
1

Pŕecis: A User-Centric
Wordlength Optimization Tool

Mark L. Chang and Scott Hauck, University of Washington

Abstract— Currently, few tools exist to aid the hardware devel-
oper in translating an algorithm designed for a general-purpose
processor into one that is precision-optimized for custom logic.
This task requires extensive knowledge of both the algorithm and
the target hardware. We present a design-time tool, Pŕecis, which
assists the developer in analyzing the precision requirements of
algorithms specified in MATLAB. Through the combined use of
simulation, user input, and program analysis, we demonstrate a
methodology for precision analysis that can aid the developer in
focusing their manual precision optimization efforts.

Index Terms— fixed-point arithmetic, wordlength optimization,
MATLAB.

I. I NTRODUCTION

ONE of the most difficult tasks in implementing an
algorithm in custom hardware is dealing with precision

issues. Typical general-purpose processor concepts such as
word sizeand data typeare no longer valid in the world of
custom logic where data paths can be custom-tailored to suit
the needs of the algorithm. Instead, the designer must use and
implement bit-precise data paths.

More specifically, in a general-purpose processor, algorithm
designers can typically choose from a predefined set of
variable types that have a fixed word length. Examples of
these predefined types are the C data types such aschar,
int, float , anddouble . These data types correspond to
differently-sized data paths within the microprocessor. Most of
the work of padding, word-boundary alignment, and operation
selection is hidden from the programmer by compilers and
assemblers, which make the use of one data type equally easy
as another.

In contrast, custom and customizable hardware, such as an
ASIC or FPGA, does not have predefined data widths for its
data path. This allows the developer to tune the data paths
to any width desired. Unfortunately, choosing the appropriate
size for data paths is not a trivial task. Too many bits along a
data path is wasteful, while too few may result in erroneous
output.

The difficulty is in the translation of an initial algorithm into
one that is precision-optimized for hardware implementation.
This task requires extensive knowledge of both the algorithm
and the target hardware. Unfortunately, there are few tools that
aid the would-be hardware developer in this translation. In this
paper, we discuss our work in filling that gap by introducing
a user-centric tool for the design-time analysis of the impact
of precision on algorithm implementation.

II. BACKGROUND

At the head of the development chain is the algorithm. Of-
ten, the algorithm under consideration has been implemented
in some high-level language, such as MATLAB, C, or Java,
targeted to run on a general purpose processor, such as a work-
station or desktop personal computer. The most compelling
reason to utilize a high level language running on a workstation
is that it provides infinite flexibility and a comfortable, rich
environment in which to rapidly prototype algorithms. Of
course, the reason one would convert this algorithm into a
hardware implementation is to gain considerable advantages
in terms of speed, size, and power.

A typical tool flow requires the developer to first convert
a software prototyped algorithm into a hardware description.
From this hardware description language (HDL) specification,
various intermediate tools are used to perform simulation
and generate target bitstreams which are then executed on
reconfigurable logic.

A simple conversion without precision analysis would most
likely yield an unreasonably large hardware implementation.
For example, by choosing to emulate a general-purpose pro-
cessor, or DSP, with a fixed 32-bit data path throughout the
system, the developer may encounter two problems: wasted
area and incorrect results. The former arises when the actual
data the algorithm operates upon does not require the full
32-bit data path. In this case, much of the area occupied by
the oversized data path could be pruned. There are several
benefits to area reduction of a hardware implementation: re-
duced power consumption, reduced critical path delay, and the
increased probability of parallelism by freeing up more room
on the device to perform other operations simultaneously. On
the other hand, the latter case, incorrect results, occurs when
the algorithm actually requires more precision for some data
sets than the 32-bit data path provides. In this case, the results
obtained from the algorithm could potentially be incorrect due
to unchecked overflow or underflow conditions.

Therefore, within the HDL description, it is important
that the developer determine more accurate bounds on the
data path. Typically, this involves running a software imple-
mentation of the algorithm with representative data sets and
performing manual fixed-point analysis. At the very least, this
requires the re-engineering of the software implementation to
record the ranges of variables throughout the algorithm. From
these results, the developer could infer candidate bit-widths
for their hardware implementation. Even so, these methods
are tedious and often error-prone.

Unfortunately, while many of the other stages of hardware



2

development have well developed tools to help automate
difficult tasks, few tools can automate HDL generation from a
processor-oriented higher level language specification. While
there are C-to-Verilog and C-to-VHDL tools in existence, such
as the Synopsis CoCentric SystemC Compiler [1] and the
Celoxia Handel-C Compiler [2], respectively, they do not offer
such “designer aids” that would help with precision analysis
of existing algorithms implemented in a high level language.

III. R ELATED WORK

Most related work can be grouped into simulation-based,
analytical, or a hybrid of the two techniques. They can
be otherwise categorized by the amount of user interaction
required to perform analysis, and the amount of feedback they
can provide to the user.

Sung, et. al. [3] introduced a method and tool for wordlength
optimization targeting custom VLSI implementations of dig-
ital signal processing algorithms. Purely simulation-based,
they utilized first an internal and proprietary VHDL-based
simulation environment [4]. This software was released as
a commercial tool, “Fixed-Point Optimizer” [5], [6]. This
release required the user to design a performance evaluation
block in the description language. This block would return
a positive value when the quantization effects on the output
were within acceptable limits. Common blocks were signal-
to-quantization-noise ratio (SQNR) computations. The system
used basic hardware models from a commercial VLSI stan-
dard cell library to estimate the hardware cost of different
implementations. Results were positive but required a lot of
manual user intervention. While not inherently a drawback,
the lack of optimization suggestions for the developer and
the reliance on a programmatically determined “goodness
function” differentiates it in motivation from our work.

