
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Adaptive Latency Insensitive Protocols / Casu, MARIO ROBERTO; Macchiarulo, Luca. - In: IEEE DESIGN & TEST OF
COMPUTERS. - ISSN 0740-7475. - STAMPA. - 24:(2007), pp. 442-452. [10.1109/MDT.2007.152]

Original

Adaptive Latency Insensitive Protocols

Publisher:

Published
DOI:10.1109/MDT.2007.152

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1642487 since:

IEEE

Adaptive Latency-Insensitive
Protocols
Mario R. Casu

Politecnico di Torino

Luca Macchiarulo

University of Hawaii

&FOR DECADES, LOGIC designers have used the

technique of breaking up slow and deep combination-

al networks with pipeline stages to raise clock

frequencies. Breaking up long and slow on-chip

interconnects in the same way is a more recent

technique, at least on a pervasive basis. The reason is

that wire delays increase as geometries shrink, whereas

gate delays continue to decrease. The problem is

particularly serious for global wires connecting blocks

of a relevant complexity (a few kilogates or more).

Interestingly, the 2005 International Technology Road-

map for Semiconductors (http://www.itrs.net/Links/

2005ITRS/Home2005.htm) sets the clock period of

high-performance processors starting in 2007 at about

12 FO4 delays (FO4 is the delay of a CMOS inverter

loaded with four identical inverters), as if the clock

period were defined only by logic levels. Wire delays

are excluded from critical paths because global-

interconnect pipelining will mitigate their impact.

Adding pipeline stages in logic gates as well as

wires cures a design’s bandwidth problems at a price:

a latency increment of one clock cycle for each added

pipeline stage. Latency often reduces performance,

and systems with wire pipelining are no exception. In

microprocessors, a pipeline stage stalls when a data

dependency occurs between two instructions. In this

context, loop topology connections of logic blocks

can induce data dependency. Pipeline stages added

to the wires forming the loop delay the arrival of the

data that each logic block uses to compute new data,

resulting in pipeline stalls and perfor-

mance reduction. Loop topologies are

more common than you might expect.

If two blocks connect in such a way that

the output of one is the input of the

other and vice versa, the loop forms

readily, as with a microprocessor-cache

link.

Because latency added in wires can be harmful,

researchers have tried to cope with this problem in

different ways. On the one hand, it is important that

SoCs, especially those using (and possibly reusing)

predefined IP blocks, can tolerate an amount of

latency that couldn’t be predicted at design time. For

this reason, the concept of latency-insensitive design

emerged. On the other hand, designers can modify the

classic physical design steps of floorplanning, place-

ment, and routing to include wire latency in their

optimization target. In the past, we contributed to both

high-level and physical design,1–3 but here we concen-

trate on the former.

Latency-insensitive design copes with excessive

delays typical of global wires in current and future IC

technologies. It achieves its goal via encapsulation of

synchronous logic blocks in wrappers that communi-

cate through a latency-insensitive protocol (LIP) and

pipelined interconnects. Previously proposed solu-

tions suffer from an excessive performance penalty in

terms of throughput or from a lack of generality (see

the ‘‘Related work’’ sidebar). This article presents an

adaptive LIP that outperforms previous static imple-

mentations, as demonstrated by two relevant cases—

a microprocessor and an MPEG encoder—whose

components we made insensitive to the latencies of

their interconnections through a newly developed

wrapper. We also present an informal exposition of the

theoretical basis of adaptive LIPs, as well as imple-

mentation details.

442

Editor’s note

Latency-insensitive protocols (LIPs) represent a class of interblock protocols

designed to overcome long multiclock interconnects. This article presents an

adaptive solution to this problem, which the authors show to be more effective

than earlier solutions in terms of power, area, and throughput.

—Sandeep Shukla, Virginia Tech

Globally Asynchronous, Locally Synchronous Design and Test

0740-7475/07/$25.00 G 2007 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

443

Related work

The problem of increasing wire delays with decreasing gate

delays is not new, but it gained pivotal importance when clock

frequencies reached such high values that signals could no

longer cover the maximum on-chip distance (that is, corner to

corner) in a clock period. We acknowledge the seminal work of

Carloni, McMillan, and Sangiovanni-Vincentelli, who first pro-

posed a solution to make SoCs insensitive to latencies caused

by wire pipelining.1 Researchers have proposed variants of their

latency-insensitive protocol (LIP), ranging from simplified, yet

correct, performance-equivalent solutions2 to significantly mod-

ified techniques aimed at improving performance.3,4

Increasing wire delays and clock frequencies are also the

reason why distributing a centralized clock throughout a chip

with an acceptably low skew is becoming prohibitive.

