cycle algorithm:

detection of minimum mean cycle (a), cycle contraction (b), repetition of

minimum-mean-cycle detection (c), and the final clock-skew schedule (d).

To describe DPT, we define a stem as a gate that has

more than one fan-out branch, and a branch as a gate

that has at least one input signal from a stem. A partial

path is a path from a stem to a branch, and a subpath is a

sequence of partial paths from PI to a certain partial path.

Figure 4 shows an example circuit and DPT, which we

use here to describe the DPT structure. Each DPT node

is associated with a partial path and a subpath from PI to

the corresponding partial path. A node’s

name represents the list of gates in the par-

tial path. Superscripts uniquely identify a

DPT node that ends with the same partial

path but has different subpaths.

Before creating the DPT nodes and

starting the search process, we calculate

the expected delay (ED) for each gate. A

gate’s ED represents the maximum pos-

sible delay from that gate to PO.

Whenever we create a new DPT node,

we use the ED of the first gate in the cor-

responding partial path for the ED of that

DPT node, and the ED guides the search

process. When the process finds the

longest true path, it modifies the ED value

to the true path’s delay. In Figure 4a, the

initial ED value appears above each gate

in the circuit.

Sensitizable-critical-path search
algorithm. For a given PI and PO pair,

the algorithm extracts the intersection of

PI’s fan-out cone and PO’s fan-in cone

from the circuit to define possible paths

between the PI/PO pair. Then, the algo-

rithm performs the search process twice

for up and down transitions at PI. Figure

5 gives the algorithm’s pseudocode.

For the selected PI, the algorithm first creates the root

node and then initiates the recursion by calling the

FindPath procedure on the root DPT node. FindPath

contains three steps:

1. Check sensitizability. Step 1 of Figure 5 uses func-

tional sensitization criteria9 and local mandatory

value assignments to test functional sensitizability

of the partial path for DTP node N. If a conflict is

found during sensitization, the algorithm marks N as

a conflict, and the procedure backtracks to its par-

ent DPT node. Once it completes the sensitization

step, the algorithm checks whether the DPT is fully

grown to PO to terminate the recursion process.

2. Recursive advance in DPT. With successful partial-

path sensitization, the algorithm adds child nodes

of the currently processed node to the DPT and

chooses the child with maximum ED to be traversed

recursively toward the targeted PO. Figure 4b shows

that the sensitizability check is performed in the

sequence of a1 → cef 1 → ghk1 first. Thus, the DPT

The New Face of Design for Manufacturability

218 IEEE Design & Test of Computers

5

b

3

g 2

h

1

k

4

f6

c

5

e

a

(a)

(b) (c)

b1
b1

a1
a1

cef1
cef1

ghk1
ghk1

ghk2

ghk2

k1
k1

k2

f1
5 5

6

3

3

3

3

1

1

4

1

ED = 6 6 → 5

6 → 4

Conflict

Figure 4. Dynamic delay path tree (DPT) example: circuit (a), DPT (b), and

traversal redirection (c).

FindPath(DPT_NODE N)
(1) Check sensitizability of partial path N

if success, longest sensitizable path is found
if conflict is found, mark N as conflict and

backtrack
(2) Recursive advance in DPT

Grow DPT by adding child node as needed
FindPath(Child node with the maximum ED)

(3) Redirection of traversal
Depending on result of recursion,

Update EDs, change direction of traversal by
backtracking and/or choosing other child

Figure 5. Pseudocode for finding the longest

sensitizable path.

grows only toward the path that can potentially be

extended to the longest sensitizable path.

3. Traversal redirection. Depending on the result of

recursive FindPath on the child DPT node, the algo-

rithm changes traversal direction. Assume that the

node ghk1 found by the process has conflict and can-

not be sensitized. First, the memory allocated for

ghk1 will be freed because this node will not be

rechecked for sensitizability. Consequently, the EDs

of all its predecessors will be updated as in Figure 4c.