In a closely related effort [7], operator overloading in C++
was utilized to perform range estimation of variables and fixed-
point simulation. This work achieves the ability to simulate
and estimate the ranges of non-linear and time-varying algo-
rithms. However, it is still a completely manual optimization
routine for the developer with only a simulation-based analysis
and no hardware models to aid in area estimation.

A somewhat similar effort is described in [8]. It, too,
uses standard general-purpose programming languages and
custom libraries and data types to perform the fixed-point
simulation. This work introduces the idea of interpolating
ranges of intermediate variables without requiring the user to
specify them explicitly. However, the steps toward efficient
optimization are left for the user to deduce in an interactive
optimization manner with no suggestions provided by the
system.

[9]–[11] focus on developing algorithms for nearly fully-
automatic wordlength optimization. These efforts still require
a user-supplied criterion, either a latency target in [9] or a
“goodness” function evaluator in [10], [11]. While this is very
nearly an automatic process, the techniques employed limit the
scope of the work to only linear time-invariant (LTI) systems.
It should be noted that [12] extends the previous efforts to non-
linear components in a data path and investigates the effect of
precision optimization on power reduction.

Finally, [13], [14] introduce the Bitwise precision-analysis
engine and the DeepC Silicon Compiler. These tools operate
on C source code and provide a fully automatic static analysis
approach to precision analysis and bitwidth reduction. This
tool does not allow the developer to optimize bit-widths further
while tolerating an error impact on the output, nor does it
perform any suggestions to the user as to what directions to
take for iterative optimization.

IV. U SER-CENTRIC AUTOMATION

Much of the existing research focuses on fully-automated
optimization techniques. While these methods have been
shown to achieve good results, it is our belief that the
developer should be kept close at hand during all design phases
as they possess key information that an automatic optimization
methodology simply cannot deduce or account for.

In order to guide an automatic precision optimization tool,
a goodness function must be used to evaluate the perfor-
mance of any optimization steps. In some cases, such as
two-dimensional image processing, a simple signal-to-noise
ratio (SNR) may be an appropriate goodness function. In
other cases, the goodness function may be significantly more
complex and therefore more difficult to develop. In either case,
the developer still has the burden of implementing a goodness
function within the framework of the automatic optimization
tool.

By simulating a human developer’s evaluation of what is
an appropriate tradeoff between quality of result and hardware
cost, the automatic optimization tool looses a crucial resource:
the knowledgeable developer’s greater sense of context in
performing a goodness evaluation. Not only is this valuable
resource lost, for many classes of applications a program-
matically evaluated goodness function may be difficult or
even impossible to implement. In other words, for many
applications, a knowledgeable developer may be the best, and
perhaps only, way to guide precision optimization. Therefore,
there are many instances where a fully-automatic precision
optimization tool should not or cannot be used.

In a departure from previous work utilizing fully-automatic
methods, we approach this problem by providing a “design-
time” precision analysis tool that interacts with the developer
to guide the optimization of the hardware data path.

In performing manual data path optimization, one finds that
the typical sequence of steps requires answering four questions
regarding the algorithm and implementation:

1) What are the provable precision requirements of my
algorithm?

2) What are the effects of fixed-precision on my results?
3) What are the actual precision requirements of my data

sets?
4) Where along the data path should I optimize?

By repeatedly asking and answering these questions, hard-
ware designers can perform effective wordlength optimization.
The tradeoffs between area consumption and accumulated
error within the computation need to be manually analyzed—
a time consuming and error prone process with little tool
support.



3

In order to fill the gap indesign-time, user-centrictools that
can aid in answering these precision questions, we introduce
our prototyping tool, Pŕecis.

V. PRÉCIS

Algorithms written in the MATLAB language serve as
input to Pŕecis. MATLAB is a very high-level programming
language and prototyping environment that has found popu-
larity particularly in the signal and image processing fields
[15], [16]. More than just a language specification, MATLAB
is an interactive tool with which developers can manipulate
algorithms and data sets to quickly see the impact of changes
on the output of an algorithm. The ease with which developers
can explore the design space of their algorithms makes it a
natural choice to pair with Précis to provide a design-time
precision analysis environment.

Pŕecis aids developers by automating many of the more
mundane and error-prone tasks that are necessary to answer the
four previously mentioned precision analysis questions. This
is done by providing several integrated tools within a single
application framework, including: constraint propagation, sim-
ulation support, range finding capabilities, and a slack analysis
phase. It is designed to complement the existing tool flow at
design time, coupling with the algorithm before it is translated
into an HDL description and pushed through the vendor back-
end bitstream generation tools. It is designed to provide a
convenient way for the user to interact with the algorithm
under consideration. The goal is for the knowledgeable user,
after interacting with our tool and the algorithm, to have a
much clearer idea of the precision requirements of the data
paths within their algorithm.

Pŕecis takes the parsed MATLAB code output generated
from the MATCH compiler and displays a GUI that formats
the code into a tree-like representation of statements and
expressions. An example of the GUI in operation is shown in
Fig. 1. The left half of the interface is the tree representation
of the MATLAB code. The user may click on any node
and, depending on the node type, receive more information
in the right panel. The right panel displayed in the figure
is an example of the entry dialog that allows the user to
specify fixed-point precision parameters, such as range and
type of truncation. With this graphical display the user can then
perform the various tasks described in the following sections.

A. Propagation Engine

A core component of the Précis tool is a constraint prop-
agation engine. The purpose of the constraint propagation
engine is to answer the first of the four precision-analysis
questions:what are the provable precision requirements of my
algorithm? By learning how the data path of the algorithm
under question grows in a worst-case sense, we can obtain
a baseline for further optimization as well as easily pinpoint
regions of interest—such as areas that explode in data path
width—which may be important to highlight to the user.

