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Asynchrony in QCA nanocomputation:
elixir or poison?

Mariagrazia GrazianoMember IEEE, Marco Vacca, Davide Blua, Maurizio Zamboni
Dipartimento di Elettronica, Politecnico di Torino, CorsoDuca degli Abruzzi, 24 Torino, Italy

Abstract—Quantum dot Cellular Automata (QCA) technology
is a possible CMOS substitute. It requires a clock-like signal to
assure information propagation. This likens a QCA circuit to
a fully pipelined architecture, where pipeline depth is layout
dependent. Only asynchronous organization of architectural
blocks enables the realization of complex circuits. The useof Null
Convention Logic (NCL) is one among the proposed solutions.
However there is no certainty that the balance between positive
and negative aspects of this logic will be favorable for QCA.We
analyze pros and cons of NCL and Boolean logic circuits applied
to QCA, using a VHDL behavioral model of QCA gates, in terms
of speed, latency, power and area. We point out a critical problem
related to feedback signals: Clearing it is mandatory in order to
implement complex QCA circuits. Finally we propose a hybrid
logic solution which is the best compromise between performance
and problem solutions, and we give a sound answer to this paper
title question.

Index Terms—Magnetic Quantum Doc Cellular Automata;
magnetic memory; VHDL modelling; Null Convention Logic;
Asynchronous architecture; latency insensitive design.

I. I NTRODUCTION

Cellular automata principle was recently and successfully
applied to electronic digital circuits, leading to the Quan-
tum dot Cellular Automata (QCA) idea [1]. In the general
principle a QCA cell has two different charge configurations,
representing the two logic values ’0’ and ’1’ (Figure 1.A).
These building blocks are placed at small distance on the same
plane. The electrostatic interaction between neighbor cells
drives the information through the circuit. There are two main
implementations of this theoretical principle: molecularQCA,
where the cell is a complex molecule, and magnetic QCA
[2], where the cell is a single domain nanomagnet (Figure
1.B). Though magnetic QCA (MQCA) allow speeds (hundred
of MHz) lower than the perspective molecular ones (few
THz), they offer several specific advantages. These include
small area, a very low power consumption and the possibility
to combine computation and storage [3], but, especially, the
experimental feasibility with technology currently available
[2]. The International Technology Roadmap of Semiconductor
mentions thus MQCA as worth studying in order to proof
whether they can be a replacement for CMOS.

It has been demonstrated that the switching from one to the
other QCA logic state should be adiabatic [3]. Cells are thus
temporarily driven to an intermediate unstable state usingan
external field [3], a magnetic one in the MQCA case. It reduces
the potential barrier between the two stable states and erases
the previous value stored in a cell. Releasing the external field
means to drive the cells toward a stable hold state. This occurs

through a transient switching favored by the influence of the
neighbor cell [3] (see section II for details). Thison and off
switching likens this field to aclock signal. It is provided by
a special wire, external to the nanomagnets circuit, in which
a current flows with a proper timing generating the magnetic
field. It is worth remarking that this signal is far different
from the clock normally used in CMOS digital structures. In
fact, it just enables the information propagation for everycell
throughout the whole circuit. It is not a signal which delivers
a synchronization to special gates like registers. To grantthe
information propagation in every direction, this wire mustbe
routed using a complex layout. At the same time, the physical
feasibility of the structure which generates it should not be
neglected: Starting from [2], we investigated this problemand
discussed a “snake-clock” solution in [4][5].

The unavoidable use of this type of organization leads to
two main issues. First, the clock signal gives to QCA circuits a
wavefront pipelined behavior and leads to the “layout=timing”
problem [1]: The propagation delay of a QCA wire depends
on its layout (see section II for a more detailed explanation).
To really understand the burden of this critical aspect a
comparison could be done with a particular situation in CMOS
circuits in which every wire has a pipelined structure. More
specifically, a wire pipelined with a depth which depends on
routing (i.e. the longer the routing the bigger the number
of stages) and not on the circuit logic function. In this
situation the standard skewing and deskewing stages are not
just a designer choice, they are a constraint complicated by
placement and routing of cells. Those constraints could be
unsatisfiable in complex circuits, and automatic CAD tools
could not be of help to leverage this problem in realistic
designs.