Globally asynchronous, locally synchronous (GALS) ap-

proaches seem appropriate in such cases. GALS ap-

proaches perform local computation in a classic synchronous

way but limit it to blocks of reasonable size and perform

global communication between blocks using asynchronous

paradigms. Latency-insensitive design has features in

common with GALS approaches. Researchers have at-

tempted to use the best of both worlds, by pipelining

asynchronous global wires through mixed-clock FIFO buf-

fers5 and by using synchronous-to-asynchronous interfaces

at the blocks’ inputs and outputs.4

More radical approaches aim at taking advantage of

regular on-chip fabrics based on networked connections

and on-chip routers (networks on chips). In such cases,

point-to-point connections between routers must be latency

insensitive to cope with excessive wire delays.6 Recent

research, inspired by the original idea of latency insensi-

tivity, applies this concept to the logic design of blocks,

making them elastically flexible to external latencies,

whether coming from wires or logic.7

The process of latency desensitization of a previously

working implementation (although performance limited by

slow wires) must not modify the system’s logic behavior.

Formal, mathematically sound studies have shown how to

guarantee equivalence with an appropriate LIP1 and how

to validate protocol correctness.8 Concerning perfor-

mance modeling, Lu and Koh have analyzed the upper

bound achievable by Carloni, McMillan, and Sangiovanni-

Vincentelli’s LIP, using a netlist graph and max-plus

algebra.9

LIP performance depends on the amount of latency in

wires, and this value is known only after layout. It is important

to predict the latency in advance, prior to back-end design

stages, as well as to make layout tools aware of global wire

latencies, as we showed for a CAD floorplanning tool.10,11

Other works on microarchitectural floorplanning aim at

reducing the performance impact of interconnect latencies

evaluated in cycles per instruction.12

References

1. L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincen-

telli, ‘‘Theory of Latency-Insensitive Design,’’ IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 20, no. 9, Sept. 2001, pp. 1059-1076.

2. M.R. Casu and L. Macchiarulo, ‘‘A New Approach to

Latency Insensitive Design,’’ Proc. 41st Design Automa-

tion Conf. (DAC 04), ACM Press, 2004, pp. 576-581.

3. M. Singh and M. Theobald, ‘‘Generalized Latency-Insensi-

tive Systems for Single-Clock and Multi-Clock Architec-

tures,’’ Proc. Design, Automation and Test in Europe Conf.

(DATE 04), IEEE CS Press, 2004, vol. 2, pp. 1008-1013.

4. A. Agiwal and M. Singh, ‘‘An Architecture and a Wrapper

Synthesis Approach for Multi-Clock Latency-Insensitive

Systems,’’ Proc. Int’l Conf. Computer-Aided Design

(ICCAD 05), IEEE CS Press, pp. 1006-1013.

5. T. Chelcea and S.M. Nowick, ‘‘Robust Interfaces for Mixed-

Timing Systems,’’ IEEE Trans. Very Large Scale Integration

(VLSI) Systems, vol. 12, no. 8, Aug. 04, pp. 857-873.

6. M. Dall’Osso et al., ‘‘Xpipes: A Latency Insensitive

Parameterized Network-on-Chip Architecture for Multi-

Processor SoCs,’’ Proc. 21st Int’l Conf. Computer Design:

VLSI in Computers and Processors (ICCD 03), IEEE CS

Press, 2003, pp. 536-539.

7. J. Cortadella, M. Kishinevsky, and B. Grundmann, ‘‘Synthesis

of Synchronous Elastic Architectures,’’ Proc. 43rd Design

Automation Conf. (DAC 06), ACM Press, 2006, pp. 657-662.

8. S. Suhaib et al., ‘‘Validating Families of Latency Insensitive

Protocols,’’ IEEE Trans. Computers, vol. 55, no. 11, Nov.