The propagation engine, inspired in part by [13], [14], works
by modeling the effects of using fixed-point numbers and
fixed-point math in hardware. This is done by allowing the user

 

Fig. 1. Pŕecis screenshot

Fig. 2. Simple propagation example

to (optionally) constrain variables to a specific precision by
specifying the bit positions of the most significant bit (MSB)
and least significant bit (LSB). Variables that are not manually
constrained begin with a default width of 64 bits. This default
width is chosen because it is the width of a double-precision
floating-point number, the base number format used in the
MATLAB environment. Typically, a user should be able to
provide constraints easily for at least the circuit inputs and
outputs.

The propagation engine traverses the expression tree and
determines the resultant ranges of each operator expression
from its child expressions. This is done by implementing a set
of rules governing the change in resultant range that depend
upon the input operand(s) range(s) and the type of operation
being performed. For example, in the statementa = b + c, if
b and c are both constrained by the user to a MSB position
of 215 and a LSB position of20, 16 bits, the resulting output
range of variablea would have a range of216 − 1 to 20 − 1,
17 bits, as an addition conservatively requires one additional
high order bit for the result in the case of a carry-out from
the highest order bit. Similar rules apply for all supported
operations.

The propagation engine works in this fashion across all
statements of the program, recursively computing the precision
for all expressions in the program. This form of propagation
is often referred to as value-range propagation. An example
of forward and backward propagation is depicted in Fig. 2.

In this trivial example, assume the user sets all input values
(a, b, c) to utilize the bits [15,0], i.e. have a range from216−1
to 0. Forward propagation would result inx having a bit
range of [16, 0] andy having a range of [31, 0]. If, after



4

Matlab
Code Précis Annotated

Matlab Matlab Program
Output

Fig. 3. Flow for code generation for simulation

further manual analysis, the user notes that the output from
these statements should be constrained to a range of [10,
0], backwards propagation following forward propagation will
constrain the inputs (c andx) of the multiplication to [10, 0] as
well. Propagating yet further, this constrains the input variables
a andb to the range [10, 0] as well.

The propagation engine is used to get a quick, macro-scale
estimate of the growth rate of variables through the algorithm.
This is done by constraining the precision of input variables
and a few operators and performing the propagation. This
allows the user to see a conservative estimate of how the input
bit width affects the size of operations down stream. While the
propagation engine provides some important insight into the
effects of fixed-point operations on the resultant data path,
it forms a conservative estimate. For example, in an addition,
the propagation engine assumes that the operation requires the
carry-out bit to be set. It would be appropriate to consider the
data path widths determined from the propagation engine to
be worst-case results, or in other words, an upper bound. This
upper bound, as well as the propagation engine, will become
useful in further analysis phases of Précis.

B. Simulation Support

To answer the second question during manual precision
analysis:what are the effects of fixed-precision on my results?,
the algorithm needs to be operated in a fixed-point environ-
ment. This is often done on a trial-and-error basis, as there
are few, if any, structured, high-level fixed-point environments.
To aid in performing fixed-point simulation, Précis easily
produces annotated MATLAB code. The user simply selects
variables to constrain and requests that MATLAB simulation
code be generated. The code generated by the tool includes
calls to MATLAB helper functions that we developed to
simulate a fixed-point environment, alleviating the need for
the developer to construct custom fixed-point blocks. The
simulation flow is shown in Fig. 3.

In particular, a MATLAB support routine,fixp was de-
veloped to simulate a fixed-point environment. Its declaration
is

fixp(x,m,n,lmode,rmode)
wherex denotes the signal to be truncated to(m− n + 1)

bits in width. Specifically,m denotes the MSB bit position and
n the LSB bit position, inclusively, with negative values repre-
senting positions to the right of the decimal point. The remain-
ing two parameters,lmode and rmode specify the method
desired to deal with overflow at the MSB and LSB portions of
the variable, respectively. These modes correspond to different
methods of hardware implementation. Possible choices for
lmode aresat and trunc -saturation to2(MSB+1) − 1 and
truncation of all bits above the MSB position, respectively.

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(fixpp(a,12,3,’trunc','trunc')+

(b*c));

MATLAB Input Annotated MATLAB

Fig. 4. Sample output generated for simulation, with the range of a variable
constrained

For the LSB side of the variable, there are four modes,
round, trunc, ceil , and floor . Round rounds the
result to the nearest integer,trunc truncates all bits below
the LSB position,ceil rounds up to the next integer level,
and floor rounds down to the next lower integer level.
These modes correspond exactly to the MATLAB functions
with the exception of trunc, and thus behave as documented
by Mathworks.Trunc is accomplished through the modulo
operation. An example of output generated for simulation is
shown in Fig. 4.

After the user has constrained the variables of interest and
indicated the mechanism by which to control overflow of bits
beyond the constrained precision, Précis generates annotated
MATLAB. The user can then run the generated MATLAB
code with real data sets. The purpose of these simulations
is to determine the effects of constraining variables on the
correctness of the implementation. Not only might the eventual
output be erroneous, but the algorithm may also fail to operate
entirely due to the effects of precision constraints.

If the user finds the algorithm’s output to be acceptable, they
might consider constraining additional key variables, thereby
further reducing the eventual size of the hardware circuit. On
the other hand, if the output generates unusable results, the
user knows then that their constraints were too aggressive and
that they should increase the width of the data paths used by
some of the constrained variables.