A second issue also arises. One could argue that the
necessity of thisclock used to move information does not
prevent from having a real clock signal, as in the standard
CMOS circuits and completely unrelated to the former one.
But this is the point: though not impossible in principle, it
would be almost unfeasible in practice for circuits of realistic
complexity. Up to now, no effectivedirect solutions to this
problem have been proposed. There are two possibilities:
Using another external field, or delivering it through the
magnetic cells coping with the “layout=timing” constraint.
Both, at the moment, are not practicable solutions. Theindirect
approach consists in fronting the fact that this technologydoes
not allow to use the well known primitives of the synchronous
world, and to exploit the potentialities of an asynchronous
design style. If, in the CMOS digital world, asynchronous
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Fig. 1. A) QCA cells. B) Magnetic QCA cells. C) Possible Clocksignal distribution below a wire of magnets (see [5] for details). D) Two examples of
magnetic wire crossing (see [2],[11] for details). E) A Magnetic QCA inverter. F) Clock signals timing behavior. G) Clock phases sequence and magnets
behavior. H) Top view; layout example spanning four clock zones for three wires and a basic logic QCA cell, the Majority Voter: MV = AB + AC + BC
(symbol in the bottom right detail). I) Magnetization behavior in time of the output MV magnet obtained using a finite-difference nanomagnetic simulator
(NMAG [12]): Magnetization starts form 0, due to an appliedRESETfield, and then changes (SWITCH) to a negative stable value (HOLD).

systems are often seen as a niche for specific applications,
which are now rapidly expanding [8], in the QCA case they are
an enabling solution. In asynchronous circuits a block is not
only associated towhich logic function it is executing, but also
to when it is going to execute it, with respect to the information
flow. This is a potentially perfect scenario for QCA. And this
is the reason why one of the proposed solutions consists in
adopting the asynchronous Null Convention LogicTM (NCL)
[6]. It does not need a clock and manages the timing of
logic propagation using encoding and exploiting acknowledge
signals. It is totally delay insensitive and thus helps solving the
“layout=timing” issue. The consequence is then the reduction
of synthesis and physical design constraints and the possibility
to avoid a real clock. The number and the position of logic
gates is constrained like in the standard digital circuits,and the
same principles and automatic algorithms can then be adopted.
A general NCL implementation applied to QCA circuits is
proposed in [7], while a specific solution for magnetic circuits
is presented in our work in [4][5] and is the starting point for
this work. The proposed system is thus a GALS one: Globally
Asynchronous (the handshake protocol toallow information
propagation) and Locally Synchronous (the clock system to
enable information propagation). GALS circuits are recently
used in traditional designs to successfully leverage the burdens
due to interconnect delays [9] or to different synchronization
sub-systems [10]. They can thus be effectively adapted to
nanotechnology designs to enlighten their real potentialities.

Despite the beneficial effects of NCL to the functionality,
our preliminary investigations show that NCL logic applied
to QCA technology have several consequences, as already
demonstrated in previous works [8]. The plain application
of this logic is then not necessarily a panacea. Thus, after
a brief background on QCA clock system in section II, we
present (section III) the complete comparison, never attempted
before, between a fully synchronous QCA implementation
based on standard Boolean logic and a GALS QCA solution

based on NCL logic. The comparison includes speed, latency
levels, power dissipation and area. It is based on a VHDL
behavioral model of QCA circuits we developed [5], and
applied to two specific circuits: a 32-bit ALU and a parallel
memory with 4 address bits and 14 data bits. A discussion
follows on a problem (section IV) related to feedback signals.
This arises from a layout and technology aware design of
a complex circuit like a microprocessor. We thus propose
a hybrid solution (section V), between NCL and Boolean
logic, that solves the feedback problem and which, though
not the only possible solution, is demonstrated being a good
compromise between performance and feasibility.

II. M AGNETIC QCA CLOCK SYSTEM

Magnetic QCA circuits are built using single domain nano-
magnets with only two stable magnetizations (Figure 1.B).
This is favored by their rectangular structure which implies an
evident shape anisotropy. The magnetization vector is parallel
to the long side (easy axis) of the nanomagnets, and this state
is difficult to change. To switch a nanomagnet from a state to
another a strong magnetic field is required, calledclock. It is
directed along the short side (hard axis) of the nanomagnet.
When applied, it forces the nanomagnets in an unstable state:
Their magnetization is redirected along the hard axis. When
the field is removed, nanomagnets realign themselves in an
antiferromagnetic order along the easy axis.

