
Application Scenarios in
Streaming-Oriented
Embedded-SystemDesign
Stefan Valentin Gheorghita

Google Switzerland

Twan Basten and Henk Corporaal

Eindhoven University of Technology

&EMBEDDED SYSTEMS USUALLY con-

sist of processors that execute domain-

specific applications. Much of their

functionality is implemented in soft-

ware, which runs on one or multiple

processors, leaving only the high-per-

formance functions implemented in

hardware. Most typical embedded sys-

tems (such as TVs, cellular phones, and

MP3 players) run multimedia or tele-

com applications that exhibit dynamic behavior, and

their execution costs (such as the number of cycles

and energy) depend on the input data. Moreover,

these applications are often implemented as a main

loop, called the loop of interest, that is executed over

and over again, reading, processing, and writing out

individual stream objects (see Figure 1). A stream

object could be a bit belonging to a compressed

bitstream representing a coded video clip, or it could

be a macroblock, video frame, audio sample, or

network package. Usually, these applications must

deliver a given throughput (number of objects per

second), which imposes a time constraint on each

loop iteration. The read part of the loop of interest

takes a stream object from the input stream and

separates it into a header and the object’s data. The

processing part consists of several kernels. The write part

sends the processed data to output devices, such as a

screen or speakers, and saves the application’s internal

state for further use; for example, in a video decoder, the

previous decoded frame might be necessary to decode

the current frame. The dynamism existing in modern

applications leads to the use of different kernels for each

stream object, depending on the object type. The

actions executed in a particular loop iteration form the

application’s internal operation mode.

In this article, we describe a method that provides a

systematic way of detecting and exploiting, at design

time and runtime, the different internal operation

modes. The fact that applications have different

internal operation modes has not been fully exploited

in embedded-system design thus far. Our approach

combines a static analysis and profiling of the system

at design time with information collected at runtime

about the system’s environment. By knowing a

system’s possible operation modes and information

about their resource consumption at design time, it is

possible to make specific and aggressive design

decisions for each operation mode at different design

steps.

To avoid complexity problems, we cluster the

operation modes that are closely related to one

another from a resource consumption perspective in

application scenarios, distinguishing the truly different

operation modes via different scenarios. It is then

possible to derive a faster or lower-energy implemen-

tation (for example, by using different source-code

optimizations per scenario) or a better estimation of

required resources (such as the number of computa-

tion cycles or bandwidth). This leads to a smaller, less-

expensive, and more energy-efficient system that can

deliver the required performance.

581

A design method for handling increasingly dynamic real-time embedded-

system applications can help developers cope with stringent system and

market requirements. This method groups an application’s operation modes

into application scenarios and describes how to incorporate them in the

overall design process. An automated scenario-based design trajectory

reduces the energy consumption of a streaming application running on a

single processor platform via dynamic voltage and frequency scaling.

0740-7475/08/$25.00 G 2008 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Use-case versus application scenarios
Scenario-based design has been used for a long

time in fields such as human-computer interaction and

object-oriented software engineering.1 In these cases,

in an early phase of the development process,

scenarios concretely describe a system’s future uses.

Moreover, they appear like narrative descriptions of

envisioned usage episodes or like Unified Modeling

Language (UML) use-case diagrams that enumerate,

from a functional and timing perspective, all possible

user actions and system reactions necessary to meet a

proposed system functionality. These use-case scenar-

ios characterize the system from the user perspective.

In the embedded-systems area, they were used in both

hardware and software design.

This article concentrates on application scenarios,

which we derive from the system’s behavior. These

scenarios are a detectable set of an application’s

operation modes that are sufficiently similar in a

multidimensional resource-based cost space (such as

execution cycles, memory usage, or source code). They

reduce system cost by exploiting information about what

can happen at runtime to make better design decisions.