During this manual phase of precision analysis, it is typi-
cally not sufficient to merely test whether the fixed precision
results are identical to the unconstrained precision results,
since this is likely too restrictive. In situations such as image
processing, lossy compression, and speech processing, users
may be willing to trade some result quality for a more efficient
hardware implementation. Précis, by being a designer assis-
tance tool, allows the designer to create their own “goodness”
function, and make this tradeoff as they see fit. With the Précis
environment, this iterative development cycle is shortened, as
the fixed-point simulation code can be quickly generated and
executed, allowing the user to view the results and the impact
of error without the tedious editing of algorithm source code.

C. Range Finding

While the simulation support described above is very useful
on its own for fixed-point simulation, it is only truly useful if
the user can accurately identify the variables that they feel can
be constrained. This leads to the third question that must be
answered in order to perform effective data path optimization:
what are the actual precision requirements of my data sets?



5

Matlab
Code Précis Annotated

Matlab Matlab

Variable
Stats

Program
Output

Fig. 5. Development cycle for range finding analysis

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(a+(b*c));
rangeFind(d,'rfv_d');

MATLAB Input Range Finding Output

Fig. 6. Sample range finding output

Pŕecis answers this question by providing a range finding
capability that helps the user deduce the data path requirements
of intermediate nodes whose ranges may not be obvious. The
development cycle utilizing range finding is shown in Fig. 5.

After the MATLAB code is parsed, the user can select vari-
ables they are interested in monitoring. Variables are targeted
for range analysis and annotated MATLAB is generated, much
like the simulation code is generated in the previous section.
Instead of fixed-point simulation, though, Précis annotates the
code with another MATLAB support routine that monitors the
range of the values that the variables under question take on.

This support routine,rangeFind , monitors the maximum
and minimum values attained by the variables. The annotated
MATLAB is run with some sample data sets to gather range
information on the variables under consideration. The user can
then save these values in data files that can be fed back into
Pŕecis for a further analysis phases. Example range finding
output is shown in Fig. 6.

The user then loads the resultant range values discovered
by rangeFind back into the Pŕecis tool and (optionally)
constrains the variables. The range finding phase has now
given the user an accurate profile of what precision each
variable requires for the data sets under test. Propagation can
now be performed to conservatively estimate the effect these
data path widths have on the rest of the system.

The propagation engine and the range finding tools work
closely together to allow the user to build a more comprehen-
sive picture of the precision requirements of the algorithm than
either of the tools could do alone. The propagation engine,
with user-knowledge of input and perhaps output variable
constraints, achieves a first-order estimation of the data path
widths of the algorithm. Using the range finding information
allows for significant refinement of this estimation, as the dis-
covered variable statistics allow for narrower data path widths
to be realized that more closely reflect the true algorithmic

precision requirements.
Another useful step that the user can perform is to constrain

variables even further than suggested by the range finding
phase. The user then performs subsequent simulations to see
if these further refinements introduce an acceptable amount
of into the result. These simulations, as before, are easily
generated and executed within the Précis framework.

The results from this range finding method are data set
dependent. If the user is not careful to use representative data
sets, the final hardware implementation could still generate
erroneous results if the data sets were significantly different in
precision requirements, even on the same algorithm. Data sets
that are precision representative of the common case as well
as boundary and extreme cases should be used to allow the
range finding phase to gather meaningful and robust statistics.

It is useful, therefore, to consider range-gathered precision
information to be a lower bound on the precision required by
the algorithm. As the data sets run by the user have been
observed to exercise a known amount of data path width,
any further reduction in the precision will likely incur error.
Given that the precisions obtained from the propagation engine
are conservative estimates, or an upper bound, manipulating
the difference between these two bounds leads us to a novel
method of user-guided precision analysis—slack analysis.

D. Slack Analysis

One of the goals of this work is to provide the user with
“hints” as to where the developer’s manual precision analysis
and hardware tuning efforts should be focused. This is the
subject of the fourth precision analysis question:where along
the data path should I optimize?. Ultimately, it would be
extremely helpful for the developer to be given a list of “tuning
points” in decreasing order of potential overall reduction of
circuit size. With this information, the developer could start
a hardware implementation using more generic data path
precision, such as a standard 64 or 32-bit data path, and
iteratively optimize code sections that would yield the most
benefit. Iteratively optimizing sections of code or hardware
is a technique commonly used to efficiently meet constraints
such as time, cost, area, performance, or power. We believe this
type of “tuning list” would give a developer effective starting
points for each iteration of their manual optimization, putting
them on the most direct path to meeting their constraints.

Recall that if the user performs range finding analysis and
propagation analysis on the same set of variables, the tool
would obtain what would amount to a lower bound from range
analysis and an upper bound from propagation. We consider
the range analysis a lower bound because it is the result of
true data sets. While other data sets may require even lower
amounts of precision, we know we need at least the ranges
gathered from the range analysis to maintain an error-free
output. Further testing with other data sets may show that some
variables would require more precision. Thus, if we implement
the design with the precision found, we might encounter errors
on output, thus the premise that this is a lower bound.

On the other hand, propagation analysis is very conservative.
For example, in the statementa = b + c, whereb and c have



6

been constrained to be 16 bits wide by the user, the resultant
bit width of a may be up to 17 bits due to the addition. But in
reality, bothb and c may be well within the limits of 16 bits
and an addition might never overflow into the 17th bit position.
For example, ifc = λ − b, the range of valuesa could ever
take on is governed byλ. To a person investigating this section
of code, this seems very obvious whenc is substituted into
a = b+c, but these types of more “macroscopic” constraints in
algorithms can be difficult or impossible to find automatically
outside of LTI systems as described and modeled in [10], [11].
It is because of this that we can consider propagated range
information to be an upper bound.