To avoid information propagation errors during the reorder-
ing, only a small number of nanomagnets (between 10 and
20 [2]) can be placed together. Therefore the circuit plane is
divided into small areas, each influencing a limited number
of nanomagnets. In each area they can be organized in a
simple sequence, like in Figure 1.C, which represents a wire;
or in more complex structures, like in Figure 1.D, where two
examples of crossing between two wires proposed in literature
are given [2][11]; or even in blocks able to execute a logic
function, like the inverter in Figure 1.E, or the Majority Voter
(see later on).
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Fig. 2. A) Microprocessor structure. B) Instruction memoryarchitecture. Delay blocks (gray colored) are only presentin the Boolean implementation. C)
ALU architecture Delay blocks (gray colored) are only present in the Boolean implementation. D) Memory cell structure based on Majority Voters (MV) in
a Boolean implementation. E) Memory cell structure based onNCL logic gates, themselves based on MV [5]. F) Full Adder structure based on Majority
Voters (MV) in a Boolean implementation. G) Full Adder structure based on NCL logic gates, themselves based on MV [5].

To drive the information through the circuit, independently
on the logic function, a multi-phase clock system is necessary.
We have proposed a 3 phases snake-clock [4],[5]. The area is
split in groups of sub-areas, each organized in three clock
zones (a simplified example is in Figure 1.C), driven by a
different signal. The signal waveforms, i.e. pulses with a phase
shift of 120 degrees, are shown in Figure 1.F. The sequence
of three clock phases is repeated along the entire circuit, with
order 1-2-3-1-2-3.

Figure 1.G shows the magnets operations according to clock
sequences. In the first time step the cells of the second phase
are in aHOLD state: No external field is applied and they are
therefore in a stable state. This has a great influence on the
nanomagnets of the following (the third) clock zone, that are in
a SWITCH state. These magnets reorder themselves following
the nanomagnets of the second clock zone, which act like an
input signal. At the same time, magnets in the previous zone,
the first, are in aRESET state: This means that the external
field is applied, their magnetization is directed along the short
axis, and they have a very small influence on the clock zone
2. In the further time step, this situation is repeated, but with
the first clock zone (which is the next in the clock zone
sequence 1-2-3-1-2-3) in theSWITCH phase, the second in the
RESETand the third in theHOLD state. The information moves
along the circuit following the clock zone sequence. Figure

1.H shows an example of a top view where three signals are
routed through three zones, and carry information to a basic
QCA logic gate: the Majority Voter (MV=AB+AC+BC). In
Figure 1.I the magnetization transient of the MV output (the
central element in the evidenced MV sub-block) is depicted.
This is obtained by an accurate finite-difference nanomagnetic
simulator [12]. The case reported here corresponds to the input
values shown by arrows in Figure 1.H (A=1, B=0 and C=0), so
the output is expected to go to ’0’. Indeed, the magnetization
starts from a zero value, as the magnet was previously in a
RESETstate; afterwards it switches to a negative magnetization
value, the logic 0, which is then maintained in the hold state.
The delay found here depends on the magnets aspect ratio,
on their horizontal and vertical distances, and on the magnetic
material used (typically Permalloy or Cobalt). The maximum
clock frequency is bounded not only to this delay, but also
to the delay of the nanomagnets representing the wire that
carry the information within the same phase. So the sum of
all the delays of magnets within a zone during theSWITCH

phase roughly defines 1/3 of the clock period. To achieve
fast frequencies, then, a limited number of magnets should
be placed within a phase zone. Nevertheless, the smaller the
phase zone, the smaller is the size of the wire delivering the
clock. Typical sizes of magnets are50nm × 100nm with a
space of20nm between two of them. It is then easy to see
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an opposite constraint: The higher is the number of magnets
in a zone, the easier will be the clock fabrication, at least as
long as nanowires can not be really used for this purpose. The
estimated realistic frequency reported in literature is around
100MHz [3].