Also, while updating the predecessors’ EDs, the algo-

rithm finds that the search process direction must be

changed at a1 because path acefghk, originally

expected to have a delay of 6, is a false path. Then,

the algorithm backtracks down to a1 and chooses b1

as the next child to traverse. In this backtracking pro-

cedure, the memory-allocated sensitization infor-

mation for cef 1 is not discarded because cef 1 will

need retraversal if node b1 is marked as a conflict or

if the ED of b1 becomes less than 4. Whenever the

algorithm revisits a node, it restores the sensitization

information, thus avoiding a repeated computation.

As previously mentioned, the search process is guid-

ed only toward the potentially longest sensitizable paths

without explicit enumeration. Also, if many subpaths are

shared by several longest paths, we can avoid repeated

sensitization efforts for shared subpaths by using the DPT

structure. We can easily modify the algorithm to find the

K longest or K shortest sensitizable paths by traversing

the DPT until it finds K sensitizable paths.

Using false-path information to improve yield
To reduce chip cost, different combinational paths

usually share logic gates and their intermediate outputs

when possible. However, this sharing creates many false

paths that are unsensitizable. Clearly, some of the struc-

turally longest and shortest paths can be false paths. As a

result, path delay information without knowledge of false

paths might be too pessimistic. By combining path delay

information from our sensitizable-critical-path search algo-

rithm with Prop, we can find a clock skew schedule likely

to improve yield even further. Our experimental results

substantiate this. We call the combined algorithm for false-

path-aware proportional slack distribution fp-Prop.

Earlier we demonstrated a method for slack distrib-

ution based on the approximated path delay uncer-

tainties Dij
1/2σ and dij

1/2σ. The simple approximation on

path delay uncertainties should work well if the circuit

doesn’t have reconvergent paths and each gate delay is

an independent random variable. However, delays of

two gates are usually correlated if the distance between

them in the layout is small. To better account for recon-

vergent paths and correlations between delay variables,

we can use path-based statistical static timing analysis

(SSTA) to obtain more accurate path delay distribu-

tions. We can extend Prop and fp-Prop to account for

path delay uncertainties from the distributions and

replace Dij
1/2σ and dij

1/2σ with these new values to per-

form slack distribution.

Path-based SSTA requires a list of paths as input.

Because there can be an exponential number of paths

in a circuit, we must select a subset of paths for analy-

sis. Our sensitizable-critical-path search algorithm can

efficiently select the K longest or K shortest sensitizable

paths for path-based SSTA.

Experimental results
Now we introduce a hybrid yield model that uses sta-

tistical timing information to speed up Monte Carlo sim-

ulation. We obtain the false-path information for

benchmark circuits and compare the yields of our three

clock-skew-scheduling schemes: slack-balancing sched-

uling (Even), proportional slack distribution schedul-

ing (Prop), and false-path-aware proportional slack

distribution scheduling (fp-Prop).

Statistical-timing-enhanced yield model
To estimate a clock skew schedule’s yield, we must

generate circuit samples according to the gate delay dis-

tributions and check the setup-time and hold-time con-

straints for all edges in the timing graph. Although the

error of Monte Carlo simulation is proportional to 1/N1/2,

where N is the number of samples, and independent of

the sample space’s dimensions, the time needed to ver-

ify a circuit increases significantly as the circuit size

grows. Unlike the Gaussian distribution, which extends

to ±∞, gate delay usually varies no more than a few stan-

dard deviations from its mean value. Using extend fac-

tor k such that kσ is a gate’s maximum timing

uncertainty, we can truncate the Gaussian distribution

outside µ ± kσ and renormalize the distribution to

describe a gate’s delay distribution. We call this the trun-

cated Gaussian distribution.

Agarwal et al. proposed a statistical timing analysis

algorithm that generates the upper and lower bounds of

the maximum and minimum path delay distributions.12

The researchers proved that for a two-input gate with

the inputs’ probability density functions being f and g

and the cumulative density functions being F and G, a

219May–June 2005

pessimistic estimate of the latest input arrival time’s dis-

tribution is fG + gF. Likewise, f(1 – G) + g(1 – F) is an opti-

mistic estimate of the earliest input arrival time’s

distribution. Using this algorithm, we can obtain the

bounds of Dij and dij,Dij and __dij, from the distributions.

