Precis: A User-Centric
Wordlength Optimization Tool

Mark L. Chang and Scott Hauck, University of Washington

Abstract— Currently, few tools exist to aid the hardware devel- Il. BACKGROUND
oper in translating an algorithm designed for a general-purpose
processor into one that is precision-optimized for custom logic. At the head of the development chain is the algorithm. Of-
This task requires extensive knowledge of both the algorithm and ten, the algorithm under consideration has been implemented

the target hardware. We present a design-time tool, Recis, which j, same high-level language, such as MATLAB, C, or Java,
assists the developer in analyzing the precision requirements of

algorithms specified in MATLAB. Through the combined use of targgted to run on a general purpose processor, such as a V_’ork'
simulation, user input, and program analysis, we demonstrate a Station or desktop personal computer. The most compelling
methodology for precision analysis that can aid the developer in reason to utilize a high level language running on a workstation

focusing their manual precision optimization efforts. is that it provides infinite flexibility and a comfortable, rich
Index Terms— fixed-point arithmetic, wordlength optimization, ~€nvironment in which to rapidly prototype algor!thms_. Of
MATLAB. course, the reason one would convert this algorithm into a

hardware implementation is to gain considerable advantages
in terms of speed, size, and power.
A typical tool flow requires the developer to first convert
a software prototyped algorithm into a hardware description.
From this hardware description language (HDL) specification,
O NE of the most difficult tasks in implementing anyarious intermediate tools are used to perform simulation
algorithm in custom hardware is dealing with precisiognd generate target bitstreams which are then executed on
issues._ Typical general-purpose processor concepts suche@dnfigurable logic.
word sizeand data typeare no longer valid in the world of A simple conversion without precision analysis would most
custom logic where data paths can be custom-tailored to Sig|y yield an unreasonably large hardware implementation.
_the needs of_the aI_gonthm. Instead, the designer must use g example, by choosing to emulate a general-purpose pro-
implement bit-precise data paths. cessor, or DSP, with a fixed 32-bit data path throughout the
More specifically, in a general-purpose processor, algorithggstem, the developer may encounter two problems: wasted
designers can typically choose from a predefined set &fea and incorrect results. The former arises when the actual
variable types that have a fixed word length. Examples ghta the algorithm operates upon does not require the full
these predefined types are the C data types suath@as 32-bit data path. In this case, much of the area occupied by
int, float , anddouble . These data types correspond teéhe oversized data path could be pruned. There are several
differently-sized data paths within the microprocessor. Most gknefits to area reduction of a hardware implementation: re-
the work of padding, word-boundary alignment, and operatiqfuced power consumption, reduced critical path delay, and the
selection is hidden from the programmer by compilers anficreased probability of parallelism by freeing up more room
assemblers, which make the use of one data type equally eggithe device to perform other operations simultaneously. On
as another. the other hand, the latter case, incorrect results, occurs when
In contrast, custom and customizable hardware, such astha algorithm actually requires more precision for some data
ASIC or FPGA, does not have predefined data widths for isets than the 32-bit data path provides. In this case, the results
data path. This allows the developer to tune the data patitstained from the algorithm could potentially be incorrect due
to any width desired. Unfortunately, choosing the appropriate unchecked overflow or underflow conditions.
size for data paths is not a trivial task. Too many bits along aTherefore, within the HDL description, it is important
data path is wasteful, while too few may result in erroneoulat the developer determine more accurate bounds on the
output. data path. Typically, this involves running a software imple-
The difficulty is in the translation of an initial algorithm intomentation of the algorithm with representative data sets and
one that is precision-optimized for hardware implementatioperforming manual fixed-point analysis. At the very least, this
This task requires extensive knowledge of both the algorithraquires the re-engineering of the software implementation to
and the target hardware. Unfortunately, there are few tools thiaeord the ranges of variables throughout the algorithm. From
aid the would-be hardware developer in this translation. In tHigese results, the developer could infer candidate bit-widths
paper, we discuss our work in filling that gap by introducinépr their hardware implementation. Even so, these methods
a user-centric tool for the design-time analysis of the impaate tedious and often error-prone.
of precision on algorithm implementation. Unfortunately, while many of the other stages of hardware

I. INTRODUCTION

development have well developed tools to help automateFinally, [13], [14] introduce the Bitwise precision-analysis
difficult tasks, few tools can automate HDL generation from @engine and the DeepC Silicon Compiler. These tools operate
processor-oriented higher level language specification. Whada C source code and provide a fully automatic static analysis
there are C-to-Verilog and C-to-VHDL tools in existence, sucipproach to precision analysis and bitwidth reduction. This
as the Synopsis CoCentric SystemC Compiler [1] and theol does not allow the developer to optimize bit-widths further
Celoxia Handel-C Compiler [2], respectively, they do not offaewhile tolerating an error impact on the output, nor does it
such “designer aids” that would help with precision analysggerform any suggestions to the user as to what directions to
of existing algorithms implemented in a high level languageaake for iterative optimization.

Ill. RELATED WORK

Most related work can be grouped into simulation-based, -
:) : Much of the existing research focuses on fully-automated
analytical, or a hybrid of the two techniques. They can

. . . .optimization techniques. While these methods have been

be otherwise categorized by the amount of user mteractloﬁ . o .

required to perform analysis, and the amount of feedback they to achieve good results, it is our belief that the
q oPp ysis, &gveloper should be kept close at hand during all design phases

can provide to the user.

Sung, et. al. [3] introduced a method and tool for wordlengf%s they possess key information that an automatic optimization

optimization targeting custom VLSI implementations of dig[nethodology simply cannot deduce or account for,

.) In order to guide an automatic precision optimization tool,
ital signal processing algorithms. Purely simulation-based, oodness function must be used to evaluate the perfor-
they utilized first an internal and proprietary VHDL-based ¢ P

. X . X mance of any optimization steps. In some cases, such as
simulation environment [4]. This software was released as_ . : : ! . . .