2006, pp. 1391-1401.

9. R. Lu and C.-K. Koh, ‘‘Performance Analysis of Latency-Insensi-

tive Systems,’’ IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, no. 3, Mar. 2006, pp. 469-483.

10. M.R. Casu and L. Macchiarulo, ‘‘Throughput-Driven Floor-

planning with Wire Pipelining,’’ IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol. 24,

no. 5, May 2005, pp. 663-675.

11. M.R. Casu and L. Macchiarulo, ‘‘Floorplanning with Wire

Pipelining in Adaptive Communication Channels,’’ IEEE

Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 25, no. 12, Dec. 2006, pp. 2996-3004.

12. M. Ekpanyapong et al., ‘‘Profile-Guided Microarchitectural

Floorplanning for Deep Submicron Processor Design,’’

Proc. 41st Design Automation Conf. (DAC 04), ACM Press,

2004, pp. 634-639.

September–October 2007

Static versus adaptive LIPs
Latency-insensitive design builds on a reasonable

assumption: We can make a synchronous process

insensitive to wire latencies provided it is stallable.

That is, it must be possible to pause the process’ clock

when at least one input is not available for the next

computation. This assumption means that we can

enclose the synchronous process within a wrapper

that gates the clock, depending on input availability.

To preserve the correct operation sequence and

guarantee reliable communication, we must set up

a handshake mechanism called a latency-insensitive

protocol. According to this protocol, every block’s I/O

signal is associated with a binary validity tag whose

value indicates availability. An invalid tag on at least

one input inhibits computation through clock gating

and invalidates all of the block’s output tags. The

wrapper also asserts a stop signal associated with every

input during stalled cycles to avoid loss of valid data.

To avoid data overrun, a wrapper that receives on one

of its outputs a stop tag generated by another wrapper

stalls the controlled block.

The pipeline elements inserted in the links con-

necting the processes comply with the LIP and consist

of simple FIFO buffers with at least two places: one to

pipeline a datum and tag, and the other to store an

incoming new datum and tag on a stop event. When

full, the buffers propagate a back-pressure signal

upward. The buffers are called relay stations, and in

the original works on LIP were synchronous to both

sender and receiver. Using this approach, we can

derive the number of relay stations placed along

a multicycle wire, because timing constraints set the

maximum delay between modules. In the mixed-clock

relay stations used in globally asynchronous, locally

synchronous (GALS) systems, the number of stations

in a wire and the internal buffer’s size depend on many

factors, including the need to reduce the occurrence

of metastability, the difference between production

and consumption rates, and the area occupation.

Figure 1a and Figure 1b show a 2-in, 1-out wrapper

communicating through relay stations and the internal

stall logic for the controlled process. In our imple-

mentation, we can replace the input stations with

444

Figure 1. A 2-in, 1-out wrapper communicating with relay stations (RS) through valid and stop protocol signals (a),

stall logic for static latency-insensitive protocol (LIP) wrapper (b), generalized LIP wrapper4 (c), and block scheme

of the adaptive LIP wrapper described in this article (d).

Globally Asynchronous, Locally Synchronous Design and Test

IEEE Design & Test of Computers

queues (to allow a simpler pipelined interconnect)

that are functionally Moore-type finite-state machines

(FSMs). By breaking the direct connection of the stall

logic blocks, the queues avoid combinational loops

that could arise from the composition of two or more

wrappers.