After clock skew scheduling, we can check whether sij is

between [Thold – __dij, CP –Dij – Tsetup] for each edge of the

timing graph. If the condition is satisfied, eij is safe in tim-

ing under process variation, and we need not calculate

Dij and dij for every circuit sample and verify their timing

constraints. Most skews generally satisfy this condition.

Therefore, we need only perform Monte Carlo simulation

for the combinational paths between a few flip-flop pairs,

and the simulation time is significantly reduced (by a fac-

tor of 10 ~ 1,000), depending on the circuit size.

Sensitizable critical paths
Here we present the sensitizable longest- and shortest-

path search result from the proposed method for ISCAS89

and ITC99 benchmark circuits. Table 1 presents the

benchmark circuit statistics. Column “Str. pairs” lists the

total numbers of (PI, PO) pairs that have combinational

paths between them. The column “Diff-long” lists the num-

bers of structural pairs whose sensitizable longest paths

are shorter than structural longest paths. The column “Diff-

short” lists the numbers of pairs whose sensitizable short-

est paths are longer than structural shortest paths.

For many of the ISCAS89 and ITC99

benchmark circuits, we observe that a sub-

stantial number of structural pairs have

shorter or longer sensitizable path delays.

In circuit b11s especially, more than 10%

of all long paths have shorter sensitizable

path delays and nearly 4% of short paths

have longer sensitizable path delays.

Yield computation and relative
improvements

We assume that gate delays are inde-

pendent truncated Gaussian distributions

with (µ, σ) = (1, 0.15) and extend factor k

= 3. For each benchmark circuit, we first

obtain the optimal clock period using the

algorithm described earlier. In practice, an

initial design’s timing yield is usually not

very high. To make reasonable compar-

isons, we choose CP such that the yield for

the Even algorithm is between 60% ~ 80%.

Table 2 shows the yields of the three clock-

skew-scheduling schemes for ISCAS89 and

ITC99 benchmark circuits. The “Imp.” columns show the

yield improvement from implementing Prop and fp-Prop.

The circuits that have sensitizable critical paths as long

(short) as the structural longest (shortest) paths do not

benefit from false-path-aware scheduling, and the table

does not include their yield entries for fp-Prop.

Comparing Even with Prop, we observe that half the

circuits have yield differences within ±5%. This is

because the path delays along the critical cycle are sim-

ilar, resulting in similar slack distributions. Thus, we can

assume that the three methods are equally effective for

all these circuits. However, the yield improvements for

the rest of the circuits are significant, ranging from 12%

to 53%. Of the eight circuits that have sufficiently many

sensitizable critical paths shorter (longer) than the struc-

turally longest (shortest) paths, two (s38417 and b11s)

show additional improvement from Prop to fp-Prop. This

result is not surprising because the edges with path

delay differences might not contribute additional slacks

on the critical cycle.

For b11s, the yield of Prop is lower than that of Even.

Because Prop proportionally distributes slack to the crit-

ical edges regardless of false-path information, it can allo-

cate more slack for a critical edge with shorter nonfalse

path delay. By taking false-path information into con-

sideration, fp-Prop achieved 13% improvement over

Even. Figure 6 shows the three scheduling schemes’

The New Face of Design for Manufacturability

220 IEEE Design & Test of Computers

Table 1. Sensitizable critical paths of benchmark circuits.

Circuit No. of FFs No. of gates Str. pairs Diff.-long Diff.-short

s1423 74 657 2,235 8 0

s1488 6 653 266 0 0

s1494 6 647 266 0 0

s5378 179 2,779 2,313 0 0

s9234.1 211 5,597 3,260 0 0

s13207.1 638 7,951 4,721 0 0

s35932 1,728 16,065 7,595 1,600 0

s38417 1,636 22,179 34,351 852 72

s38584.1 1,426 19,253 20,444 0 0

b04s 66 512 844 0 0

b05s 34 864 700 93 6

b06 9 43 44 0 0

b07s 49 362 1,155 24 0

b08 21 133 151 2 0

b09 28 129 303 0 0

b10 17 155 165 0 0

b11s 31 437 631 65 23

b12 121 904 1,630 3 0

yield curves. The yield of

fp-Prop is always better

than that of the other two

schemes. Moreover, the

improvement rate gradu-

ally decreases as the clock

period increases. The

yield improvement of fp-

Prop over Even is still 6.5%

when CP is 31.