. - . o ._two-dimensional image processing, a simple signal-to-noise
a commercial tool, “Fixed-Point Optimizer” [5], [6]. This . ; .

i . atio (SNR) may be an appropriate goodness function. In
release required the user to design a performance evalua(lJ ner cases. the goodness function mav be significantly more
block in the description language. This block would return ' 9 e Y gninicantly

o A complex and therefore more difficult to develop. In either case,
a positive value when the quantization effects on the outp . : .
s - . e developer still has the burden of implementing a goodness
were within acceptable limits. Common blocks were signal- ~ —. e . A
o .) X unction within the framework of the automatic optimization
to-quantization-noise ratio (SQNR) computations. The syst E)nol
used basic hardware models from a commercial VLSI stan-

. . . By simulating a human developer’s evaluation of what is
dard cell library to estimate the hardware cost of different aporobriate tradeoff between auality of result and hardware
implementations. Results were positive but required a lot gp approp q y

manual user intervention. While not inherently a drawbac o:t’ktr:fw?géoggglz Ogg\rglzo atlec;,nstoc:lelezce)fegei;ucgflcrsi; lj(rtcfn
the lack of optimization suggestions for the developer al 9 P 9

. . , P erforming a goodness evaluation. Not only is this valuable
the reliance on a programmatically determined “goodneSs 7
L . et N resource lost, for many classes of applications a program-
function” differentiates it in motivation from our work.

In a closely related effort [7], operator overloading in C+Jjnatically evaluated goodness function may be difficult or

was utilized to perform range estimation of variables and fixesyeﬂ '?pr?ss'bllfn t\c/)vl ngplergle n(tj. \I/nl oth:armwoLds,thforb mfmyn d
point simulation. This work achieves the ability to simulat@PP'Ications, a knowledgeable developer may be the best, a

and estimate the ranges of non-linear and time-varying al grhaps only, way to guide precision optimization. Therefore,

rithms. However, it is still a completely manual optimizatio et_re_anta_ m?nyl thtaT;eS twhere a iutljly-autodmatlc precision
routine for the developer with only a simulation-based analys?g imization tool should not or cannot be Used. .
In a departure from previous work utilizing fully-automatic

and no hardware models to aid in area estimation. . - .
A somewhat similar effort is described in [8]. It, too methods, we approach this problem by providing a "design-

uses standard general-purpose programming languages ’tgﬂ&”_precision qnelllys.is tool that interacts with the developer
custom libraries and data types to perform the fixed-poif'ﬁ guide the _opt|m|zat|on of the hardware d_ata path._
simulation. This work introduces the idea of interpolatin In pe_rformlng manual data path_optlmlzat|or_1, one finds th_at
ranges of intermediate variables without requiring the user%&e typ_lcal sequence of steps_requwes answering four questions
specify them explicitly. However, the steps toward eﬁicieﬁ?gard'ng the algorithm and implementation:
optimization are left for the user to deduce in an interactive 1) What are the provable precision requirements of my
optimization manner with no suggestions provided by the algorithm?
system. 2) What are the effects of fixed-precision on my results?
[9]-[11] focus on developing algorithms for nearly fully- 3) What are the actual precision requirements of my data
automatic wordlength optimization. These efforts still require Sets?
a user-supplied criterion, either a latency target in [9] or a4) Where along the data path should | optimize?
“goodness” function evaluator in [10], [11]. While this is very By repeatedly asking and answering these questions, hard-
nearly an automatic process, the techniques employed limit thare designers can perform effective wordlength optimization.
scope of the work to only linear time-invariant (LTI) systemsThe tradeoffs between area consumption and accumulated
It should be noted that [12] extends the previous efforts to noarror within the computation need to be manually analyzed—
linear components in a data path and investigates the effectofime consuming and error prone process with little tool
precision optimization on power reduction. support.

IV. USER-CENTRIC AUTOMATION

In order to fill the gap irdesign-time, user-centripols that [EFwawr]
File Tools View Help

can aid in answering these precision questions, we introdu R | e ey

. R -4 Dperator: - IS i
our prototyping tool, Racis. B
@ ldentifier: n

Identifier r fruncate truncate [aa [0
2.2

 saturate round

Left Mode Right Made Range

= 14 Operator: =
V. PRECIS o e

Constant 1.0

C cell I~ Fixed

-1 A t=head_offsat © fioar

Algorithms written in the MATLAB language serve as B 4 operater =
input to PEcis. MATLAB is a very high-level programming]JV;g;‘;gi:fﬁ%‘”m—m I o |
language and prototyping environment that has found popu T
larity particularly in the signal and image processing fields =8 Sitem

+ Identifier:]
ent Lis
2129 E=(((T_LowPass(1.0 7in_line(
14 Operator: =

[15], [16]. More than just a language specification, MATLAB =< rter

(=124 Operator: +

is an interactive tool with which developers can manipulate & 23 Omraor <

-4 Operator: +
¢ =4 Operator +

algorithms and data sets to quickly see the impact of change T e
on the output of an algorithm. The ease with which developery. el T ———
can explore the design space of their algorithms makes it &= e
natural choice to pair with Bcis to provide a design-time
precision analysis environment. Fig. 1. PEcis screenshot

Precis aids developers by automating many of the more
mundane and error-prone tasks that are necessary to answergéley A 100 A
four previously mentioned precision analysis questions. This Sy 16.0 \®\X‘ 10.0
is done by providing several integrated tools within a singld5.0 B @_,32 o 10.0 B ®_,
application framework, including: constraint propagation, sim- YT Y
ulation support, range finding capabilities, and a slack analysis
phase. It is designed to complement the existing tool flow at
_design timecoupling _vvith the algorithm before it is translatedFig. 2. Simple propagation example
into an HDL description and pushed through the vendor back-
end bitstream generation tools. It is designed to provide a

convenient way for the user 1o interact with the algorithry, (optionally) constrain variables to a specific precision by
under. con5|d.erat|o'n. The goal is for the knoyvledgeable usgﬁecifying the bit positions of the most significant bit (MSB)

aiter |nteract|n.g with our tool gpd the a!gonthm, to have 8nd least significant bit (LSB). Variables that are not manually
much clearer idea of the precision requirements of the dalg,qtrained begin with a default width of 64 bits. This default

paths within their algorithm. width is chosen because it is the width of a double-precision