Whereas use-case scenarios classify the application’s

behavior according to the various ways it can be used,

application scenarios classify it from a resource-usage

perspective. Researchers from IMEC were the first to

identify and exploit these types of scenarios.2

The cost space is defined over a specific problem’s

dimensions of interest. For example, we might be

interested in operation modes that share the same

source code or that execute in the same number of

CPU cycles. In order for us to exploit these modes, they

must be detectable in the application, preferably as

soon as the application starts to execute in one of

them. Because the definition of an application

scenario is very general, we must tailor it to the

specific design problem at hand—for example, the

application behavior for a specific type of input data.3

Figure 2 depicts a design trajectory employing use-

case and application scenarios. It starts from a product

idea, for which the stakeholders define the product’s

functionality as use-case scenarios. (The stakeholders

are people, entities, or organizations that have a direct

stake in the final system; they can be system owners,

regulators, developers, users, or maintainers.) These

scenarios characterize the system from a user perspec-

tive and serve as inputs to a design process that

includes both software and hardware components. To

optimize the system design, the detection and use of

application scenarios augment this trajectory (bottom

gray box in Figure 2). Once the application is coded,

its scenarios related to resource utilization are

semiautomatically extracted, and they are considered

for the decisions made during the following phases of

system design. The sets of use-case and application

scenarios are not necessarily disjoint. One or more use-

case scenarios could be merged in one application

scenario, a use-case scenario might be split into

several application scenarios, or several application

scenarios might intersect several use-case scenarios.

As a case study, we consider the design of a

portable MP3 player as a USB (Universal Serial Bus)

stick. At first glance, there appear to be two main use-

case scenarios: the player is connected to the

computer, and music files are transferred between

them; and the player is used to listen to music. But we

can divide these scenarios into more detailed use-case

scenarios, such as song selection, play, or fast-forward

operations for the latter scenario.

Let us consider the play scenario. From a software

perspective, we can split this use case into two

582

Figure 1. Typical streaming application processing a stream object.

Embedded Systems

IEEE Design & Test of Computers

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

different application scenarios: mono

and stereo modes. By exploiting these

scenarios, we can increase the system

battery lifetime because mono mode

requires less computing power. Thus,

we can use a lower supply voltage while

still meeting the decoding’s timing

constraints.

Application
scenario methodology

The methodology for introducing

application scenarios into the current

embedded-system design trajectory has

three steps (see Figure 3):

1. Identification. How is the applica-

tion classified into scenarios?

2. Predictor or detector derivation.

Which scenario does a particular

iteration of the loop of interest

belong to?

3. Exploitation. What can we do to

optimize the system when it exe-

cutes in a particular scenario?

These steps are influenced by the

design context in which they are ap-

plied, but nevertheless are still general.

583

Figure 2. Full design flow.

Figure 3. Scenario-based design flow for embedded systems.

November/December 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Step 1

Scenario identification starts from the original

application and identifies its different operation

modes. These modes’ resource usage (in the cost

space of interest) is characterized, and those with

similar needs are clustered in an application scenario.

The methods used for scenario identification fall into

three categories: analytical, profiling, and hybrid.

Independent of the method, the set of the identified

application scenarios must cover all possible applica-

tion operation modes.

In an analytical method, the application structure is

statically analyzed to identify similar operation modes.

This method is restrictive because it cannot automat-

ically collect information about how the application is

really used and how it behaves at runtime—for

example, which scenario is most frequently used at

runtime. The application’s real runtime behavior can

be captured using a profiling method, but in this case,

it is more difficult to derive scenario predictors than it

is in the analytical case; in general, not all scenarios

can be identified, because profiling might not cover all

possible, distinct operation modes. To overcome this

problem, we must consider a backup scenario, which

is selected at runtime when the application is running

in an operation mode that did not appear during

profiling. A hybrid method combines the advantages

of the previous two methods and is the most powerful

way to determine scenarios.