By proportionally dis-

tributing slack along a cir-

cuit’s critical cycles and

using information about

the sensitizable longest

and shortest path delays,

we achieved substantial

yield improvement in most

of the benchmark circuits.

For ISCAS89 circuit s35932,

our method achieves a

yield of 98.6%, whereas the

traditional scheme

achieves only 64.3% yield

for the same clock period. For ITC99 circuit b11s, we have

shown that false-path information is essential for yield-

driven clock skew scheduling; without false-path infor-

mation, traditional as well as proportional slack

distribution will provide far lower yield than is possible.

OUR STUDY DEMONSTRATES the advantages of slack

distribution methods that account for path length and

are aware of false paths in a circuit. However, this

approach is static in the sense that it is fixed before the

design is implemented in silicon. It is possible to make

postsilicon adjustments to the clock skew for a small

subset of storage elements to recover some yield loss.

Such methods are now under investigation. ■

Acknowledgments
This work was partially funded by the National

Science Foundation under grants CCR-0093309 and

CCR-0204468 and the National Science Council of

Taiwan under grant NSC 92-2218-E-002-030.

References
1. J.P. Fishburn, “Clock Skew Optimization,” IEEE Trans.

Computers, vol. 39, no. 7, July 1990, pp. 945-951.

2. R.B. Deokar and S.S. Sapatnekar, “A Graph-Theoretic

Approach to Clock Skew Optimization,” Proc. 1994 IEEE

Int’l Symp. Circuits and Systems (ISCAS 94), vol. 1,

IEEE Press, 1994, pp. 407-410.

3. C. Albrecht et al., “Cycle Time and Slack Optimization for

221May–June 2005

Table 2. Yield comparison of ISCAS89 and ITC99 circuits.

Even Prop fp-Prop

Circuit CP Yield (%) Yield (%) Imp. (%) Yield (%) Imp. (%)

s1423 55.73 74.1 75.5 1.9 75.5 1.9

s1488 16.62 72.3 75.4 4.3 NA NA

s1494 16.62 77.9 78.8 1.2 NA NA

s5378 22.50 63.8 64.2 0.6 NA NA

s9234.1 40.86 74.1 83.9 13.2 NA NA

s13207.1 52.73 60.2 60.2 0.0 NA NA

s35932 31.96 64.3 98.6 53.3 98.6 53.3

s38417 34.07 74.1 74.7 0.8 89.1 20.2

s38584.1 50.24 72.5 85.8 18.3 NA NA

b04s 23.88 67.4 82.6 22.6 NA NA

b05s 47.68 67.2 86.9 29.3 86.9 29.3

b06 4.92 63.1 75.1 19.0 NA NA

b07s 26.23 74.8 72.7 −2.8 72.7 −2.8

b08 14.90 68.9 65.6 −4.8 65.6 −4.8

b09 7.68 62.4 78.3 25.5 NA NA

b10 9.71 73.5 73.7 0.3 NA NA

b11s 29.86 71.5 58.6 −18.0 80.9 13.1

b12 12.12 78.2 87.6 12.0 87.6 12.0

100

80

60

40

20

0

Y
ie

ld
 (

%
)

29.0 29.4 29.8 30.2 30.6 31.0

Clock period

Even
Prop
fp-Prop

Figure 6. Yield curves of the three clock-skew-scheduling

schemes for circuit b11s.

VLSI-Chips,” Proc. 1999 IEEE/ACM Int’l Conf. Comput-

er-Aided Design (ICCAD 99), IEEE Press, 1999, pp.

232-238.

4. J.L. Neves and E.G. Friedman, “Optimal Clock Skew

Scheduling Tolerant to Process Variations,” Proc. 33rd

Design Automation Conf. (DAC 96), IEEE CS Press,

1996, pp. 623-628.