Precis takes the parged MATL.AB code output generateFf%ating-point number, the base number format used in the
from the MATCH compiler and displays a GUI that formatsf\/IATLAB environment. Typically, a user should be able to

the cod.e into a tree-like representgtlon of ;tatgments vide constraints easily for at least the circuit inputs and
expressions. An example of the GUI in operation is shown tputs

Fig. 1. The left half of the interface is the _tree representation.l_he propagation engine traverses the expression tree and
of dth?j MAT;AB CO?E' Thz utser may (.:“Ck on a}n]%/ nOdt(.adetermines the resultant ranges of each operator expression
an tr’1 e_pehr: ng oln The no h? ype,l rgpeye ”;"Te It?\ orfma '88m its child expressions. This is done by implementing a set
:n ne r)l(g m Fl)anef'th € rr1ltgr di?filne thls? aﬁew mth € |g;1r8f rules governing the change in resultant range that depend
S an example ot the entry dialog that aflows the use E?don the input operand(s) range(s) and the type of operation
specify fixed-point precision parameters, such as range arﬁ;mg performed. For example, in the statement b+ c, if

type of truncation. With this graphical display the user can th%n ' ' '

perform the various tasks described in the following sectio

o and ¢ are both constrained by the user to a MSB position
5t 215 and a LSB position oR°, 16 bits, the resulting output
range of variable: would have a range df'¢ — 1 to 2° — 1,
A. Propagation Engine 17 bits, as an addition conservatively requires one additional
A core component of the Bcis tool is a constraint prop- high order bit for the result in the case of a carry-out from
agation engine. The purpose of the constraint propagatit¢ highest order bit. Similar rules apply for all supported
engine is to answer the first of the four precision-analys@perations.
guestionswhat are the provable precision requirements of my The propagation engine works in this fashion across all
algorithm? By learning how the data path of the algorithnstatements of the program, recursively computing the precision
under question grows in a worst-case sense, we can obfainall expressions in the program. This form of propagation
a baseline for further optimization as well as easily pinpoing often referred to as value-range propagation. An example
regions of interest—such as areas that explode in data paftforward and backward propagation is depicted in Fig. 2.
width—which may be important to highlight to the user. In this trivial example, assume the user sets all input values
The propagation engine, inspired in part by [13], [14], worké&:, b, ¢) to utilize the bits [15,0], i.e. have a range fraif —1
by modeling the effects of using fixed-point numbers and 0. Forward propagation would result in having a bit
fixed-point math in hardware. This is done by allowing the useange of [16, 0] andy having a range of [31, 0]. If, after

MATLAB Input Annotated MATLAB

Matlab ‘ < ‘ Annotated ‘ ‘ Program
Code Précis Matiah Matlab output

Q0 0w

1;
2;
3; ;
(fixpp(a,12,3, 'trunc', 'trunc')+
(b*c)) ;

a+ (b*c)) ;

Fig. 3. Flow for code generation for simulation

) Fig. 4. Sample output generated for simulation, with the range of a variable
further manual analysis, the user notes that the output fraghstrained

these statements should be constrained to a range of [10,
0], backwards propagation following forward propagation will) _
constrain the inputs-(andz) of the multiplication to [10, 0] as FOr the LSB side of the variable, there are four modes,
well. Propagating yet further, this constrains the input variablé@und, trunc, ceil , andfloor . Round rounds the
a andb to the range [10, 0] as well. result to the.r}eares.t integdrunc truncates aI.I bits below
The propagation engine is used to get a quick, macro-scHie LSB position,ceil rounds up to the next !nteger level,
estimate of the growth rate of variables through the algorith@nd floor rounds down to the next lower integer level.
This is done by constraining the precision of input variableE€se modes correspond exactly to the MATLAB functions
and a few operators and performing the propagation. Téth the exception of trunc, and thus behave as documented
allows the user to see a conservative estimate of how the inf¥t Mathworks.Trunc is accomplished through the modulo
bit width affects the size of operations down stream. While tfRPeration. An example of output generated for simulation is
propagation engine provides some important insight into t§80Wn in Fig. 4. _ _ _
effects of fixed-point operations on the resultant data pat_h,A_‘fter the user has (_:onstralnet_j the variables of interest gnd
it forms a conservative estimate. For example, in an additididicated the mechanism by which to control overflow of bits
the propagation engine assumes that the operation requiresd¥ond the constrained precision&Bis generates annotated
carry-out bit to be set. It would be appropriate to consider thF4ATLAB. The user can then run the generated MATLAB
data path widths determined from the propagation engine ¥8de with real data sets. The purpose of these simulations
be worst-case results, or in other words, an upper bound. Tisisto determine the effects of constraining variables on the

upper bound, as well as the propagation engine, will becorf@rectness of the implementation. Not only might the eventual
useful in further analysis phases ofégis. output be erroneous, but the algorithm may also fail to operate

entirely due to the effects of precision constraints.
If the user finds the algorithm’s output to be acceptable, they

h d ion duri | ._.might consider constraining additional key variables, thereby
To answer the second question during manual precisigiy,q, reducing the eventual size of the hardware circuit. On

