
 
Figure 1: Schematic of a combined adaptive body bias and adaptive supply voltage adaptation scheme 
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Abstract 
A key component for enabling smart silicon is the ability to create sense/respond feedback loops 
that allow adaptive circuit behavior as a response to variations.  Such systems require the use of 
sensing techniques that describe the changes that the circuit experiences. In this paper, we 
describe the use of sensing schemes that drive on-chip process and aging variation measurements 
in manufactured silicon.  We describe three case studies that show techniques for designing 
sensors: one of these is targeted to aging variations, while the other two capture process variation 
effects.  The first case study, demonstrated in silicon, shows how beat frequencies can be used to 
build silicon odometers that capture how much a circuit has aged over its lifetime.  The second 
and third case studies utilize a mix of presilicon process characterization data (as used in 
statistical timing/power analysis) and postsilicon measurements to predict the performance drift 
due to process variations. 
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1. Introduction 

In the nanometer regime, CMOS integrated circuits experience significant degradations in 
predictability and reliability.  These variations in circuit behavior arise from a variety of sources 
whose underlying causes may be traced to process variations, environmental variations, or aging. 
Current solutions to overcoming variations include methods that overdesign systems, or that 
statistically design a population of circuits to ensure that a desired fraction meet specifications.  
However, such approaches can provide limited relief since the magnitude of variability and the 
number of failures, both along the spatial and temporal axes, are showing a markedly increasing 
trend.  The net result of these effects is that variability is steadily eating into design margins and 
yield.   
 An alternative to static presilicon design margins is the use of postsilicon sensor-based 
adaptation schemes that capture multiple sources of variation, and use sensor data to mitigate the 
impact of these variations.  Such “smart silicon” strategies are enabled by closed-loop control 
systems. Typically, these consist of a feedback loop that assimilates the information captured by 
various sensors, processes it, and triggers a response that suitably adapts the circuit to ensure that 
it meets its specifications. An example of such a scheme, using adaptive body biases and adaptive 
supply voltages, is shown in Figure 1. Data from a set of sensors is sent to a controller that 
generates body bias values, vbn and vbp, as well as the supply voltage, Vdd. An example of such an 



optimization is a classical adaptive body bias scheme1 where a sensing circuit is used to predict 
the performance drift, and this is used to feed back a signal that adapts the body bias over the die 
to return it to work within performance bounds. 

The critical difference between presilicon and postsilicon optimizations can be 
summarized as follows: presilicon optimizations attempt to optimize over an entire population of 
manufactured parts, while postsilicon fixes are focused on die-specific solutions that improve the 
behavior of each specific manufactured part.  In a large-volume manufacturing scenario, this 
implies that postsilicon optimizations must be simple, fast, and effective, and must be able to 
adaptively improve the behavior of the circuit over its entire lifetime.   

The heart of any postsilicon detection scheme is a sensor structure that is used to 
determine the nature of the variations, and the focus of this paper is on sensing schemes for 
process and aging variations.  The nature of these schemes can be different: process sensors 
detect the effect of one-time variations from manufacturing, which cause process parameters to 
shift from their nominal values on a specific part, while aging sensors detect run-time variations 
due to circuit aging.  Process sensors can be used to enable compensations at “t=0” (i.e., after 
manufacturing), while aging sensors supply different data over the life of the chip.  Of course, 
even aging sensors must capture the effects of process variations on various aging and 
performance effects. Various schemes may be used to build on-chip sensors that enable smart 
silicon, and these may be categorized as follows: 
Leveraging presilicon+postsilicon vs. postsilicon-only data: To enable the design cycle, the 
statistics of CMOS processes are typically characterized for presilicon analyses.  While these 
statistics are true for the overall population of all chips and are not specific to a single 
manufactured part, they may be leveraged, using both this presilicon data and some postsilicon 
measurements, to build sensors that correlate well with design characteristics.  However, process 
characteristics may shift over the lifetime of the process, possibly requiring recalibration of the 
sensors.  An alternative class of sensors avoids this issue by using postsilicon measurement data 
alone. 
Circuit-specific sensors vs. general sensors: Some sensing schemes are tailored to the specific 
circuit blocks that they are intended to measure, e.g., by setting their sensitivities to variations to 
be similar to those of the original circuit, often leveraging presilicon data (described above) to 
match the sensor to the circuit.  Others capture general chip-wide trends and do not attempt to be 
circuit-specific. 

In this paper, we overview some case studies describing the design of sensors to detect on-
chip variations, bringing out the use of sensors under various combinations of the above three 
categories. Our first case study in Section 2 describes techniques for building general aging 
sensors based on postsilicon-only data.  These sensors are designed to capture time-varying 
performance shifts due to aging phenomena based on ring oscillators (variously abbreviated as 
“ROSC” or “RO”), based on the concept of beat frequencies.  Next, in Section 3 we describe two 
case studies for circuit-specific process sensors that leverage both presilicon and postsilicon data.  
Finally, we present concluding remarks in Section 4.   
2. On-chip odometers for reliability sensing 

Parametric shifts or circuit failures caused by Hot Carrier Injection (HCI), Bias Temperature 
Instability (BTI), and Time Dependent Dielectric Breakdown (TDDB) in CMOS technology have 
become more severe with shrinking device sizes and voltage margins.  These phenomena may 
result in parametric variations, which cause circuit delays and leakage to shift as the circuit ages, 
or catastrophic failure.  To enable adaptivity, or even to measure the performance degradation 
efficiently, it is essential to embed on-chip reliability monitors that aim at accurately measuring 
these aging effects. 