Given a lower and upper bound on the bit width of a
variable, we can consider the difference between these two
bounds to be the slack. The actual precision requirement is
most likely to lie between these two bounds. Manipulating
the precision of nodes with slack can net gains in precision
system-wide, as changes in any single node may impact many
other nodes within the circuit. The reduction in precision
requirements and the resultant improvements in area, power,
and performance can be considered gain. Through careful
analysis of the slack at a node, we can calculate how much
gain can be achieved by manipulating the precision between
these two bounds. Additionally, by performing this analysis
independently for each node with slack, we can generate an
ordered list of “tuning points” that the user should consider
when performing iteration of optimization.

We consider the reduction of the area requirement of a
circuit to be gain. In order to compute the gain of a node
with respect to area, power and performance, we need to
develop basic hardware models to capture the effect of preci-
sion changes upon these parameters. For this work we use
a simple area model as our main metric. For example, an
adder has an area model ofx, indicating that as the precision
decreases by one bit, the area reduces linearly and the gain
increases linearly. In contrast, a multiplier has an area model
of x2, indicating that the area reduction and gain achieved
are proportional to the square of the word size. Intuitively,
this would give a higher overall gain value for bit reduction
of a multiplier than of an adder, which is in line with the
implementations that are familiar to hardware designers. Using
these parameters, our approach can effectively choose the
nodes with the most possible gain to suggest to the user. We
detail our methodology in the next section.

E. Performing Slack Analysis

The goal of slack analysis is to identify which nodes, when
constrained by the user, are likely to have the greatest impact
upon the overall circuit area. While we do not believe it is
realistic to expect users to constrain all variables, most users
would be able to consider how to constrain a few “controlling”
values in the circuit.

Our method seeks to efficiently use designer time by guiding
them to the next important variables to consider for constrain-
ing. Pŕecis can also provide a stopping criterion for the user:
we can measure the maximum possible benefit from future
constraints by constraining all variables to their lower bounds.

PERFORMSLACK ANALYSIS

1 constrain user-specified variables
2 perform propagation
3 baseArea← calculateArea()
4 load range data for some set of variablesn
5 listOfGains← ∅
6 foreach m in n
7 reset all variables to baseline precision
8 constrain range ofm to the range analysis value
9 perform forward and reverse propagation

10 newArea← calculateArea()
11 if (newArea < baseArea) then
12 listOfGains← (m, baseArea− newArea)
13 sort listOfGains by decreasing gain

Fig. 7. Slack analysis pseudo-code

The user can then decide to stop further investigation when
the difference between the current and lower bound area is no
longer worth further optimization.

Our methodology is straightforward. For each node that has
slack, we set the precision to the range-find value—the lower
bound. Then, we propagate the impact of that change over
all nodes and calculate the overall gain in terms of area for
the change, system-wide. We record this value as the effective
gain as a result of modifying that node. We then reset all
nodes and repeat the procedure for the remaining nodes that
have slack. We then sort the resultant list of gain values in
decreasing order and present this information to the user in
a dialog window. From the graphical user interface, the user
can easily see how and which nodes to modify to achieve the
highest gain. It is then up to the designer to consider these
nodes and determine which, if any, should actually be more
tightly constrained than suggested by Précis. Pseudo-code for
the slack analysis procedure is shown in Fig. 7.

VI. B ENCHMARKS

In order to determine the effectiveness of Précis, we utilized
the tool to optimize a variety of image and signal processing
benchmarks. To gauge how effective the suggestions were, we
constrained the variables the tool suggested in the order they
were suggested to us, and calculated the resulting area. The
area was determined utilizing the same area model discussed
in previous sections, i.e. giving adders a linear area model
while multipliers are assigned an area model proportional to
the square of their input word size.

A. Wavelet Transform

The first benchmark we present is the wavelet transform.
The wavelet transform is a form of image processing, primarily
serving as a transformation prior to applying a compression
scheme, such as SPIHT [17], [18]. A typical discrete wavelet
transform runs a high-pass filter and low-pass filter over the
input image in one dimension. The results are then downsam-
pled by a factor of two and the process is repeated in the
other dimension. Each pass results in a new image composed



7

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

Number of Moves Taken

N
or

m
al

iz
ed

 A
re

a
Wavelet: Area of Guided vs. Random Moves

Guided
Random Average

Fig. 8. Wavelet area vs. number of optimization steps implemented

of a high-pass and low-pass sub-band, each half the size of
the original input stream. These sub-bands can be used to
reconstruct the original image.

This algorithm was hand-mapped to hardware as part of
work done by Thomas Fry [17]. The hardware utilized was a
WildStar FPGA board from Annapolis Microsystems consist-
ing of three Xilinx Virtex 2000E FPGAs and 48 MBytes of
memory. Significant time was spent converting the floating-
point source algorithm into a fixed-point representation by
utilizing methodologies similar to those we present in here,
albeit by hand. The result was an implementation running
at 56MHz, capable of compressing 8-bit images at a rate of
800Mbits/sec. This represents a speedup of nearly 450 times
as compared to a software implementation running on a Sun
SPARCStation 5.

The wavelet transform was subsequently implemented in
MATLAB and optimized in Pŕecis. In total, 27 variables were
selected to be constrained. These variables were then marked
for range-finding analysis and annotated MATLAB code was
generated. This code was then run in the MATLAB interpreter
with a sample image file (Lena) to obtain range values for the
selected variables. These values were then loaded into Précis
to obtain a lower bound to be used during the slack analysis
phase. The results of the slack analysis are shown in Fig. 8.

These results are normalized to the lower bound obtained
by setting all variables to their lower bound constraints and
computing the resulting area. This graph shows that between
the upper bound and lower bound, there is a theoretical
area difference of about four orders of magnitude. The slack
analysis results suggested constraining the input image array,
then the low and high pass filter coefficients, and then the
results of the additions in the multiply-accumulate structure
of the filtering operation.