This informal description might erroneously imply

that the sequence of stalling and firing events depends

on the amount of traffic on the channels connecting

the processes and on the rate of data production and

consumption. However, we can show that the system’s

behavior is static. We calculate the system’s through-

put, evaluated as the average number of unstalled

computations per clock cycle, as the worst ratio

m/(m + n) of the netlist graph, where m is the number

of blocks in a graph loop, and n is the number of

latencies along that loop’s edges.5 This static behavior

is the key to reducing the protocol’s overhead by

instrumenting the wrappers to stall processes according

to a pseudoperiodic, statically computed schedule.1

This apparently anomalous property of LIPs derives

from the assumption that a single invalid input can

stall the next computation, even though that particular

input is not needed in that process state. As a result,

many avoidable stalling events reduce the throughput

to well below 1.0, the ideal value if no such events

occur. Performance limitation stems from the same

principle that makes the LIP attractive: The wrappers

work with no knowledge of how modules use the

exchanged messages. Thus, static LIPs are perhaps the

most perfect and elegant archetype of complete

orthogonalization between computation and commu-

nication. However, elegance and performance don’t

go together in this case, as the throughput formula

shows. Suppose two blocks are connected in a loop

(m 5 2) with one latency per channel (n 5 2). The

system’s throughput is 2/4 5 1/2 due to valid

computations alternating with stalling events caused

by wire latencies. To have the same or higher data rate

than the system that doesn’t use wrappers and relay

stations, we must at least double the clock frequency.

Fortunately, a modification of the wrappers is

possible that allows performance gain while retaining

most of the original LIP philosophy. As a simple

example, consider a two-way multiplexer that alterna-

tively reads one of the two inputs. If the wrapper knew

the one selected, it could discard invalid data on the

other to avoid useless stalls. Researchers proposed

a modified protocol they called generalized LIP to

express the fact that stalling events will no longer be

associated with any possible invalid data on the input

set but rather with a subset that the wrapper elects as

needed for the computation.4,6 Their wrapper includes

a Mealy FSM that gates the clock only on relevant

stalling events and selectively exerts back pressure.

Figure 1c shows this type of wrapper, as compared with

the original static version in Figure 1b. The FSM is fully

specified, starting from a block’s interface description in

a particular hardware specification language.

In the generalized LIP, it is not possible to assign an

overall system throughput based on topological

features as it was in the static protocol. The in-

stantaneous throughput, which in the previous case

was coincident with the average throughput, now

depends on the traffic pattern. Instead of generalized

LIPs, we prefer the notion of adaptive LIPs, as opposed

to static LIPs. We think ‘‘adaptive LIP’’ better captures

the variability of traffic shape in channels, the fact that

the sequence of stalling events changes accordingly,

and the consequent adaptation of the instantaneous

throughput.

The key problem of such methodologies is to

guarantee system safety by not discarding relevant

data. Suppose we assign each block a local time

incremented by one at every valid computation, so

that it records the number of enabled clock ticks since

inception (or reset). If there are no stop events, the

local time is the same for all system blocks and

coincides with the clock cycle count (in a fully

synchronous system). In case of stalling events, the

blocks’ local times might be misaligned. Suppose also

that we associate this local time with valid computed

data (we call it virtual time), so as to mark the data

with the time of production (as we shall show, it is

possible to get rid of both local and virtual time

counters and signals in the actual implementation).

The static protocol forces all data at a block’s input to

be coherent; in other words, computation is enabled

when all inputs have the same virtual time. This is not

true for the adaptive case, but it is true that valid data

on unprocessed inputs can be safely discarded if they

were produced at a time equal to or earlier than the

block’s local time. As a corollary, if valid data has been

produced later than the local time, the wrapper has no

right to refuse this data and must exert back pressure

to stop the data until the local time becomes

synchronized with the input virtual time.

On the basis of this observation, we derived a new

adaptive wrapper that uses counters to keep track of

the possible misalignment between processed and

445September–October 2007

unprocessed inputs. In addition, an oracle elaborates

basic information taken from the wrapped block to

select the necessary inputs in a given computation. To

understand how the wrapper works, consider a block

with two inputs, in-1 and in-2, associated with two

counters. When both inputs are processed, computa-

tion is enabled if their virtual times are the same, a fact

represented by both counters’ being zero. On the other

hand, if the oracle selects, say, in-1 and not in-2, then

in-2 can misalign. The counter of in-1 remains at zero,

while the other keeps track of the misalignment. In

particular, every time new valid data on in-1 is

consumed while the unnecessary data on in-2 is not

valid, the counter of in-2 is incremented. If valid in-2

data is received in the absence of new valid data on

in-1, then the counter of in-2 is decremented and

eventually brought to 0. Finally, if this happens with

aligned data, the second counter is decremented to 21,

and at the same time a back-pressure signal is emitted:

The counters cannot get lower than 21; otherwise, the

wrapper would discard data on an unprocessed input

that was produced later than the local time. In this case,

computation stalls until the inputs realign.