Especially for profiling and hybrid methods, an

explosion in the number of operation modes could

occur during their identification. In this case, it is

necessary to make decisions using partial information,

applying the operation mode identification and

clustering simultaneously. A trade-off should be made

between how many different scenarios and operation

modes can be handled during the identification

process and how accurate the identification is. The

optimal number of scenarios depends on many

factors, including their intended usage. Besides the

bottom-up approach, which first identifies a large set

of the application’s operation modes and afterwards

tries to combine them based on similarity, there is also

a top-down approach. This approach initially consid-

ers the application as a single scenario and then

recursively splits each scenario based on the differ-

ences between the operation modes it covers. The two

approaches are not fundamentally different; they are

just different ways of implementing scenario identifi-

cation.

For the MP3 case study, we can look at a way to

reduce a sequential streaming application’s energy

consumption by exploiting dynamic voltage and

frequency scaling (DVFS) in modern processors. For

hard real-time constraints, we use a static analysis for

operation mode and scenario identification, augment-

ed with a profiling approach for selecting the most

common scenarios that appear during system use. For

soft real-time constraints, profiling is the basis for

identification because it can give the most accurate

view of system utilization. However, for collecting

internal application information (such as application

structure or variables), we combine profiling with

static analysis.

Step 2

Runtime scenario detector or predictor derivation

is the step that determines which scenario the

application runs in at a certain moment in time. We

can either detect an application’s current scenario on

the basis of already known information (such as

variable values) or predict it with a certain confidence.

Detection can be seen as prediction with 100%

confidence. At runtime, when a change in the scenario

in which the application runs is predicted, the system

switches from the current scenario to the new one,

activating the optimizations for this new scenario.

There are different ways to implement predictors,

such as static versus runtime adaptive or centralized

versus distributed. Independent of the predictor

implementation, we can use the following informa-

tion: runtime application internal information such as

variable values and executed code (for example, a

basic block that appears only in one scenario);

statistical information obtained through profiling or

from the application designer (such as how often a

scenario may appear at runtime); a probabilistic

scenario transition model such as a Markov chain;

and a history of active scenarios in the current

execution. Predictors can be of two types:

& Reactive. Only information already computed by

the application is used.

& Proactive. A part of the application control flow

that follows the predictor is duplicated or

extracted in the predictor source code.

The latter allows early decision making. There is a

trade-off between the amount of code duplicated and

how early in the execution the current application

584

Embedded Systems

IEEE Design & Test of Computers

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

scenario can be predicted. Usually, the earlier the

better, but the prediction overhead must be limited.

For the MP3 case study example, we can consider

how to derive reactive centralized predictors using the

application variables that do not change their values

for one entire iteration of the loop of interest, under

both soft and hard real-time constraints. The place

where the predictor can be inserted into the applica-

tion source code depends on the considered variables

and on where assignments to these variables occur in

the loop body. For hard real-time constraints, we

extracted the predictor using static analysis, so it is in

fact a static detector. For soft real-time constraints, we

used the information collected via profiling to derive

the predictor. To guarantee required system quality,

we used a calibration mechanism that helps the

predictor learn on the fly, making it a runtime-adaptive

predictor.

Step 3

Scenario exploitation uses scenarios to optimize a

design by applying more aggressive optimizations for

each scenario. Because this step strongly depends on

what the designer wants to achieve, we survey several

papers that use application scenarios (often without

explicitly defining or identifying the concept).

Yang et al. first explicitly identified the application

scenario concept and used it to improve the mapping

of dynamic applications onto a multiprocessor plat-

form.2 Other work applies this concept several times in

an ad hoc manner, with an emphasis on the

exploitation of scenarios, mostly ignoring (automatic)

identification and prediction. Sasanka, Hughes, and

Adve concentrated on saving energy for a sequential

application.4 The targeted architecture has a single

processor with reconfigurable components (such as

the number and type of function units), and its supply

voltage can be changed. For each manually identified

scenario, the most energy-efficient architecture config-

uration that still meets the timing constraints is selected.

It is unclear how scenarios are predicted at runtime.

An extension considers two simultaneous resources

for scenario characterization.5 It looks for the most

energy-efficient configuration for encoding video on a

mobile platform, exploring the trade-off between

computation and compression efficiency.