By taking the suggested moves in order and recomputing the
order at each step, we were able to reach with fifteen percent
of the lower bound area of the system in three moves. By
about seven moves, the normalized area was within less than

three percent of the lower bound, and further improvements
were negligible. At this point a typical user may choose to
stop optimizing the system.

To determine if this methodology is sound, we compared
the suggested optimization steps to the performance if we were
optimizing randomly, i.e. choosing randomly which variables
would be constrained. We performed five optimization runs
of five random optimization steps each using the same values
for the upper and lower precision bounds as in the guided
optimization scheme. The average area of these five random
passes is plotted versus the guided slack-analysis approach in
Fig. 8. As can be seen, the guided optimization route that is
suggested by Précis reaches very close to the lower bound
quicker than the random method. The random method, while
still improving with each optimization step, does so much
more slowly than the guided slack analysis approach. From
this we conclude that our slack analysis approach is providing
useful feedback to the user in terms of what nodes to optimize
and in what order to make the largest gains in the fewest
number of optimization moves.

The rather large gains in terms of area achieved by the
optimization steps are an artifact of the testing methodology.
In all of the benchmarks, the initial ranges for all of the
nodes, input, output, and intermediate variables, were set to
a worst-case 64-bits, the width of a double-precision word in
MATLAB. We chose this as our starting point simply because
the MATLAB environment defaults to this data type when no
other type is defined. While moving to a narrower default data
width would reduce the height of the y-axis in the resulting
figures, it would not change the shape of the curves, which
clearly indicate that there is a benefit to choosing the correct
order of nodes to optimize. The selection of a 64-bit wide
default word is therefore not arbitrary, but rather fair given
the nature of MATLAB, the input specification language for
Pŕecis.

It is important to note that the area values obtained by
Pŕecis are simply calculated by reducing the range of a
number of variables to their range-found lower bounds. This
yields what could be considered the “best-case” solution when
optimizing. In reality, though, one would add another step to
the development cycle whereby upon choosing the variable for
optimization as suggested by the tool, the developer would
perform an intermediate simulation step to determine if, by
lowering the precision requirements of that variable, any error
would be introduced in the results. This step is made easier
by the automatic generation of annotated simulation code for
use in MATLAB. In many cases, there might be an intolerable
amount of error introduced by utilizing the lower bound, in
which case the user would choose an appropriate precision
range, fix that value as a constraint upon that variable in Précis
and continue utilizing the slack analysis phase to find the next
variable for optimization.

B. CORDIC

The next benchmark investigates the CORDIC algorithm
[19], an acronym that stands forCOordinateRotationDIgital
Computer. The algorithm is novel in that it is an iterative solver



8

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

Number of Moves Taken

N
or

m
al

iz
ed

 A
re

a
CORDIC Area vs. Number of Moves Taken

Fig. 9. CORDIC benchmark results

for trigonometric functions that requires only a simple network
of shifts and adds and produces approximately one additional
bit of accuracy for each iteration. A more complete discussion
of the algorithm as well as a survey of FPGA implementations
can be found in [20].

The CORDIC algorithm can be utilized in two modes,
rotation mode and vectoring mode. For this benchmark, we
utilized rotation mode which rotates an input vector by a
specified angle, simultaneously computing the sine and cosine
of the input angle. As in [20], the difference equations for
rotation mode are:

xi+1 = xi − yi ∗ di ∗ 2−i

yi+1 = yi + xi ∗ di ∗ 2−i

zi+1 = zi − di ∗ tan−1(2−i)

where

di =

{
−1 if zi < 0
+1 otherwise

The MATLAB implementation of CORDIC was unrolled
into twelve stages. In order to obtain a variety of variable range
information during the range finding phase of the analysis, a
test harness was developed that swept the input angle through
all integer angles between0◦ and90◦. The results were then
passed into Précis and all 41 intermediate nodes were chosen
for slack analysis. The results are consistent with those in the
wavelet benchmark, and are shown in Fig. 9, truncated to the
first 20 moves suggested by the tool.

The suggested moves do not converge upon the lower bound
as quickly as the wavelet benchmark—reaching within eight
percent in eight moves. This can be attributed to the fact that
the slack analysis algorithm is greedy in nature. The first few
proposed moves all originate at the outputs. Only after these
are constrained does the slack analysis suggest moving to the
input variables. This behavior is in part due to the depth of
the adder tree present in the twelve-stage unrolling of the
algorithm. The gain achieved by constraining the outputs is

0 2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

10
4

10
5

Number of Moves Taken

N
or

m
al

iz
ed

 A
re

a

Gaussian Blur Area vs. Number of Moves Taken

Fig. 10. Gaussian blur results

greater than the limited impact of constraining any one of
the inputs because the output nodes are significantly larger.
Shortly thereafter, though, all the input variables have been
constrained, giving us the large improvement in area after the
seventh suggested move, at which point the very linear data
path of the CORDIC algorithm has been collapsed to near the
lower bound.

C. Gaussian Blur

The third benchmark is a Gaussian blur implemented as a
spatial convolution of a 3x3 Gaussian kernel with a 512x512
greyscale input image. We ignore rescaling of the blurred
image for simplicity. The Gaussian blur algorithm was was
passed into Précis and 14 intermediate nodes were chosen for
the slack analysis phase. The results are shown in Fig. 10.
The slack analysis prompted us to constrain first the Gaussian
kernel followed by the input image. This led to the largest
area improvement—within 29 percent of the lower bound
in two moves, and within eight percent in 4 moves. Again,
the tool selects clear choices for optimization and achieves
performance near the lower bound in a few optimization steps.