The example shows that counters don’t store actual

times, nor do such times need to be transmitted

alongside data, because counting the number of

validity bits is equivalent to keeping track of their

times. Since the counters actually record the differ-

ence between virtual times, using increment and

decrement signals, they don’t need to store large

values. We can assess their relatively small size by

carefully considering the communication profiles.

However, if the counters reach the maximum count

because of a temporary excessive delay between

inputs that could not be predicted, the back-pressure

signal is asserted. Because bigger counters can reduce

the number of such stall events, we can trade their

area as well as their power for performance. Absolute

local and virtual times are not used, so no local time

counter (to compare virtual times with) is required.

Figure 1d shows that the counters (counter 1 and

counter 2 in the two-input example) are controlled by

the stall logic, which has the usual protocol inputs as

well as binary processing signals (proc1 and proc2).

The latter indicate the need for input data (datain1

and datain2) and are forecast by the oracle, which

takes the necessary information from the logic process

(oracle input in the figure).

In FSM-style implementations and in our approach,

the impossibility of extracting the necessary informa-

tion does not prevent the wrapper from working

properly but leads instead to standard LIP behavior. By

removing counters and processing signals, the wrap-

per’s logic in Figure 1d boils down to the static logic of

Figure 1b. However, the FSM approach is less general

than ours in that it cannot capture data-dependent

behaviors.4,6 The only inputs to the FSM are the valid

and stop protocol signals. Therefore, the wrapper can

map a subset of possible states only if the input

selection is perfectly known in advance. In contrast,

because our wrapper takes the information directly

from the process, it can closely follow the behavior of

that process.

A key issue in the adaptive mechanism is the

determination of effective and simple oracles: There

are various ways to perform this task, such as using

limited knowledge of interface semantics, communi-

cation patterns, and high- and low-level extraction.

Details of these techniques are beyond the scope of

this article, but we touch on this issue later in the

article, when we present two case studies.

Detailed block design: static
and adaptive

In describing the detailed implementation of the

protocol, we concentrate on analyzing the wrapper,

also called the shell. The shell contains a pearl, which

consists of the original implementation’s functional

block, a clock-gating circuit, a simple sequential

circuit that validates output data, and a combinational

network that generates the back-pressure stop signal.

Shells and encapsulation: static protocol

Figure 2a shows the output validation, back propa-

gation, and clock-gating circuits for a 2-in, 3-out shell.

The block produces valid data if the pearl is not gated

or if a previous valid datum was stopped (signal stopouti

5 1). Stop signals are back-propagated on input k if its

input datum is valid (valink 5 1) and the shell is gated

(clken 5 0). Stopping invalid data is useless. The pearl’s

clock is enabled only when all inputs are valid and

when valid output data is not being stopped. For the

case shown in Figure 2a, the enable signal is

clken ~ valin1
: valin2ð Þ P

3

i ~ 1
valouti

: stopoutið Þ ð1Þ

where P stands for the logic product.

Equation 1 shows that regardless of the state of the

outputs, the block stops if any input contains invalid

446

Globally Asynchronous, Locally Synchronous Design and Test

IEEE Design & Test of Computers

data, no matter what the actual need is for such an

input. This is the key feature distinguishing static from

adaptive protocols.

Implementing the adaptive protocol

To introduce adaptive behavior in the previous

scheme, keeping track of time tags to enforce data

coherency is important. Fortunately, as explained

earlier, there’s no need to communicate the entire

virtual time along with the data. We simply need

counters, one for each input, to record the relative

distance between the most recently received inputs.

Two flags derived from the counters contain the

information necessary for the protocol’s functioning:

& zero—this flag is 1 whenever the relative input is

synchronous with the shell’s local time; and

& early—this flag is 1 whenever the relative input is

one clock cycle early (which can happen only

when the last computation didn’t need to

process that input).

When neither flag is 1, the counter stores the mis-

alignment, in terms of virtual times, between the

447

Figure 2. Static (a) and adaptive (b) shell circuit examples.

September–October 2007

processed inputs and the last discarded valid datum

on the unprocessed input.

It is important that we allow an early condition on

a single clock only: When the block is in the process of

elaborating its mth output, there’s no way of knowing

which inputs it will need for the (m + 1)th output.