analysiswhat are the effects of fixed-precision on my resultsg\o oiher hand, if the output generates unusable results, the
the algorithm needs to be operated in a fixed-point enviroze; knows then that their constraints were too aggressive and
ment. This is often done on a trial-and-error basis, as thefeys they should increase the width of the data paths used by
are few, if any, structured, high-level fixed-point environmentg, o of the constrained variables.
To aid in performing fixed-point simulation, &is easily piing this manual phase of precision analysis, it is typi-
prolduces annotated. MATLAB code. The user S|mplly Sel(_ecéally not sufficient to merely test whether the fixed precision
variables to constrain and requests that MATLAB simulatiof,g it are identical to the unconstrained precision results,
code be generated. The code generated by the tool includes.e s is likely too restrictive. In situations such as image
calls to MATLAB helper functions that we developed 1, ,asqing, lossy compression, and speech processing, users
simulate a fixed-point environment, a.IIeV|at|n.g the need fi ay be willing to trade some result quality for a more efficient
the deyeloper t.o constrgct gustom fixed-point blocks. Tr}?ardware implementation. &eis, by being a designer assis-
S|mulat|op flow is shown in Fig. 3. o tance tool, allows the designer to create their own “goodness”
In particular, a MATLAB support routinefixp was de- ¢ ntion, and make this tradeoff as they see fit. With thecRr
yeloped to simulate a fixed-point environment. Its decl""r""t'qsrhvironment, this iterative development cycle is shortened, as
IS the fixed-point simulation code can be quickly generated and
executed, allowing the user to view the results and the impact
of error without the tedious editing of algorithm source code.

B. Simulation Support

fixp(x,m,n,Imode,rmode)

wherex denotes the signal to be truncated(to — n + 1)
bits in width. Specifically denotes the MSB bit position and
n the LSB bit position, inclusively, with negative values repre- o
senting positions to the right of the decimal point. The remaif: Range Finding
ing two parameterdmode andrmode specify the method While the simulation support described above is very useful
desired to deal with overflow at the MSB and LSB portions ain its own for fixed-point simulation, it is only truly useful if
the variable, respectively. These modes correspond to differémt user can accurately identify the variables that they feel can
methods of hardware implementation. Possible choices foe constrained. This leads to the third question that must be
Imode aresat andtrunc -saturation ta2(MSB5+1) — 1 and answered in order to perform effective data path optimization:
truncation of all bits above the MSB position, respectivelyhat are the actual precision requirements of my data sets?

precision requirements.
Mcit(ljaeb ‘ Précis ‘ Aot ‘ Matlab ‘ Program Another useful step that the user can perform is to constrain
variables even further than suggested by the range finding
1 phase. The user then performs subsequent simulations to see
if these further refinements introduce an acceptable amount

Variable of into the result. These simulations, as before, are easily
Stats generated and executed within thee€ls framework.

The results from this range finding method are data set
dependent. If the user is not careful to use representative data

Fig. 5. Development cycle for range finding analysis sets, the final hardware implementation could still generate
erroneous results if the data sets were significantly different in
MATLAB Input Range Finding Output precision rqui_rements, even on the same algorithm. Data sets
that are precision representative of the common case as well
a=1; a=1; as boundary and extreme cases should be used to allow the
b = 2; b=2; range finding phase to gather meaningful and robust statistics.
c = 3; c=3; It is useful, therefore, to consider range-gathered precision
d = (a+(b*c)); d=(a+(b*c)); information to be a lower bound on the precision required by
rangeFind (d, 'rfv _d'); the algorithm. As the data sets run by the user have been

observed to exercise a known amount of data path width,
any further reduction in the precision will likely incur error.
Fig. 6. Sample range finding output Given that the precisions obtained from the propagation engine
are conservative estimates, or an upper bound, manipulating
the difference between these two bounds leads us to a novel
Précis answers this question by providing a range findingethod of user-guided precision analysis—slack analysis.
capability that helps the user deduce the data path requirements
of intermediate nodes whose ranges may not be obvious. The .
development cycle utilizing range finding is shown in Fig. 50- Slack Analysis
After the MATLAB code is parsed, the user can select vari- One of the goals of this work is to provide the user with
ables they are interested in monitoring. Variables are targetéihts” as to where the developer's manual precision analysis
for range analysis and annotated MATLAB is generated, mueind hardware tuning efforts should be focused. This is the
like the simulation code is generated in the previous sectigubject of the fourth precision analysis questiafrere along
Instead of fixed-point simulation, though,éeis annotates the the data path should | optimizeMltimately, it would be
code with another MATLAB support routine that monitors thextremely helpful for the developer to be given a list of “tuning
range of the values that the variables under question take paints” in decreasing order of potential overall reduction of
This support routinerangeFind , monitors the maximum circuit size. With this information, the developer could start
and minimum values attained by the variables. The annotatedhardware implementation using more generic data path
MATLAB is run with some sample data sets to gather rang#ecision, such as a standard 64 or 32-bit data path, and
information on the variables under consideration. The user dégratively optimize code sections that would yield the most
then save these values in data files that can be fed back ibemefit. Iteratively optimizing sections of code or hardware
Précis for a further analysis phases. Example range findiigga techniqgue commonly used to efficiently meet constraints
output is shown in Fig. 6. such as time, cost, area, performance, or power. We believe this
The user then loads the resultant range values discovetgge of “tuning list” would give a developer effective starting
by rangeFind back into the Facis tool and (optionally) points for each iteration of their manual optimization, putting
constrains the variables. The range finding phase has nifv@m on the most direct path to meeting their constraints.
given the user an accurate profile of what precision eachRecall that if the user performs range finding analysis and
variable requires for the data sets under test. Propagation pappagation analysis on the same set of variables, the tool
now be performed to conservatively estimate the effect theseuld obtain what would amount to a lower bound from range
data path widths have on the rest of the system. analysis and an upper bound from propagation. We consider
The propagation engine and the range finding tools wotke range analysis a lower bound because it is the result of
closely together to allow the user to build a more comprehetiue data sets. While other data sets may require even lower
sive picture of the precision requirements of the algorithm thamounts of precision, we know we need at least the ranges
either of the tools could do alone. The propagation engingathered from the range analysis to maintain an error-free
with user-knowledge of input and perhaps output variabtutput. Further testing with other data sets may show that some
constraints, achieves a first-order estimation of the data patiriables would require more precision. Thus, if we implement
widths of the algorithm. Using the range finding informatiothe design with the precision found, we might encounter errors
allows for significant refinement of this estimation, as the disn output, thus the premise that this is a lower bound.
covered variable statistics allow for narrower data path widthsOn the other hand, propagation analysis is very conservative.
to be realized that more closely reflect the true algorithmieor example, in the statemeat= b + ¢, whereb and ¢ have

been constrained to be 16 bits wide by the user, the resultRERFORMSLACKANALYSIS .

bit width of a may be up to 17 bits due to the addition. Butin 1 constrain user-specified variables

reality, bothb and ¢ may be well within the limits of 16 bits 2 Perform propagation

and an addition might never overflow into the 17th bit position. 3 baseArea — calculateArea() .