Recently, researchers have also used scenarios in

the context of the geometrical-loop-transformation

framework to extend the scope of the geometrical

model’s applicability.6 This work combines profiling

with the geometrical model to find the optimal

scenarios for global memory optimizations. The idea

is similar to hyperblock scheduling, but on a much

coarser level. The authors systematically detect

operation modes on the basis of profiling, and then

they cluster them in scenarios on the basis of a trade-

off between the number of memory accesses and the

code size increase.

In the context of multitask applications, Lee, Yoo,

and Choi also investigated using application scenarios

to reduce the energy consumed by a multitask

application mapped on a voltage-scaling-aware pro-

cessor.7 Murali et al. characterize scenarios according

to different communication requirements (such as

bandwidth and latency) and traffic patterns.8 They

present a method to map application communication

to a network-on-chip architecture, satisfying the design

constraints of each individual scenario.

Researchers have also used scenarios to improve

the operating system. Mamagkakis, Soudris, and

Catthoor presented a way of optimizing dynamic

memory allocation for the IPv4 layer in an IEEE

802.11b wireless network application.9 Their method

employs different allocation algorithms for different

scenarios, identifying these scenarios on the basis of

the possible network package sizes.

Most of the work we’ve mentioned thus far

emphasizes scenario exploitation for a given applica-

tion, not for a class of applications, and does not go

into detail on identification and prediction, which are

important topics in our work.

Application scenario classification
The different classes of embedded systems (hard

versus soft real time) and the design problem that is

optimized lead to multiple possible criteria that we

can use for scenario classification.

Considering how scenario switches are driven at

runtime, two main scenario categories can be

considered: dataflow and event driven. Dataflow-

driven scenarios characterize different executed

actions in an application that are selected at runtime

based on the input data characteristics (such as the

type of streaming object). Usually, each scenario has

its own implementation within the application source

code. Event-driven scenarios are selected at runtime

on the basis of events external to the application, such

as user requests or system status changes (for example,

the battery level). They typically characterize different

quality levels for the same functionality (or quality

585November/December 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

scenarios), which can be implemented as different

algorithms or quality parameters in the same algo-

rithm. The two types of scenarios can form a hierarchy.

For different quality levels, a dataflow-driven scenario

could require different amounts of resources for the

same application source code.

The runtime switches that occur between scenarios

are differentiated by the tolerable amount of side

effects. Usually, in dataflow-driven scenarios, side

effects are unacceptable, whereas in event-driven

scenarios, different potential side effects might be

acceptable. For example, a switch between quality

scenarios in a TV could appear as an image format

change (from 4:3 to 16:9), with an acceptable side

effect of image flickering during system reconfigura-

tion. But when the TV tuner switches from a dataflow-

driven scenario to another one, no side effects that

visibly affect the image are acceptable.

Because design methods for single and multitask

systems concentrate on different aspects, scenarios

can also be classified as intratask scenarios, which

appear within a sequential part of an application (that

is, a task), and intertask scenarios for multitask

applications. This classification is also hierarchical.

Usually, the scenario in which a multitask application

is running is derived from the scenarios in which each

application task is currently running. Dataflow-driven

intratask and intertask scenarios are conceptually the

same from resource-use and runtime-switching per-

spectives, but they have different impacts on the

intratask and intertask parts of the design flow, and

they are typically exploited in different ways.

Finally, scenario usage differs for soft and hard real-

time systems. Not all the methods we’ve presented for

each step of the methodology can always be applied.

For example, for hard real-time systems, scenario

identification can use only static analysis, and only

detectors can be used to identify the current scenario

at runtime. But for soft real-time systems, we can use

predictors and statistical information from profilers.

For the MP3 application case study, we concentrate

on intratask data-driven scenarios, under both soft and

hard real-time constraints. Because each scenario

characterizes the decoding of an audio sample type,

and a stream contains different sample types, we

ensure that there are no side effects during switching.