5. R.M. Karp, “A Characterization of the Minimum Cycle

Mean in a Digraph,” Discrete Mathematics, vol. 23, no. 3,

1978, pp. 309-311.

6. A. Dasdan and R.K. Gupta, “Faster Maximum and Mini-

mum Mean Cycle Algorithms for System-Performance

Analysis,” IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 17, no. 10, Oct. 1998,

pp. 889-899.

7. K.-T. Cheng and H.-C. Chen, “Delay Testing for Non-

Robust Untestable Circuits,” Proc. Int’l Test Conf. (ITC

93), IEEE Press, 1993, pp. 954-961.

8. K. Fuchs, F. Fink, and M.H. Schulz, “Dynamite: An Effi-

cient Automatic Test Pattern Generation System for Path

Delay Faults,” IEEE Trans. Computer-Aided Design, vol.

10, no. 10, Oct. 1991, pp. 1323-1335.

9. S. Kajihara et al., “A Method for Identifying Robust

Dependent and Functionally Unsensitizable Paths,”

Proc. 10th Int’l Conf. VLSI Design, IEEE Press, 1997,

pp. 82-87.

10. W. Qiu and D.M.H. Walker, “An Efficient Algorithm for

Finding the k Longest Testable Paths through Each Gate

in a Combinational Circuit,” Proc. Int’l Test Conf. (ITC

03), IEEE Press, 2003, pp. 592-601.

11. A. Murakami et al., “Selection of Potentially Testable

Path Delay Faults for Test Generation,” Proc. Int’l Test

Conf. (ITC 2000), IEEE Press, 2000, pp. 376-384.

12. A. Agarwal et al., “Statistical Timing Analysis Using

Bounds and Selective Enumeration,” Proc. 8th

ACM/IEEE Int’l Workshop Timing Issues in the Specifi-

cation and Synthesis of Digital Systems, ACM Press,

2002, pp. 29-36.

Jeng-Liang Tsai is a PhD candi-
date in the Department of Electrical
and Computer Engineering, Universi-
ty of Wisconsin-Madison. His research
interests include VLSI physical design

and optimization with an emphasis on clock design
techniques for timing convergence and timing yield
improvements. Tsai has a BS and an MS in electrical
engineering from National Taiwan University.

Dong Hyun Baik is a PhD candi-
date in the Department of Electrical
and Computer Engineering, Universi-
ty of Wisconsin-Madison. His research
interests include design for testability

and automatic test pattern generation. Baik has a BE
in computer science and engineering from Hanyang
University, Seoul, Korea, and an MS in electrical engi-
neering from the University of Wisconsin-Madison.

Charlie Chung-Ping Chen is an
assistant professor in the Department
of Electrical and Computer Engineer-
ing, University of Wisconsin-Madison.
He is also an associate professor in

the Department of Electrical Engineering, National Tai-
wan University. His research interests include CAD
and microprocessor circuit design with an emphasis
on interconnects and circuit optimization, circuit sim-
ulation, statistical design, and signal/power/thermal
integrity analysis and optimization. Chen has a BS in
computer science and information engineering from
National Chiao-Tung University, Hsinchu, Taiwan, and
MS and PhD degrees in computer science from the
University of Texas at Austin.

Kewal K. Saluja is a professor in
the Department of Electrical and Com-
puter Engineering, University of Wis-
consin-Madison. He teaches courses
in logic design, computer architecture,

microprocessor-based systems, VLSI design and test-
ing, and fault-tolerant computing. Saluja has a BE in
electrical engineering from the University of Roorkee,
India, and an MS and PhD in electrical and computer
engineering from the University of Iowa, Iowa City. He
is a member of Eta Kappa Nu and Tau Beta Pi, a JSPS
Fellow, and an IEEE Fellow.

Direct questions and comments about this article
to Jeng-Liang Tsai, University of Wisconsin-Madison,
Dept. of Electrical and Computer Engineering, 1415
Engineering Dr., Madison, WI 53706; jltsai@cae.
wisc.edu.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.

org/publications/dlib.

The New Face of Design for Manufacturability

222 IEEE Design & Test of Computers