It is thus clear that in a QCA circuit, even in the case of a
simple wire, which crosses many clock zones, the information
propagates with a delay of 1 clock cycle for every group
of three zones. This is an intrinsic pipelined behavior and
makes clear a fundamental QCA property: The length of a
wire depends on the number of clock zones it crosses, and the
propagation delay of a wire depends on its length. The con-
sequence is the complexity in designing QCA circuits based
on synchronous Boolean logic. The length of the wire at the
inputs of every logic gates must be equalized to synchronize
signals (“layout=timing”). This is in theory feasible onlyusing
specific algorithms, but for complex circuits the constraints
could be unbearable.

As mentioned in the introduction, a possible solution could
be using a real clock signal, i.e. a further signal which delivers
synchronization to blocks similar to D-Flip-Flops in CMOS
circuits. The D-FF would delay the progress of data until a
synchronization signal would be sampled. Though it is natural
to think at it as similar to CMOS structures, it is difficult tobe
implemented. As long as we want to stick to a solution which
is really feasible with current technology, this solution has to
be set aside at present time.

A balm to such a situation is to conceptually split in-
formation propagation into two levels. The first is strictly
connected to the physical signal propagation, which must be
synchronous. The other is the logic signal propagation. The
latter can rely on an asynchronous delay insensitive logic.One
of the possible choices is the NCLTM [6]. Other asynchronous
implementations could fit this problem. We started this anal-
ysis from NCL considering that it was proposed in [7] as a
promising solution, but that its benefits and aftereffects have
not been established jet in terms of realistic performance.
In NCL every signal is coded using two bits, that can assume
two different values: DATA = 01 or 10 (that stand for a
Boolean ’0’ and ’1’) and NULL = 00, while 11 is forbid-
den. Circuits switch periodically from NULL to DATA, and
viceversa. The advantage is that the switch of a gate in either
directions occurs only when all the inputs assume the same
coherent value (all NULL to DATA or, in the opposite case, all
DATA to NULL). The delay insensitivity is thus assured, at the
cost, of course, of an increased complexity. The consequences
of this choice are twofold. First, it is not necessary to deliver
a synchronization signal; second, gates can be placed without
worrying about delays and synchronization, and thus top-down
synthesis and physical design can be inherited from CMOS
circuits design flow. Currently a few attempts to this purpose
have been done in literature in the general QCA case, both for
synthesis and for placement. Although a lot of work has to be
done, especially in the magnetic case, results show that it is
possible to rely on these algorithms.

NCL logic is based on several basic cells: Their detailed
behavior can be found in [6], while their application to a
magnetic QCA circuit can be found in [4][5]. It is worth

underlying that the two bits encoding doubles the wires, and
as a consequence, many crossing points could be necessary.
Though this is a complication, it can be faced, as coplanar
wire crossings (examples are in Figure 1.D) have been exper-
imentally demonstrated [2][11].

In this paper we aim at clarifying whether this asynchronous
circuit organization is an effective solution for QCA. We
compare Boolean and NCL logic using our VHDL behavioral
model [4][5]. Logic gates are considered ideal, with no delay,
but the wire propagation delay through the clock zones are
simulated using a register for every phase zone, having as a
clock the correspondent clock signal of the zone (as in Figure
1.F), and thus reproducing the pipelined circuit behavior.Our
model is based on the realistic physical structure of every NCL
gate, basing it on the physically feasible “snake-clock” we
proposed in [5]. Every gate is carefully designed in order to
be feasible, and the VHDL description reflects this design.

We have improved this model allowing for a hierarchical
estimation of the circuit area and power dissipation. The
structure of this model is not described here in details for sake
of simplicity, as not the aim of the paper. The model is based
on the real number of magnets of the basic logic gates, and
hierarchically estimates the total number of nanomagnets in a
parametric way, in order to obtain a realistic approximation.
The power dissipated by the nanomagnets is then calculated
multiplying their total number for the power dissipated by each
one (approximately30− 40KBT [3]). Starting from the total
number of magnets we also evaluate the circuit area, using the
magnets dimensions and some parameters to take into account
wasted space. Using the reckoned circuit area, and knowing
the clock zone dimensions, we can estimate the length of the
clock wires and their power dissipation due to joule effect.The
power is estimated using the most efficient clock generation
system currently proposed in literature [13].

III. SYNCHRONOUS VERSUS ASYNCHRONOUS

In this work, a reference architecture is a microprocessor,
described in section V and sketched in Figure 2.A. For a
detailed comparison between a fully synchronous and an
asynchronous solution we chose two of the main processor
components: the Arithmetic Logic Unit (Figure 2.C) and the
instruction memory (Figure 2.B), both discussed herein.