Our trajectory and experimental results
We’ve developed an automatic scenario-based

trajectory for a specific design problem: the identifi-

cation, prediction, and exploitation of application

scenarios to reduce the energy consumed by a single-

task streaming application running on a DVFS-aware

processor. DVFS is an effective energy-saving tech-

nique that involves varying a processor’s frequency

and voltage at runtime according to processing needs.

Most of the algorithms integrated in our tools are

general, and they can be used for different problems.

Our trajectory works for both hard and soft real-time

constraints. It starts from an application written in C,

because C is the language that is most used to write

embedded-systems software. The trajectory generates

the final energy-aware implementation in C as well.

Experimental setup

Our numerical results refer to the energy consump-

tion of an Intel XScale PXA255 processor, measured

using the XTREM simulator.10 We consider that the

processor frequency (fCLK) can be set discretely within

the processor’s operational range in 1-MHz steps. The

supply voltage (VDD) is adapted accordingly:

fCLK ~ k
VDD { VTð Þ2

VDD

where VT 5 0.3 V, and constant k 5 208.3 is computed

for VDD 5 1.5 V and fCLK 5 200 MHz. We considered a

frequency and voltage transition overhead tswitch 5

70 ms, during which the processor stops running. The

energy consumed during this transition is 4 mJ. When

the processor is not in use, it switches to an idle state

within one cycle, and it consumes an idle power of

63 mW. This situation occurs if the decoding of a

streaming object needs less computation cycles than

estimated.

MP3 decoder

For our evaluation, we considered a benchmark

consisting of a randomly selected set of 20 stereo and

10 mono streams because stereo songs are more often

listened to than mono songs.

Hard real time. Our trajectory can generate different

energy-saving implementations, from a purely static

one to an implementation that uses a fine-grained

DVFS-aware scheduler. Figure 4 shows a comparison.

Because hard real-time systems require a conser-

vative design approach, we developed a method and

tool that uses a static analysis of the application source

code to identify and exploit scenarios for reducing the

overestimation in the worst-case number of execution

586

Embedded Systems

IEEE Design & Test of Computers

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

cycles (WCECs) compared to existing

methods.11 The scenarios incorporated

correlations that differentiate between

the source code parts that never execute

together in the same iteration of the loop

of interest and the ones that can. To

avoid an explosion in the number of

detected scenarios, our tool extracts the

correlations using only information

about the automatically detected appli-

cation parameters with a large impact

on the execution time.

For the MP3 decoder, the estimated

WCEC for the entire application, which

is the maximum between the ones obtained for each

scenario, was reduced by 9.3%. In hard real-time

systems, no deadlines can be missed, and the

processor must execute at least the WCECs per

decoding time period for an audio sample. Thus, the

processor frequency can be lowered by 9.3%, saving

19% in energy consumption when decoding our

audio-stream benchmark.

By exploiting the different WCECs for each

scenario, we can further reduce the energy. Our

trajectory can generate a proactive predictor that acts

like a DVFS-aware coarse-grained scheduler. This

scheduler selects the processor frequency and the

supply voltage level once per loop iteration. For our

benchmark, the energy reduction was 29% compared

to the reference implementation.

Our trajectory can also augment scenarios in a fine-

grained scheduler that changes the processor frequen-

cy multiple times during an iteration of the loop of

interest. By combining scenarios with a state-of-the-art

fine-grained DVFS-aware scheduler for hard real-time

systems,3 we reduced the average energy by 12%

compared to using only the fine-grained DVFS-aware

scheduler, and by 35% compared to the original reference.

Fine-grained DVFS gives better results than coarse-

grained DVFS if the frequency-switching time is small

enough relative to the period of the application loop of

interest. For larger switching times, fine-grained DVFS

is infeasible or coarse-grained DVFS outperforms it.