Figure 2b shows a schematic diagram of the

modified shell for a 2-in, 3-out block. Note that the

clock-gating, back-pressure, and validation circuits

simplify to the static shell if processing bits are always 1

and, consequently, zero signals are always 1, and early

signals are always 0.

We control the up/down counter as follows:

& Up count. The block is active (clken 5 1), and

the input is either valid but not needed or early.

& Down count. The input is valid and the block is

gated (clken 5 0), and either the counter is

positive (we are waiting for old discarded

signals, neither early nor zero) or we have an

unprocessed input with a zero count (this input

can be discarded: zero and not proc).

Other than the case in which the counters reach the

maximum value allowed by their finite size, the back-

pressure signals are also asserted when the related

input is valid, and either the signal is anticipated (early

5 1) or is synchronous (zero 5 1) while the pearl is

gated. Finally, the clock enable signal (clken) lets the

computation proceed whenever all outputs are not

actively stopped (vstop 5 0), and all inputs are either

valid and synchronous (zero 5 1) or unnecessary

(proc 5 0).

We implemented the model described here as an

RTL VHDL block. We used it to perform all the

experiments reported in the following section.

Case studies
To validate the functionality of our adaptive LIP, we

implemented two systems which we chose as

representatives of two extremes: a simple micropro-

cessor (whose communication profile is extremely

data dependent and related to the executed code)

and an MPEG encoder (which presents a relatively

uniform, burst type of communication).

Microprocessor

We described in VHDL code an extremely simpli-

fied, five-stage pipelined processor. Figure 3a shows its

schematic. The five functional units—control unit

(CU), register file (RF), instruction cache (IC), data

cache (DC), and arithmetic logic unit (ALU)—are part

of strict communication loops that are likely to reduce

performance drastically in a static LIP implementation:

& Data loops. Operands move from the register file

to the ALU and are stored back in the register file.

& Branch loops. Flags from the ALU move to the

control unit and back to the ALU via the register file.

& Instruction loops. Code memory moves to the

fetch unit included in the CU (not shown in the

figure) in response to an instruction address.

448

Figure 3. Case study: standard processor with constraining loops (a) and its optimized floorplan (b). Dashed lines in

(b) represent connections between processor blocks. (ALU: arithmetic logic unit.)

Globally Asynchronous, Locally Synchronous Design and Test

IEEE Design & Test of Computers

In the adaptive imple-

mentation, each loop is

logically present in differ-

ent fractions of time ac-

cording to different pro-

grams and input data. We

considered two simple

benchmarks: a data sort

that exercises the data de-

pendency of the results

and the branch loop, and

a matrix multiplication

that extensively uses the

data loops.

The adaptive imple-

mentation fairly easily iso-

lated important conditions,

such as the following, that

allow the determination of

status (processing or idle)

of the five functional units

with respect to their inputs:

& Data from the DC

(dataout) is written in

the RF only on a write

cycle (the CU’s wr sig-

nal in Figure 3a); oth-

erwise, DC dataout can

be ignored.

& The CU needs flags

from the ALU only

during execution of

a conditional branch.

Such conditions are both

easy to isolate from a par-

tial knowledge of the functional units’ behaviors and

simple to implement as an oracle of minimal size

(which is important for both area and delay con-

cerns).

As an example VHDL description of an oracle,

Figure 4 shows an extract of the RF and ALU codes

that assign the processing signals related to the RF’s

source and destination registers and to the ALU

operands.

To assess absolute performance gain, we manually

optimized the microprocessor floorplan shown in

Figure 3b and then evaluated the overall data gain of

the LIP systems. We estimated the areas of the various

blocks on the basis of typical gate counts and memory

sizes.

We generated the floorplan so as to avoid placing

blocks with performance-critical communication

channels (such as from the IC to the CU) too far

apart. The communication between the CU and the

other units is the most critical (more so for the data sort

case). Therefore, we placed the CU at the center of the

floorplan. The longest wires connect the DC to the ALU

and the RF, and they are also less critical communi-

cation channels. The next-to-longest connection is

from the ALU to the RF and is critical for the matrix

multiplication but not for the sort.