For example, ifc = A — b, the range of valuea could ever 4 load range data for some set of variabies
take on is governed by. To a person investigating this section 2 liStOfG“mS —0

of code, this seems very obvious wheris substituted into 6 foreachm inn

a = b+c, but these types of more “macroscopic” constraints in 7 reset all variables to baseline precision.
algorithms can be difficult or impossible to find automatically 8 €onstrain range ofn to the range analysis value
outside of LTI systems as described and modeled in [10], [11]. 9 ~ Perform forward and reverse propagation
It is because of this that we can consider propagated ran WWAT@“ « calculate Area)
information to be an upper bound. 11 if (newArea < baseArea) then

Given a lower and upper bound on the bit width of al2 listOfGains — (m, baseArea — newArea)

variable, we can consider the difference between these twd3 SOTt listO fGains by decreasing gain

bounds to be the slack. The actual precision requirement is ‘
most likely to lie between these two bounds. Manipulating9- 7- Slack analysis pseudo-code
the precision of nodes with slack can net gains in precision

system-wide, as changes in any single node may impact m . . L
y 9 y sing y Imp Iﬁ/e user can then decide to stop further investigation when
F

other nodes within the circuit. The reduction in precisio i bet th tand | bound .
requirements and the resultant improvements in area, power, inerence between the current and fower bound area IS no
Rjoer worth further optimization.

and performance can be considered gain. Through care 5 thodol is straiahtf dE h node that h
analysis of the slack at a node, we can calculate how much ur methodology IS straightiorward. or €ach node that has

gain can be achieved by manipulating the precision betwe%lﬁmk’ we set the precision to the range-find value—the lower

these two bounds. Additionally, by performing this analysigound' Then, we propagate the impact of that change over

independently for each node with slack, we can generate lh ncl)qdes and ctalcuIaFg thvev overall dgtil'n n lterms t(r)1f ar;a Ipr
ordered list of “tuning points” that the user should consid € change, system-wide. VVe record this value as the efiective

when performing iteration of optimization gain as a result of modifying that node. We then reset all
We consider the reduction of the area requirement Ofngdes and repeat the procedure for the remaining nodes that
circuit to be gain. In order to compute the gain of a nod ave slack. We then sort the resultant list of gain values in
! %creasing order and present this information to the user in

with respect to area, power and performance, we need dialog window. From the graphical user interface, the user
develop basic hardware models to capture the effect of pre%i— 9 ’ grap . "
easily see how and which nodes to modify to achieve the

sion changes upon these parameters. For this work we 35;1 ; . :)
a simple area model as our main metric. For example, est gain. It is _then up to_the designer to consider these
nodes and determine which, if any, should actually be more

adder has an area model of indicating that as the precision . htly constrained than suggested bye@ls. Pseudo-code for

decreases by one bit, the area reduces linearly and the %[én olack analvsis procedure is shown in Fig. 7
increases linearly. In contrast, a multiplier has an area mo g ysis p 9- 1

of 22, indicating that the area reduction and gain achieved
are proportional to the square of the word size. Intuitively, VI. BENCHMARKS

this would give a higher overall gain value for bit reduction |n order to determine the effectiveness oééls, we utilized

of a multiplier than of an adder, which is in line with thethe tool to optimize a variety of image and signal processing
implementations that are familiar to hardware designers. Usipgnchmarks. To gauge how effective the suggestions were, we
these parameters, our approach can effectively choose g@strained the variables the tool suggested in the order they
nodes with the most possible gain to suggest to the user. Were suggested to us, and calculated the resulting area. The
detail our methodology in the next section. area was determined utilizing the same area model discussed
in previous sections, i.e. giving adders a linear area model
while multipliers are assigned an area model proportional to

the square of their input word size.
The goal of slack analysis is to identify which nodes, when

constrained by the user, are likely to have the greatest impact

upon the overall circuit area. While we do not believe it i§- Wavelet Transform

realistic to expect users to constrain all variables, most usersThe first benchmark we present is the wavelet transform.

would be able to consider how to constrain a few “controllingThe wavelet transform is a form of image processing, primarily

values in the circuit. serving as a transformation prior to applying a compression
Our method seeks to efficiently use designer time by guidisgheme, such as SPIHT [17], [18]. A typical discrete wavelet

them to the next important variables to consider for constraitransform runs a high-pass filter and low-pass filter over the

ing. PEcis can also provide a stopping criterion for the useinput image in one dimension. The results are then downsam-

we can measure the maximum possible benefit from futupéed by a factor of two and the process is repeated in the

constraints by constraining all variables to their lower boundsther dimension. Each pass results in a new image composed

E. Performing Slack Analysis

Wavelet: Area of Guided vs. Random Moves

10 ‘ : ‘ three percent of the lower bound, and further improvements
were negligible. At this point a typical user may choose to
stop optimizing the system.

To determine if this methodology is sound, we compared
1 the suggested optimization steps to the performance if we were
optimizing randomly, i.e. choosing randomly which variables
would be constrained. We performed five optimization runs
of five random optimization steps each using the same values
for the upper and lower precision bounds as in the guided
optimization scheme. The average area of these five random
passes is plotted versus the guided slack-analysis approach in
Fig. 8. As can be seen, the guided optimization route that is
suggested by Rcis reaches very close to the lower bound
quicker than the random method. The random method, while
still improving with each optimization step, does so much
e—o—¢ oo —o—9o MOre slowly than the guided slack analysis approach. From
Number of Moves Taken this we conclude that our slack analysis approach is providing
useful feedback to the user in terms of what nodes to optimize
and in what order to make the largest gains in the fewest
number of optimization moves.