D. 1-D Discrete Cosine Transform

The next benchmark is a one-dimensional discrete cosine
transform. The DCT [21] is a frequency transform much like
the discrete Fourier transform, but using only real numbers.
It is widely used in image and video compression. Our
implementation is based upon the work done by [22] as used
by the Independent JPEG Group’s JPEG software distribution
[23]. This implementation is requires only 12 multiplications
and 32 additions.

Our MATLAB implementation performed an 8-point 1-D
DCT upon a 512x512 input image. Fig. 11 shows the area
trend as moves are selected as suggested by Précis for the
first 16 nodes of the total 25 nodes chosen for slack analysis.
To get within a factor of two of the lower bound, the input



9

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

10
4

10
5

Number of Moves Taken

N
or

m
al

iz
ed

 A
re

a
DCT8 Area vs. Number of Moves Taken

Fig. 11. 8-point 1-D DCT results

image and DCT input vector are constrained. The suggested
moves achieve within 50 percent of the lower bound within
seven moves, and within nine percent in 12 moves.

E. Probabilistic Neural Network

The final benchmark we investigated was a multi-spectral
image-processing algorithm designed for NASA satellite im-
agery that is similar to clustering analysis or image compres-
sion. The goal of the algorithm is to use multiple spectral
bands of instrument observation data to classify each image
pixel into one of several classes. For this particular application,
these classes define terrain types, such as urban, agricultural,
rangeland, and barren. In other implementations, these classes
could be any significant distinguishing attributes present in
the underlying dataset. This class of algorithm transforms
the multi-spectral image into a form that is more useful for
analysis by humans.

One proposed scheme to perform this automatic classifi-
cation is the Probabilistic Neural Network classifier [24]. In
this implementation, each multi-spectral image pixel vector is
compared to a set of training pixels or weights that are known
to be representative of a particular class. The probability that
the pixel under test belongs to the class under consideration
is given the formula depicted below.

f(
−→
X |Sk) =

1
(2π)d/2σd

∗ 1
Pk

∗
Pk∑
i=1

exp

[
− (
−→
X −

−−→
Wki)T (

−→
X −

−−→
Wki)

2σ2

]

Here,
−→
X is the pixel vector under test,

−−→
Wki is the weighti of

classk, d is the number of spectral bands,k is the class under
consideration,σ is a data-dependent “smoothing” parameter,
and Pk is the number of weights in classk. This formula
represents the probability that pixel

−→
X belongs in the class

Sk. This comparison is then made for all classes and the class
with the highest probability indicates the closest match.

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Number of Moves Taken

N
or

m
al

iz
ed

 A
re

a

PNN Area vs. Number of Moves Taken

Fig. 12. PNN area vs. number of optimization steps implemented utilizing
only range-analysis-discovered values

This algorithm was manually implemented on a WildChild
board and described in [25]. The WildChild board from An-
napolis Microsystems consists of eight Xilinx 4010E FPGAs, a
single Xilinx 4028EX FPGA, and 5MBytes of memory. Like
the wavelet transform described earlier, significant time and
effort was spent on variable range analysis, with particular
attention being paid to the large multipliers and the exponenti-
ation required by the algorithm. This implementation obtained
speedups of 16 versus a software implementation on an HP
workstation.

The algorithm was implemented in MATLAB and optimized
with Pŕecis. Twelve variables were selected and slack analysis
was run as in the previous benchmarks. Again, all results were
normalized to the lower bound area. As shown in Fig. 12, the
tool behaved consistent with other benchmarks and was able
to reach within five percent of the lower bound within six
moves, whereafter additional moves serve to make only minor
improvements in area. However, with the PNN algorithm, we
take the time to demonstrate a method to provide even further
refinement of the slack analysis approach with Précis.

For a seasoned developer that has a deeper insight into the
algorithm, or for one that already has an idea of how the
algorithm would map to hardware, the range-analysis phase
sometimes returns results that are sub-optimal. For example,
the range-analysis of the PNN algorithm upon a typical dataset
resulted in several variables being constrained to ranges such
as [20, 2−25], [28, 2−135], [20, 2−208], and so on. This simply
means that the range-finding phase discovered values that
were extremely small and thus recorded the range as requiring
many fractional bits (bits right of decimal point) to capture all
the precision information. The shortcoming of the automated
range-analysis is that it has no means by which to determine
at what precision values become too small to affect follow-on
calculations, and therefore might be considered unimportant.
With this in mind, the developer would typically restrict the
variables to narrower ranges that preserve the correctness of



10

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

Number of Moves Taken

N
or

m
al

iz
ed

 A
re

a
PNN Area vs. Number of Moves Taken

User Guided
Simple

Fig. 13. PNN area with user-defined variable precision ranges

the results while requiring fewer bits of precision.

Pŕecis provides the functionality to allow the user to make
these decisions in its annotated MATLAB code generation.
In this case, the user would choose a narrower precision
range and a method by which to constrain the variable to
that range, consistent with how they implement the oper-
ation in hardware—truncation, saturation, rounding, or any
of the other methods presented in previous sections. Then,
the developer would generate annotated MATLAB code for
simulation purposes, and re-run the algorithm in MATLAB
with typical data sets. This would allow the user to determine
how narrow of a precision range would be tolerable, and
subsequently constrain the variables in Précis accordingly. The
user would then be able to continue the slack analysis phase,
optionally reconstraining variables through use of simulation
as wider-than-expected precision ranges were encountered. We
present the results from this experiment in Fig. 13, normalized
to the lowest bound between the standard and “user-guided”
approaches.

At first glance, one can see that both methods provide
similar trends, approaching the lower bound within five to
seven moves. This behavior is expected and is consistent
with the results of the other benchmarks. The results show
that the user-guided approach, when reconstraining variables
during slack analysis, achieves a lower bound eight times
lower than the previously described method. As expected, the
simpler method does not improve further as the number of
optimization steps in increased, and remains fixed at ten times
the lower bound.