Soft real time. For soft real-time systems, a certain

deadline miss ratio is acceptable, so using a

conservative trajectory leads to an over-dimensioned

system. Hence, we refined our trajectory to also

consider information collected by profiling the

application. In an earlier work,12 we described a

method and a tool flow that can automatically detect

the most important application parameters to define

and dynamically predict scenarios in soft real-time

systems. The results of applying this trajectory to the

MP3 case are summarized in Figure 5. The trajectory

inserts three components into the application source

code (see Figure 6): a predictor, a switching

mechanism, and a runtime calibration mechanism.

The third component does not exist in the hard real-

time case, and it is a mechanism that tunes the

predictor to keep the miss ratio under a given

threshold.

This mechanism is necessary because it is difficult,

or almost impossible, during profiling to cover all

possible operation modes in which a system might

run. This mechanism helps the predictor to learn at

runtime about newly discovered operation modes.

Using the generated code, the average energy

consumed by the MP3 decoder is reduced by 16%

compared to the reference without scenarios, for a

measured miss ratio of never more than one audio

sample per 6 minutes (0.008%). Compared with the

maximum energy reduction that can be obtained (see

Oracle in Figure 5), we have reached about 50% of the

587

Figure 4. Normalized energy for different MP3 hard real-time implemen-

tations. (DVFS: dynamic voltage and frequency scaling; HRT: hard real time;

WCEC: worst-case number of execution cycles.)

Figure 5. Normalized energy for different MP3 soft real-time

implementations. (SRT: soft real time.)

November/December 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

theoretically possible reduction. We plan to further

reduce energy consumption by developing a more

intelligent calibration mechanism.

Motion compensation video kernel

For this kernel, we conducted the same experi-

ments as for the MP3 decoder. Under hard real-time

constraints, we saved up to 69% using a coarse-grained

scheduler and up to 75% using a fine-grained

scheduler, compared to the reference implementa-

tion. In the soft real-time context, the savings were up

to 16%, representing about 50% of the theoretically

possible reduction.

OUR TRAJECTORY EXPLOITS the difference in the

required computation cycles between different sce-

narios, but it can be adapted to consider other

resources, such as the number of memory accesses

or memory size. It is interesting to further investigate

the use of application scenarios in a multiprocessor

context. Resource-usage estimation and scenario

identification in a multiprocessor context is challeng-

ing, especially when considering multiple resources

simultaneously. Also, the development of intelligent

calibration mechanisms for application scenarios in

various contexts with soft constraints is an interesting

topic for future work. For more details about scenario-

based design, visit http://www.es.ele.tue.nl/scenarios.&

Acknowledgments
This work was supported by the Netherlands

Organization for Scientific Research (NWO), project

612.064.101.

&References

1. J.M. Carroll, ed., Scenario-Based Design: Envisioning

Work and Technology in System Development, John

Wiley & Sons, 1995.

2. P. Yang et al., ‘‘Managing Dynamic Concurrent Tasks in

Embedded Real-Time Multimedia Systems,’’ Proc. 15th

Int’l Symp. System Synthesis (ISSS 02), ACM Press,

2002, pp. 112-119.

3. S.V. Gheorghita, T. Basten, and H. Corporaal, ‘‘Intra-task

Scenario-Aware Voltage Scheduling,’’ Proc. Int’l Conf.

Compilers, Architecture and Synthesis for Embedded

Systems (CASES 05), ACM Press, 2005, pp. 177-184.

4. R. Sasanka, C.J. Hughes, and S.V. Adve, ‘‘Joint Local

and Global Hardware Adaptations for Energy,’’ ACM

SIGARCH Computer Architecture News, vol. 30, no. 5,

Dec. 2002, pp. 144-155.

5. D.G. Sachs, S.V. Adve, and D.L. Jones, ‘‘Cross-Layer

Adaptive Video Coding to Reduce Energy on General-

Purpose Processors,’’ Proc. IEEE Int’l Conf. Image

Processing (ICIP 03), IEEE CS Press, 2003, pp. 109-112.