The rather large gains in terms of area achieved by the

of a high-pass and low-pass sub-band, each half the Sizeor?fimization steps are an artifact of the testing methodology.
the original input stream. These sub-bands can be usedfog|| of the benchmarks, the initial ranges for all of the

recor?struct the original image. nodes, input, output, and intermediate variables, were set to
This algorithm was hand-mapped to hardware as part @fyorst-case 64-bits, the width of a double-precision word in

work done by Thomas Fry [17]. The hardware utilized was QATLAB. We chose this as our starting point simply because
WildStar FPGA board from Annapolis Microsystems consisihe MATLAB environment defaults to this data type when no
ing of three Xilinx Virtex 2000E FPGAs and 48 MBytes 0Ofpther type is defined. While moving to a narrower default data
memory. Significant time was spent converting the floatingidth would reduce the height of the y-axis in the resulting
point source algorithm into a fixed-point representation Bygyres, it would not change the shape of the curves, which
utilizing methodologies similar to those we present in hergjearly indicate that there is a benefit to choosing the correct
albeit by hand. The result was an implementation runningger of nodes to optimize. The selection of a 64-bit wide
at 56MHz, capab_le of compressing 8-bit images at a rate @fault word is therefore not arbitrary, but rather fair given
800Mbits/sec. This represents a speedup of nearly 450 timgs nature of MATLAB, the input specification language for
as compared to a software implementation running on a Sggcis.
SPARCStation 5. It is important to note that the area values obtained by
The wavelet transform was subsequently implemented facis are simply calculated by reducing the range of a
MATLAB and optimized in Pécis. In total, 27 variables werenymper of variables to their range-found lower bounds. This
selected to be constrained. These variables were then mariqys what could be considered the “best-case” solution when
for range-finding analysis and annotated MATLAB code Wagptimizing. In reality, though, one would add another step to
generated. This code was then run in the MATLAB interpretgfe development cycle whereby upon choosing the variable for
with a sample image file (Lena) to obtain range values for thtimization as suggested by the tool, the developer would
selected variables. These values were then loaded i@CisPr perform an intermediate simulation step to determine if, by
to obtain a lower bound to be used during the slack analy$ifvering the precision requirements of that variable, any error
phase. The results of the slack analysis are shown in Fig. §ould be introduced in the results. This step is made easier
These results are normalized to the lower bound obtainggl the automatic generation of annotated simulation code for
by setting all variables to their lower bound constraints angse in MATLAB. In many cases, there might be an intolerable
computing the resulting area. This graph shows that betwegfount of error introduced by utilizing the lower bound, in
the upper bound and lower bound, there is a theoretiGghich case the user would choose an appropriate precision
area difference of about four orders of magnitude. The slaﬁégnge, fix that value as a constraint upon that variable &ciBr

analysis results suggested constraining the input image ariyd continue utilizing the slack analysis phase to find the next
then the low and high pass filter coefficients, and then thariable for optimization.

results of the additions in the multiply-accumulate structure
of the filtering operation.

By taking the suggested moves in order and recomputing {Re CORDIC
order at each step, we were able to reach with fifteen percenfhe next benchmark investigates the CORDIC algorithm
of the lower bound area of the system in three moves. BY9], an acronym that stands f@OordinateRotation DI gital
about seven moves, the normalized area was within less tt@omputer. The algorithm is novel in that it is an iterative solver

Normalized Area

Fig. 8. Wavelet area vs. number of optimization steps implemented

CORDIC Area vs. Number of Moves Taken Gaussian Blur Area vs. Number of Moves Taken
10 T T T T T 10 T T T T

i

o
B
I

Normalized Area
Normalized Area

10 !

[
N3
[

10
0 14

o
Y
50

2 4 6 8 10 12 14 16 18 20
Number of Moves Taken Number of Moves Taken

Fig. 9. CORDIC benchmark results Fig. 10. Gaussian blur results

for trigonometric functions that requires only a simple networfgreater than the limited impact of constraining any one of
of shifts and adds and produces approximately one additiotia¢ inputs because the output nodes are significantly larger.
bit of accuracy for each iteration. A more complete discussi@hortly thereafter, though, all the input variables have been
of the algorithm as well as a survey of FPGA implementatiortonstrained, giving us the large improvement in area after the
can be found in [20]. seventh suggested move, at which point the very linear data
The CORDIC algorithm can be utilized in two modespath of the CORDIC algorithm has been collapsed to near the
rotation mode and vectoring mode. For this benchmark, i@ver bound.
utilized rotation mode which rotates an input vector by a
specified angle, simultaneously computing the sine and cos'tg_e
of the input angle. As in [20], the difference equations for
rotation mode are:

Gaussian Blur

The third benchmark is a Gaussian blur implemented as a
spatial convolution of a 3x3 Gaussian kernel with a 512x512

Tip1 = @—yixd;x27" greyscale input image. We ignore rescaling of the blurred
Yiel = Yi+axixd;x27" image for simplicity. The Gaussian blur algorithm was was
_ —1/o—i passed into Frcis and 14 intermediate nodes were chosen for
Zi+l = 2 — d1 * tan (2) . . .
the slack analysis phase. The results are shown in Fig. 10.
where The slack analysis prompted us to constrain first the Gaussian
)1 if <0 kernel followed by the input image. This led to the largest
"] +1 otherwise area improvement—uwithin 29 percent of the lower bound

, , in two moves, and within eight percent in 4 moves. Again,
The MATLAB implementation of CORDIC was unrolled e tq0| selects clear choices for optimization and achieves

into twelve stages. In order to obtain a variety of variable rang@ t,rmance near the lower bound in a few optimization steps.