A. ALU

The ALU organization is the same in both Boolean and
NCL cases at the higher hierarchical level, the only difference
being the delay blocks (gray in Figure) added to the Boolean
solution to synchronize signals. The architecture is a simple
ripple carry adder for addition and subtraction, and a logic
block for AND/OR operations. The output multiplexer selects
between logical and arithmetical operations, while the input
multiplexer selects, if needed, the negated operand for two
complement’s subtraction.

Each Full Adder is based, for the two logic cases, on the
structures in Figure 2.F and 2.G respectively. The Boolean
solution is implemented starting from the MV; NCL circuit
relies on NCL gates, internally based on MV. Details on this
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structure can be found in [5]. It is enough to note here that
double wires for each logic signal are present and that, for ex-
ample, TH23 gate has function OUT=MV(B,C,OUT)+A. The
internal feedback is necessary to assure the delay insensitivity.

Data are represented using 32 bits. Simulation results are in
Figure 3 and 4 for the Boolean and NCL version respectively.
As previously mentioned the behavior is intrinsically pipelined

Fig. 3. Boolean logic ALU simulation results: 2+1 and 2-1 operations are
shown. SignalSEL1 defines addition or subtraction.

as evident in Figure 3. At every clock cycle a data is accepted
at the inputs, and an output is correspondingly generated
with a high latency. The Boolean implementation of the alu
is troublesome. Signals must be precisely synchronized in
order to obtain working circuits, otherwise problems ariseas
discussed in the following. In this simulation the delay of the
synchronizing blocks was intentionally altered to show how
critical is this problem. In the example chosen, two logic
operations are performed, first the addition 2+1, and then the
subtraction 2-1, according to selection signalSEL1. The circuit
has a long latency due to its intrinsic structure, and results
are available after a long delay (skipped in Figure). The first
available output is correct (3 due to the addition). During the
next clock cycle, the output correctly changes because of the
pipeline, but the result shown is wrong. At the further clock
cycle the output changes again and now the results is correct.
This behavior is caused by a mismatch in the propagation
time of the first selection bit, which internally changes one
clock cycle after the input signal, generating the glitch (this
is a demonstration of the “layout=timing” issue). It is worth
noticing that this glitch has the same importance that it hasin
CMOS circuits when for sure it is sampled by a flip-flop; It
is an error which propagates throughout the circuit.

The use of NCL logic totally eliminates this problem. An
example is in Figure 4 where two operations are shown using
NCL encoding, a logic OR and an addition (bottom details
show the Boolean conversion for clarity). It is worth noticing
how every signal is encoded using two bits and how signals
periodically switch from DATA to NULL: A new data is
accepted only when all the inputs switch to the NULL state
independently from their delay. In this way circuits work
normally also in presence of different propagation delays.

NCL logic, like every asynchronous logic, requires a com-
munication protocol to operate. This can be gathered by Figure
2.A, where every block of combinational logic is embraced by

two asynchronous registers (a transmitter TX and a receiver
RX) that generate and exchange this handshake protocol:

• A DATA is propagated from a register output (TX) to the
input of the next one (RX) through the combinational
circuit.

• At this point register RX receives the DATA and sends
back an acknowledgement (ACK) to the previous register
(TX).

• When ACK is received at TX, a NULL (all the outputs
to ’0’) is sent through the combinational circuit.

• RX receives the NULL and sends back another ACK
signal.

• Once this second ACK signal is received TX register is
ready to accept a new data from its combinational input.

So, the behavior of QCA circuits is pipelined for what
concerns magnetic signal propagation, but the asynchronous
protocol freezes the circuit from the logic point of view and
accepts a new data only after the completion of the DATA-
NULL cycle. An important remark is due at this point. The
propagation time of the signals through the circuit and the
propagation time of the ACK signal are equal to the latency
of the combinational circuit. This means that an asynchronous
register accepts a new data only after a time equal to 4 times
the circuit latency (one time for the propagation of the DATA,
one time for the propagation of the NULL and two times for
the propagation of the ACK signals).