449

Figure 4. Extract of VHDL code showing processing signals in the register file (RF) and

the ALU.

September–October 2007

After computing such distances, we could estimate

the wire latencies and evaluate the system data rate

(the product of throughput and frequency) as

a function of the critical length (the maximum

admitted distance between two relay stations, given

a frequency constraint—shorter critical lengths corre-

spond to higher frequencies).

MPEG encoder

The fixed MPEG communication pattern is extreme-

ly bursty, so there are always periods of nonmutual

communication. This behavior suggests that the

adaptive LIP should be more suited to this case than

to the microprocessor. Following the description by

Ikeda et al.,7 already used in the context of LIPs,5 we

implemented the skeleton of an encoder that respects

all the MPEG communication patterns.

As Figure 5a shows, the tightest loop, involving

three blocks, is less strict than in the microprocessor in

Figure 3a, in which two-block loops were present.

Besides a single four-block loop, all other blocks

belong to larger loops. Through a clever floorplan, we

kept the blocks of short loops close to one another so

that we could limit the insertion of relay stations to

branches that appear only in loose loops. As a result,

the small throughput reduction and larger clock

frequencies guaranteed by wire pipelining could

significantly speed up both the static and the adaptive

cases.

We evaluated the throughput of the automatically

generated floorplan in Figure 5b (we give further

details elsewhere3). Again, we estimated the areas of

the blocks on the basis of typical gate counts.

Figure 5b shows the placement of the short loops.

The shortest loop consists of motion compensation

(MC), second frame memory (FM2), and adder (Add).

The same is true for the loop involving the buffer (Buf),

the regulator (Reg), the quantizer (Q), and the

variable-length encoder (VLE). The longest connec-

tion, and so the most likely candidate for wire

pipelining, is between the inverse quantization (IQ)

and the inverse discrete cosine transform (IDCT),

which are members of an eight-block loop. The

floorplan confirms our intuition concerning potential

causes of throughput reduction.

In this case, the approach we used to derive the

oracles was different. From the system description, we

knew a priori the communication pattern between

units and could statically define the correct activation

sequence for all processing signals. Moreover, we

could do this without a deep knowledge of the blocks

or any form of reverse engineering. We think that this

approach can be adapted to other cases in which data

computation occurs through streaming between

functional units, as in many DSP applications.

We ran VHDL simulations after floorplanning, with

and without the pipelining elements calculated from

the block-to-block distances in the layout.

450

Figure 5. MPEG encoder block scheme (a) and floorplan (b). Dashed lines in (b) represent connections between

processor blocks. (Add: addition; Buf: buffer; DCT: discrete cosine transform; IDCT: inverse discrete cosine

transform; Enc: encoder; FM: frame memory; MC: motion compensation; ME: motion estimation; Pre:

preprocessing; Q: quantizer; IQ: inverse quantizer; Reg: regulator; Sub: subtraction; VLE: variable-length encoder.)

Globally Asynchronous, Locally Synchronous Design and Test

IEEE Design & Test of Computers

Results

Figure 6a and Figure 6b show the results for the

microprocessor and MPEG experiments. The no-LIP sys-

tems are assigned the nominal data rate of 1 (frequency

1, throughput 1). The LIP systems have a data rate re-

sulting from the product of the increased frequency due

to shorter wires and the possibly reduced throughput.

The microprocessor case results show that the

adaptive system manages to increase performance,

but the actual advantage depends on the benchmark.

As expected, the matrix multiplication was not as

favorable, because of the criticality of the ALU-RF

communication. The code had no effect on the static

system; the two programs had the same throughput, so

the two curves perfectly overlap.

The nonadaptive methodology fails to provide any

advantage, because of the tightly interconnected

blocks: Introducing pipelines in every branch imme-

diately halves the throughput, wiping out any frequen-

cy advantage. This explains the slope change of the

data rate curves: A single latency due to a frequency

constraint even slightly stricter than the minimum

necessary to avoid wire pipelines immediately reduces

throughput and is not compensated for by the small

frequency increase.