The intuition of the hardware developer is used in this
case to achieve a more area-efficient implementation than was
possible with the unguided slack analysis optimization. The
ability to keep the “user in the loop” for optimization is crucial
to obtaining good implementations, something that Précis is
clearly able to exploit.

VII. C ONCLUSIONS

A tool for semi-automatic, user-centric, design-time preci-
sion analysis has been presented. Précis combines an automatic
propagation engine, a fixed-point simulation environment with
automatic MATLAB code generation, MATLAB routines also
with automatic code generation for variable statistics gath-
ering, and a slack analysis phase. Together, this toolchest
addresses a major shortcoming of automated data path op-
timization techniques: leaving the developer out of the opti-
mization. We have demonstrated an effective methodology for
guiding the developer’s eventual manual optimization toward
those regions of the data path that will provide the largest area
improvement.

Pŕecis aids new and seasoned hardware developers in an-
swering the four basic questions needed to perform data path
optimization at a very high level, before HDL is generated.
At this time, small design changes almost always lead to large
differences in performance of the final implementation. Thus,
it is crucial to have assistive tools from the very beginning
of the design cycle, in particular, data path optimization. Un-
fortunately, there are few commercial and academic tools that
provide this level of support, which highlights the importance
of this contribution.

Ongoing research is focused on developing techniques for
accurate area and quantization error estimation for precision
analysis. Specifically, developing methodologies to select the
least significant bit position along a data path subject to area
and error constraints.

REFERENCES

[1] Synopsys, “Synopsys CoCentric SystemC Compiler,” September 2003.
[Online]. Available: http://www.synopsys.com/

[2] Celoxia, “Handel-C Compiler,” September 2003. [Online]. Available:
http://www.celoxia.com/

[3] W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,”IEEE trans-
actions on Signal Processing, vol. 43, no. 12, pp. 3087–3090, December
1995.

[4] K.-I. Kum and W. Sung, “VHDL basd fixed-point digital signal pro-
cessing algorithm development software,” inProceedings of the IEEE
International Conference on VLSI CAD, November 1993, pp. 257–260.

[5] W. Sung and K.-I. Kum, “Word-length determination and scaling soft-
ware for signal flow block diagram,” inInternational Conference on
Acoustic, Speech, and Signal Processing, Adelaide, Australia, 1994, pp.
457–460.

[6] Fixed-Point Optimizer User’s Guide, Alta Group of Cadence Design
Systems, Inc., August 1994.

[7] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for
C and C++ based digital signal processing programs,” inWorkshop on
VLSI and Signal Processing, Osaka, 1995.

[8] M. Willems, V. Bürsgens, H. Keding, T. Grötker, and H. Meyr, “System
level fixed-point design based on an interpolative approach,” inDesign
Automation and Test in Europe, 1997.

[9] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Heuristic datapath
allocation for multiple wordlength systems,” inDesign Automation and
Test in Europe, 2001.

[10] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Optimum wordlength
allocation,” in IEEE Symposium on Field-Programmable Custom Com-
puting Machines, 2002.

[11] G. A. Constantinides, P. Y. Cheung, and W. Luk, “The multiple
wordlength paradigm,” inIEEE Symposium on Field-Programmable
Custom Computing Machines, 2001.

[12] G. Constantinides, “Perturbation analysis for word-length optimization,”
in IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, 2003.



11

[13] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with
application to silicon compilation,” inProceedings of the SIGPLAN
conference on Programming Language Design and Implementation, June
2000.

[14] M. W. Stephenson, “Bitwise: Optimizing bitwidths using data-range
propagation,” Master’s thesis, Massachusetts Institute of Technology,
May 2000.

[15] C. B. Moler, “MATLAB — an interactive matrix laboratory,” University
of New Mexico. Dept. of Computer Science, Tech. Rep. 369, 1980.

[16] C. B. Moler, “MATLAB user’s guide,” University of New Mexico. Dept.
of Computer Science, Tech. Rep., Nov. 1980.

[17] T. W. Fry, “Hyperspectral image compression on reconfigurable plat-
forms,” Master’s thesis, University of Washington, Seattle, WA, May
2001.

[18] T. W. Fry and S. Hauck, “Hyperspectral image compression on reconfig-
urable platforms,” inIEEE Symposium on Field-Programmable Custom
Computing Machines, 2002, pp. 251–260.

[19] J. Volder, “The CORDIC trigonometric computing technique,”IRE
Trans. Electronic Computing, vol. EC-8, pp. 330–334, September 1959.

[20] R. Andraka, “A survey of CORDIC algorithms for FPGAs,” in
ACM/SIGDA Sixth International Symposium on Field Programmable
Gate Arrays, 1998.

[21] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,”IEEE
Transactions on Computer, vol. C-23, pp. 90–93, January 1974.

[22] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,” inProc. Int’l. Conf. on Acoustics,
Speech, and Signal processing, 1989, pp. 988–991.

[23] T. Lane, P. Gladstone, L. C. Jim Boucher, J. Minguillon,
L. Ortiz, G. Phillips, D. Rossi, G. Vollbeding, and G. Wei-
jers, “The independent JPEG group’s JPEG software library,”
http://www.ijg.org/files/jpegsrc.v6b.tar.gz, June 2004.

[24] S. R. Chettri, R. F. Cromp, and M. Birmingham, “Design of neural
networks for classification of remotely sensed imagery,”Telematics and
Informatics, vol. 9, no. 3-4, pp. 145–156, 1992.

[25] M. L. Chang, “Adaptive computing in NASA multi-spectral image
processing,” Master’s thesis, Northwestern University, Dept. of ECE,
December 1999.