information during the range finding phase of the analysis, a

test harness was developed that swept the input angle through]]

all integer angles betweeif and90°. The results were then D- 1-D Discrete Cosine Transform

passed into Fris and all 41 intermediate nodes were chosenThe next benchmark is a one-dimensional discrete cosine

for slack analysis. The results are consistent with those in tliansform. The DCT [21] is a frequency transform much like

wavelet benchmark, and are shown in Fig. 9, truncated to ttiee discrete Fourier transform, but using only real numbers.

first 20 moves suggested by the tool. It is widely used in image and video compression. Our
The suggested moves do not converge upon the lower boumglementation is based upon the work done by [22] as used

as quickly as the wavelet benchmark—reaching within eighy the Independent JPEG Group’s JPEG software distribution

percent in eight moves. This can be attributed to the fact tHa8]. This implementation is requires only 12 multiplications

the slack analysis algorithm is greedy in nature. The first feand 32 additions.

proposed moves all originate at the outputs. Only after theseOur MATLAB implementation performed an 8-point 1-D

are constrained does the slack analysis suggest moving to E&T upon a 512x512 input image. Fig. 11 shows the area

input variables. This behavior is in part due to the depth tfend as moves are selected as suggested bgidfor the

the adder tree present in the twelve-stage unrolling of tfiest 16 nodes of the total 25 nodes chosen for slack analysis.

algorithm. The gain achieved by constraining the outputs T® get within a factor of two of the lower bound, the input

DCT8 Area vs. Number of Moves Taken PNN Area vs. Number of Moves Taken
10 T T T 10 T T T

107 |

Normalized Area
Normalized Area

10 |

10° I I L I ~ h o o o 10° | L S o & o o o

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 2
Number of Moves Taken Number of Moves Taken

Fig. 11. 8-point 1-D DCT results Fig. 12. PNN area vs. number of optimization steps implemented utilizing
only range-analysis-discovered values

image and DCT input vector are constrained. The suggested

seven moves, and within nine percent in 12 moves. board and described in [25]. The WildChild board from An-
napolis Microsystems consists of eight Xilinx 4010E FPGAs, a
E. Probabilistic Neural Network single Xilinx 4028EX FPGA, and 5MBytes of memory. Like

The final benchmark we investigated was a multi-spectﬁéﬂe wavelet transform described earlier, significant time and
image-processing algorithm designed for NASA satellite in&ffort was spent on variable range analysis, with particular
agery that is similar to clustering analysis or image compred{fention being paid to the large multipliers and the exponenti-
sion. The goal of the algorithm is to use multiple spectr&tion required by the algorithm. This.implementa'Fion obtained
bands of instrument observation data to classify each imagReedups of 16 versus a software implementation on an HP
pixel into one of several classes. For this particular applicatioforkstation.
these classes define terrain types, such as urban, agriculturalhe algorithm was implemented in MATLAB and optimized
rangeland, and barren. In other implementations, these clasaiéh Precis. Twelve variables were selected and slack analysis
could be any significant distinguishing attributes present Was run as in the previous benchmarks. Again, all results were
the underlying dataset. This class of algorithm transforn@rmalized to the lower bound area. As shown in Fig. 12, the
the multi-spectral image into a form that is more useful fdpol behaved consistent with other benchmarks and was able
analysis by humans. to reach within five percent of the lower bound within six

One proposed scheme to perform this automatic classifioves, whereafter additional moves serve to make only minor
cation is the Probabilistic Neural Network classifier [24]. Inmprovements in area. However, with the PNN algorithm, we
this implementation, each multi-spectral image pixel vector igke the time to demonstrate a method to provide even further
compared to a set of training pixels or weights that are knowafinement of the slack analysis approach witeds.
to be representative of a particular class. The probability thatFor a seasoned developer that has a deeper insight into the
the pixel under test belongs to the class under considerataigorithm, or for one that already has an idea of how the

is given the formula depicted below. algorithm would map to hardware, the range-analysis phase
— 1 1 sometimes returns results that are sub-optimal. For example,
f(X]Sk) = m * P the range-analysis of the PNN algorithm upon a typical dataset
P e resulted in several variables being constrained to_ ranges such

£ Y exp |- (X — W)™ (X — Whi) as[20,2729], [28,2713%], [29,27298] and so on. This simply
P 202 means that the range-finding phase discovered values that

. . were extremely small and thus recorded the range as requiring
Here, X is the pixel vector under testy;; is the weight. of many fractional bits (bits right of decimal point) to capture all
classk, d is the number of spectral bandsjs the class under the precision information. The shortcoming of the automated
considerationg is a data-dependent “smoothing” parameterange-analysis is that it has no means by which to determine
and P, is the number of weights in class This formula at what precision values become too small to affect follow-on
represents the probability that pix& belongs in the class calculations, and therefore might be considered unimportant.
Sk. This comparison is then made for all classes and the cla&gh this in mind, the developer would typically restrict the
with the highest probability indicates the closest match. variables to narrower ranges that preserve the correctness of

10

0 PNN Area vs. Number of Moves Taken VI | . C ONCLUSIONS

=@~ User Guided
p A tool for semi-automatic, user-centric, design-time preci-
sion analysis has been presente@dir combines an automatic
propagation engine, a fixed-point simulation environment with
automatic MATLAB code generation, MATLAB routines also
with automatic code generation for variable statistics gath-
ering, and a slack analysis phase. Together, this toolchest
0 | addresses a major shortcoming of automated data path op-
timization techniques: leaving the developer out of the opti-
mization. We have demonstrated an effective methodology for
guiding the developer’s eventual manual optimization toward
w0t A—a & a4 4 3 those regions of the data path that will provide the largest area
improvement.

Précis aids new and seasoned hardware developers in an-
swering the four basic questions needed to perform data path
optimization at a very high level, before HDL is generated.
At this time, small design changes almost always lead to large
Fig. 13. PNN area with user-defined variable precision ranges differences in performance of the final implementation. Thus,

it is crucial to have assistive tools from the very beginning
of the design cycle, in particular, data path optimization. Un-
fortunately, there are few commercial and academic tools that
the results while requiring fewer bits of precision. provide this level of support, which highlights the importance
o))) of this contribution.