In contrast, the results in Figure 6b show an

enormous advantage of MPEG LIP systems over the

microprocessor case. The existence of a range of

critical lengths for which the static implementation

outperformed the adaptive one is attributable to the

fact that the floorplans were slightly different because

the physical design tool used different cost functions

for the two optimizations.3 The best results for the

adaptive case are for short lengths (and thus high

frequencies). We must weigh the data rate’s more than

doubling in the no-LIP case against the simplifying

assumptions we made here and particularly clock tree

synthesis, skew control, and the absence of logic

limitations. Nonetheless, the graph shows that there is

abundant design space in which to proceed toward

faster systems.

WE ARE PRESENTLY WORKING toward defining auto-

mated techniques for extracting processing signals

from a synthesizable code or a gate-level netlist. In the

latter case, logical and testing techniques (observabil-

ity, controllability, and don’t-care extraction) can help.

Should the proposed or a similar LIP methodology

become standardized, the designers would already

provide processing signals as part of their blocks’

regular output, thus making the extraction technique

unnecessary.

We envision the need for far more research on

latency insensitivity in GALS systems, mixed-clock

relay station sizing, and physical design aspects such

as latency-aware floorplanning, placement, and rout-

ing. This research is particularly important because

the hypothesis of full synchronicity in future high-

performance and large systems is doubtful, but the

increase of wire delays over gate delays is a fact. We

advocate an advancement of such research and hope

to contribute to it in forthcoming works. &

451

Figure 6. Data rate comparisons: microprocessor (a) and MPEG encoder (b).

September–October 2007

&References

1. M.R. Casu and L. Macchiarulo, ‘‘A New Approach to Latency

Insensitive Design,’’ Proc. 41st Design Automation Conf.

(DAC 04), ACM Press, 2004, pp. 576-581.

2. M.R. Casu and L. Macchiarulo, ‘‘Throughput-Driven

Floorplanning with Wire Pipelining,’’ IEEE Trans.

Computer-Aided Design of Integrated Circuits and

Systems, vol. 24, no. 5, May 2005, pp. 663-675.

3. M.R. Casu and L. Macchiarulo, ‘‘Floorplanning with Wire

Pipelining in Adaptive Communication Channels,’’ IEEE

Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 25, no. 12, Dec. 2006, pp. 2996-3004.

4. M. Singh and M. Theobald, ‘‘Generalized Latency-

Insensitive Systems for Single-Clock and Multi-Clock

Architectures,’’ Proc. Design, Automation and Test in

Europe Conf. (DATE 04), IEEE CS Press, 2004, vol. 2,

pp. 1008-1013.

5. L.P. Carloni and A. Sangiovanni-Vincentelli,

‘‘Performance Analysis and Optimization of Latency

Insensitive Systems,’’ Proc. 37th Design Automation

Conf. (DAC 00), ACM Press, 2000, pp. 361-367.

6. A. Agiwal and M. Singh, ‘‘An Architecture and a Wrapper

Synthesis Approach for Multi-Clock Latency-Insensitive

Systems,’’ Proc. Int’l Conf. Computer-Aided Design

(ICCAD 05), IEEE CS Press, pp. 1006-1013.

7. M. Ikeda et al., ‘‘SuperENC: MPEG-2 Video Encoder Chip,’’

IEEE Micro, vol. 19, no. 4, Jul./Aug. 1999, pp. 56-65.

Mario R. Casu is an assistant pro-

fessor in the Department of Electron-

ics at Politecnico di Torino, Italy. His

research interests include circuits,

technology, and architectures for ultra

deep-submicron SoCs. Casu has an MSc and a PhD

in electronics engineering from Politecnico di Torino.

He is a member of the IEEE.

Luca Macchiarulo is an assistant

professor in the Department of Elec-

trical Engineering of the University of

Hawaii at Manoa. His research inter-

ests include interactions of physical

design and logic synthesis, on-chip communication,

and biomedical applications. Macchiarulo has an

MSc and a PhD in electronics engineering from

Politecnico di Torino.

&Direct questions and comments about this article to

Mario R. Casu, Politecnico di Torino, Dipartimento di

Elettronica, Corso Duca degli Abruzzi, 24, I-10129

Torino, Italy; mario.casu@polito.it.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.

org/publications/dlib.

452

Globally Asynchronous, Locally Synchronous Design and Test

IEEE Design & Test of Computers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