6. M. Palkovic, H. Corporaal, and F. Catthoor, ‘‘Global

Memory Optimisation for Embedded Systems Allowed by

Code Duplication,’’ Proc. Workshop Software and

Compilers for Embedded Systems (SCOPES 05), ACM

Press, 2005, pp. 72-79.

7. S. Lee, S. Yoo, and K. Choi, ‘‘An Intra-task Dynamic

Voltage Scaling Method for SoC Design with Hierarchical

FSM and Synchronous Dataflow Model,’’ Proc. Int’l

Symp. Low Power Electronics and Design (ILSPED 02),

IEEE Press, 2002, pp. 84-87.

8. S. Murali et al., ‘‘A Methodology for Mapping Multiple

Use-Cases Onto Networks on Chips,’’ Proc. Design,

588

Figure 6. Final implementation for a soft real-time application. (Source: J. Signal Processing Systems, vol. 50, no. 2,

Feb. 2008, pp. 137-161, ‘‘Scenario Selection and Prediction for DVS-Aware Scheduling of Multimedia Applications,’’

S.V. Gheorghita, T. Basten, and H. Corporaal, Figure 15 G 2008 Springer.12 With kind permission of Springer Science

and Business Media.)

Embedded Systems

IEEE Design & Test of Computers

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

Automation and Test in Europe Conf. (DATE 06), IEEE

CS Press, 2006, pp. 1-6.

9. S. Mamagkakis, D. Soudris, and F. Catthoor,

‘‘Middleware Design Optimization of Wireless Protocols

Based on the Exploitation of Dynamic Input Patterns,’’

Proc. Design, Automation and Test in Europe Conf.

(DATE 07), IEEE CS Press, 2007, pp. 118-123.

10. G. Contreras et al., ‘‘XTREM: A Power Simulator for the

Intel XScale Core,’’ ACM Sigplan Notices, vol. 39, no. 7,

July 2004, pp. 115-125.

11. S.V. Gheorghita et al., ‘‘Automatic Scenario Detection for

Improved WCET Estimation,’’ Proc. 42nd Design

Automation Conf. (DAC 05), ACM Press, 2005, pp. 101-104.

12. S.V. Gheorghita, T. Basten, and H. Corporaal, ‘‘Scenario

Selection and Prediction for DVS-Aware Scheduling,’’ J.

Signal Processing Systems, vol. 50, no. 2, Feb. 2008, pp.

137-161.

Stefan Valentin Gheorghita is an engineer at

Google Switzerland. He completed the work de-

scribed in this article while pursuing his PhD in

electrical engineering from the Eindhoven University

of Technology, the Netherlands. His research interests

include embedded systems, compilers, and parallel

and distributed systems. He has a BSc and an MSc in

computer science and engineering from Politehnica

University of Bucharest, Romania, and a PhD in

electrical engineering from the Eindhoven University

of Technology. He is a member of the IEEE.

Twan Basten is an associate professor in the

Electrical Engineering Department at the Eindhoven

University of Technology, the Netherlands, and

a Research Fellow of the Embedded Systems

Institute, the Netherlands. His research interests

include the design of resource-constrained embed-

ded systems, with emphasis on multiprocessor

systems and computational models. He has an MSc

and a PhD in computing science from the Eindhoven

University of Technology. He is a senior member of

the IEEE and a life member of the ACM.

Henk Corporaal is a professor of embedded-

systems architectures at the Eindhoven University of

Technology. His research interests focus on the

predictable design of soft and hard real-time em-

bedded systems. He has an MSc in theoretical

physics from the University of Groningen, and a PhD

in electrical engineering from the Delft University of

Technology.

&Direct questions and comments about this article to

Twan Basten, Eindhoven University of Technology,

Dept. of Electrical Engineering, PO Box 513, 5600 MB

Eindhoven, the Netherlands; a.a.basten@tue.nl.

For further information on this or any other computing

topic, please visit our Digital Library at http://www.

computer.org/csdl.

589November/December 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 16, 2009 at 08:31 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