Table I shows the comparison between the two ALUs in
terms of latency, area and power dissipation due to nano-
magnets switching. The power dissipation increased, but the
area occupied by the NCL version is more than two times
bigger. This is easy to explain with the two bits coding of
the NCL logic, and the relative additional interconnections
overhead. The latency of the circuits is also double than the
Boolean one. Therefore NCL logic solves the “layout=timing”
issue allowing a less constrained design flow through standard
design automation algorithms. This comes at the price of
increasing the area of the circuit and slowing down the
operations. As previously remarked, a Boolean QCA circuit
accepts a new data after each clock cycle. On the contrary a
QCA NCL accepts a new data after a time equal to a multiple
of the latency. This time is itself bigger than the latency of
the Boolean version.

B. Parallel Memory

We run the same type of comparison for a parallel memory
(Figure 2.B) organized as a 16x14 matrix (the microprocessor
instruction memory). The structure is quite simple. A decoder
is used to select the desired row of the matrix and the
correspondent output of the memory. Like in the ALU, delay
blocks (colored in gray) are used only in the Boolean version
to synchronize signals. A detail for a memory cell for the two
logic types are in Figure 2.D and 2.F.

The waveforms are not shown for sake of brevity, but table
I shows a comparison between the two implementations. Here
the difference between the two logic choices is huge. This
is due to the complexity of the memory cell implemented in
NCL logic as evident in Figure 2.F. The power consumption



6

Fig. 4. NCL logic ALU simulation results: an OR and and addition are shown. Top waveforms are NCL encoded, while bottom details are their Boolean
translation.

of the memory is around 100 times bigger than the Boolean
one, and the area is 44 times bigger. The power dissipation
due to the clock wires, estimated using the area, the zones
width and the technological choices in [13] for what concerns
the magnetic field application, are reported in the last column
in table. Data are on the same order of the magnets power
consumption, and maintain in all the cases a trend similar to
the one obtained for the magnets.
The difference in terms of latency is not so big but still
high (about 6 times). Notwithstanding the higher memory
complexity, the latency of both memories is lower than the
two ALUs. This is caused by the choice of the ripple carry
adder, which is a high latency circuit.

Further optimizations on the NCL memory architecture are
possible, and therefore we can expect a performance improve-
ment. However this results show that NCL logic is not suited
for memory structures (at least applied to QCA technology),as
it could severely worsen results even defeating the advantages
of adopting this technology. A Boolean memory would be
better to use in this case, provided that a good input signal
synchronization is assured. In the case of a memory it is easier
to assure the absence of glitches. This because of it its higher
regularity, because the cells are small, and because given
a memory style choice, only the parallelism could change,
without impacting the relations or delays among cells. Clearly,
until a physical realization is not done, this assumption cannot
be really proven.

TABLE I
ASYNCHRONOUS VERSUS SYNCHRONOUS COMPARISON

Area Latency Power Power Clock
[um2] [n. clock cycles] [uW] [uW]

ALU Bool 1.33 34 0.52 0.86
ALU NCL 2.64 72 1.04 1.65
Mem Bool 1.04 6 0.39 0.65
Mem NCL 44.38 26 36.60 27.66

Microprocessor 10.60 426 3.88 6.62

IV. FEEDBACK IN QCA CIRCUITS

Working with a complex circuit like a microprocessor
allows us to pinpoint a negative characteristic which is typical
of pipelined circuits, but amplified in QCA technology. To
focus on an example we can consider the structure shown in
the right section of Figure 2.A. Here one of the ALU inputs
is connected, using a feedback signal, to its output. The ALU
connected in this way performs the addition between an input
and the result of the previous operation. However, since the
circuit is intrinsically pipelined, it accepts a new data atevery
clock cycle, but, as shown in Figure 2.A, the feedback loop
has a propagation delay of≈ 100 clock cycles due to the
number of clock zones it crosses in this example. Therefore
at the next clock cycle, it performs the addition between an
input and the result of the operation occurred 99 clock cycles
before.

This problem is well known, as it is typical of conditional
jumps in RISC microprocessors. However, in the case of QCA
circuits, it is heavily amplified by the high pipeline stages
and by every loop in the circuit. Only the adoption of an
asynchronous logic like NCL can solve it, as the computation
is performed only when all the signals arrive to the inputs of
the circuit. This means that a new ALU operation is executed
only when the result of the previous one has passed through
the feedback loop and arrived at the inputs of the ALU itself.