Précis provides the functionality to allow the user to make on46ing research is focused on developing techniques for
thesg decisions in its annotated MATLAB code generat,'gﬂccurate area and quantization error estimation for precision
In this case, the user would choose a narrower precisigp, is. specifically, developing methodologies to select the

range and a method by which to constrain the variable {0, significant bit position along a data path subject to area
that range, consistent with how they implement the OPeliq error constraints

ation in hardware—truncation, saturation, rounding, or any
of the other methods presented in previous sections. Then,
the developer would generate annotated MATLAB code for REFERENCES

Si_mmati?n purposes, anf_j re-run the algorithm in MATLA_B [1] Synopsys, “Synopsys CoCentric SystemC Compiler,” September 2003.
with typical data sets. This would allow the user to determine [Online]. Available: http://www.synopsys.com/

how narrow of a precision range would be tolerable, andg! Celoxia, “Hande'I-C Compiler,” September 2003. [Online]. Available:
. . ., . http://www.celoxia.com/
subsequently constrain the variables igd?s accordingly. The [3] W. Sung and K.-l. Kum, “Simulation-based word-length optimization

user would then be able to continue the slack analysis phase, method for fixed-point digital signal processing systeniSEE trans-
optionally reconstraining variables through use of simulation ~actions on Signal Processingol. 43, no. 12, pp. 3087-3090, December
as wider-than-expected precision ranges were encountere_d- YMEK.-I. Kum and W. Sung, “VHDL basd fixed-point digital signal pro-
present the results from this experiment in Fig. 13, normalized cessing algorithm development software,” Rmoceedings of the IEEE

to the lowest bound between the standard and “user-guide?" International Conference on VLSI Conember }993, pp. 257—260.
h 5] W. Sung and K.-l. Kum, “Word-length determination and scaling soft-

approaches. ware for signal flow block diagram,” innternational Conference on

At first glance, one can see that both methods provide ﬁggﬁgg’ Speech, and Signal Processihdelaide, Australia, 1994, pp.

similar trends, approaching the lower bound within five tojs] Fixed-Point Optimizer User's GuideAlta Group of Cadence Design

seven moves. This behavior is expected and is consistent Systems, Inc., August 1994.

; 1 S. Kim, K.-l. Kum, and W. Sung, “Fixed-point optimization utility for
with the results of the other benchmarks. The results sholf C and C++ based digital Signal processing programsWarkshop on

that the user-guided approach, when reconstraining variables viLs| and Signal Processin@saka, 1995.
during slack analysis, achieves a lower bound eight timel§] M. Willems, V. Bursgens, H. Keding, T. @tker, and H. Meyr, “System

: : level fixed-point design based on an interpolative approachpesign
lower than the previously described method. As expected, the Automation and Test in Europa997.

simpler method does not improve further as the number @§] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Heuristic datapath
optimization steps in increased, and remains fixed at ten times allocation for multiple wordlength systems,” Design Automation and

Test in Europe2001.
the lower bound. [10] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Optimum wordlength

The intuition of the hardware developer is used in this allocation,” in IEEE Symposium on Field-Programmable Custom Com-
puting Machines2002.

case to achieve a more area-efficient implementation than Was . A. Constantinides, P. Y. Cheung, and W. Luk, “The multiple
possible with the unguided slack analysis optimization. The wordlength paradigm,” inlEEE Symposium on Field-Programmable

ability to keep the “user in the loop” for optimization is crucial _ Custom Computing Machine2001. o
[12] G. Constantinides, “Perturbation analysis for word-length optimization,”

to obtaining good implementations, something thaiciyr is in IEEE Symposium on Field-Programmable Custom Computing Ma-
clearly able to exploit. chines 2003.

10 E

Normalized Area

10 ! ! ! ©
0 2 4 6 8 10

Number of Moves Taken

P
€

[13]

[14]

(18]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with
application to silicon compilation,” ifProceedings of the SIGPLAN
conference on Programming Language Design and Implementdiiore
2000.

M. W. Stephenson, “Bitwise: Optimizing bitwidths using data-range
propagation,” Master's thesis, Massachusetts Institute of Technology,
May 2000.

C. B. Moler, “MATLAB — an interactive matrix laboratory,” University

of New Mexico. Dept. of Computer Science, Tech. Rep. 369, 1980.

C. B. Moler, “MATLAB user’s guide,” University of New Mexico. Dept.

of Computer Science, Tech. Rep., Nov. 1980.

T. W. Fry, “Hyperspectral image compression on reconfigurable plat-
forms,” Master's thesis, University of Washington, Seattle, WA, May
2001.

T. W. Fry and S. Hauck, “Hyperspectral image compression on reconfig-
urable platforms,” iNnEEE Symposium on Field-Programmable Custom
Computing Machines2002, pp. 251-260.

J. Volder, “The CORDIC trigonometric computing techniquéRE
Trans. Electronic Computingrol. EC-8, pp. 330-334, September 1959.
R. Andraka, “A survey of CORDIC algorithms for FPGAS,” in
ACM/SIGDA Sixth International Symposium on Field Programmable
Gate Arrays 1998.

N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transfofBEE
Transactions on Computevol. C-23, pp. 90-93, January 1974.

C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,” ifProc. Int’l. Conf. on Acoustics,
Speech, and Signal processiri89, pp. 988-991.

T. Lane, P. Gladstone, L. C. Jim Boucher, J. Minguillon,
L. Ortiz, G. Phillips, D. Rossi, G. \ollbeding, and G. Wei-
jers, “The independent JPEG group’s JPEG software library,”
http://www.ijg.org/files/jpegsrc.v6b.tar.gz, June 2004.

S. R. Chettri, R. F. Cromp, and M. Birmingham, “Design of neural
networks for classification of remotely sensed imagefglematics and
Informatics vol. 9, no. 3-4, pp. 145-156, 1992.

M. L. Chang, “Adaptive computing in NASA multi-spectral image
processing,” Master’s thesis, Northwestern University, Dept. of ECE,
December 1999.

11