V. M ICROPROCESSOR: M IXED LOGIC SOLUTION

On the basis of previous considerations we can claim that
for QCA technology the Boolean logic in a synchronous
environment is the best theoretical solution to obtain maximum
performance. However, implementation related aspects, like
delay synchronization and feedbacks in sequential circuits,
prevent its actual applicability. If the first issue could in
some cases be overcome with the development of an ad-
hoc algorithm to automatically synchronize signals (when
possible), the second issue can be solved only using NCL
logic, and accepting to lose performance.

We thus propose a solution to achieve the best compromise
between circuits feasibility and performance optimization: a
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Fig. 5. Division algorithm execution: 12/3=4. In the left inset a description of the phases numbered in the bottom of the Figure.

mixed Boolean-NCL logic. The asynchronous structure is used
for the global architecture, leaving the synchronous solution
for sub-blocks (for example the memory) where NCL would
critically compromise results. Such approach requires theuse
of appropriate interfaces between the two logic topologies.

To test the proposed solution we implemented a simple
four bit microprocessor (Figure 2.A) composed by four main
components: a program counter, a parallel memory able to
store 16 instructions of 14 bits, a data memory with 4 memory
cells of 4 bits each, and the above mentioned ALU. The
microprocessor is organized in 4 asynchronous (logic) pipeline
stages, where a pipe stage is a combinational circuit enclosed
within two asynchronous registers, which solve the feedback
problem. In this implementation, only the two memories use
Boolean logic (grey in Figure) as the most critical if NCL
based.

A division algorithm allows to test the architecture: a 12/3
division is reported in the example in Figure 5. The waveforms
are organized in phases from 1 to 14 for sake of clarity. The
phases are briefly described in the Figure inset (left).

The microprocessor performance are shown in table I.
The latency is high, due to the design complexity and the
lack of optimization, anyway an interesting comparison can
be made with the parallel NCL memory alone. The whole
microprocessor is 4 times smaller and it has 10 times less
power dissipation than the memory NCL alone. This clearly
shows that our approach is correct, as it allows to build every
kind of QCA circuits without losing too much performance.
Clearly, the memory must be carefully designed in order to
synchronize delays. However this is not complex as for other
blocks due to intrinsic regularity.

A final remark can be done on power dissipation. An
evaluation has been done to compare this QCA mixed so-
lution to an equivalent CMOS one. We have implemented,
using CMOS technology, a microprocessor with the same
structure and operating at the same frequency of 100MHz,

as our QCA processor. We have synthesized it on a 45nm
standard cell technology and we have calculated its total power
dissipation, which results in 536µW . The QCA solution is
then advantageous: As shown in table I, it dissipates just
3.88+6.62=10.5µW in the mixed case. The power is estimated
as explained in section 2 and it is worth to remind that it is
based on several constraints and parameters chosen to obtain
a realistic evaluation.

VI. CONCLUSIONS

This study soundly allows to answer to this paper title ques-
tion. A totally synchronous architecture in QCA technology,
thought granting high data throughput, would be unfeasible,
as it would require really complex synchronization procedures
to solve the ”layout=timing” constraint and could be applied
to combinational circuits only. Decisive relief is grantedif a
global asynchronous circuit organization, for example based
on Null Convention Logic, is adopted. No synchronization of
signals and both combinational and sequential circuits with
any order of feedback can be implemented.

As for all medications, collateral effects may arise, espe-
cially if dosage is not respected: Circuits are bigger, slower
and more power hungry (due to the increased complexity). If a
poisonous effect is to be avoided, trade-offs must be carefully
evaluated, and, when a block regularity reduces the burden of
signal synchronization, synchronous blocks can coexist with
asynchronous ones.

This solution is a compromise between performance and
circuits feasibility. It is also clear that QCA technology is
best suited for pure combinational circuits, were it can grant a
consistent advantage over CMOS technology, in terms of speed
and especially power dissipation. General purpose circuits are
feasible using the asynchronous approach, but at the price of
lowering the overall performances. However, results showed,
even in this case, advantageous.
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Our future efforts will be directed toward finding a different
solution, still asynchronous but not based on NCL logic. The
aim is clearly to obtain a significant leverage of the NCL
burdens. At the same time our efforts will be directed towards
an automatic circuit synthesizer, placer and router for boolean
QCA logic circuits.
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