A new class of on-chip reliability monitors has recently been demonstrated in silicon, 
targeted for a range of applications such as reliability characterization during process ramp up, 
chip lifetime projection, in-field product data collection, and real-time aging compensation. These 
monitors are referred to as odometers, capturing their ability to determine how far down the road 
to aging a chip has proceeded. Dedicated odometers provide several important advantages that are 
not achievable using traditional probing or standard ROSC structures. First, using odometers to 
control the aging measurements enables extremely high measurement resolution (e.g. sub-
picosecond).  This is particularly critical for accelerated stress experiments in which the voltage 
and temperature conditions are elevated beyond normal conditions for keeping the test time 
attainable. The odometer’s high resolution allows voltage and temperature stress conditions closer 
to the actual product operating condition, significantly enhancing the confidence of the lifetime 
estimation results. Second, the measurement time can be made short (e.g. sub-microsecond) using 
a dedicated odometer which is essential when interrupting stress to record BTI measurements, as 
this mechanism is known to recover within microseconds. Finally, from a device characterization 
point of view, odometers are useful for monitoring statistical behaviors as a large number of 
devices can be stressed in parallel under various configurations, resulting in a large experiment 
time speedup.   
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Figure 2: Simplified diagram of silicon odometer beat frequency detection system 
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Figure 3: Illustration of the silicon odometer system. The beat frequency between the reference ROSC 
(blue bars) and the stress ROSC (red bars) is measured using simple digital logic gates. A1% degradation in 
the stressed ROSC frequency (0.99 GHz à 0.98 GHz) translates into a 50% change in the output count 
NOUT (100 à 50) achieving a high frequency resolution within a short measurement time. 

We now describe the central idea behind the odometer designs that our group has 
demonstrated in several unique test chips2,3 in processes ranging from 65nm to 32nm. Figure 2 
shows a simplified diagram comprising a pair of ROSCs, a phase comparator, a counter, and a 
scan based interface. During the short measurement periods, a phase comparator uses a fresh 
reference ROSC to sample the output of an identical stressed ROSC.  The phase comparator can 
be built using a standard D-flip-flop circuit with outputs from the two ROSCs connected to the 
data and clock inputs, respectively4.  In this configuration, the output of the stressed ROSC is 
sampled at every rising edge of the reference ROSC output producing a signal that exhibits the 
beat frequency as shown in Figure 3.  ROSCs can be either put into stress mode or kept fresh by 
switching the local power supply using power gates. The output signal of this phase comparator 
exhibits the beat frequency, which is the difference between the frequencies of an unstressed 
reference ROSC and the stressed ROSC under test.  A counter is used to measure the beat 
frequency by counting the number of reference ROSC periods during one period of the phase 
comparator output signal.  This count is recorded after each stress period to calculate the shift 
down in the stressed ROSC frequency.  Suppose the initial frequency of the reference ROSC is 



called fref, that of the fresh ROSC to be stressed is fstress, and the initial output count is N1. Also, 
without the loss of generality, we can assume that fref is slightly higher than fstress.  This condition 
can be achieved in a real chip using frequency trimming circuits and a simple scan-in test 
interface.  The period of the beat frequency signal is the time it takes for the reference ROSC to 
accumulate N1 periods or for the stressed ROSC, which has a slightly lower frequency, to 
accumulate (N1-1) periods.  This one clock period difference arises from the fact that the output 
of the stressed ROSC with a longer period will take one less period to cycle back and align with 
the output of the reference ROSC while the two ROSCs are free oscillating.  Hence, the period of 
the beat frequency signal can be expressed as:  

 1
!!"# ∙ !!   =   
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At the end of a stress period, fref will remain unchanged, but fstress will be decreased due to aging, 
and we call the new frequency fstress´.  We also have a new output count (N2), so the resulting 
equation is: 
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Using these two equations, we can calculate a frequency shift during stress as follows: 
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Those simple calculations show that if fref is only slightly higher than fstress, the output 
count is high.  For example, the count N1 is 100 for a 1% frequency difference as shown in Figure 
4(b).  This slight difference can be ensured with trimming capacitors and calibration.  The 
subsequent small decreases in fstress due to aging cause a large change in this count.  For instance, 
a 2% difference between the ROSC frequencies gives an N2 of 50, so a 1% shift to that point is 
translated into a decreased count of 50 (Figure 4(b)).  Consider another example in which the 
count value changes from 100 before stress, to 99 after stress.  In this scenario, the corresponding 
frequency shift according to equation (3) can be calculated as  
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Figure 4:  (a) DC stress results for different stress conditions2. Voltage and temperature acceleration trends 
for BTI can be modeled for chip lifetime projection. (b) AC stress results compared with DC.  We see a 
drop in degradation of roughly half at low frequencies, compared with DC stress, due to BTI recovery.  As 
frequency is raised, HCI plays a larger role in the aging.  This leads to a larger power law exponent, which 
is a signature of HCI5. 
Therefore, with high frequency ROSCs, the beat frequency detection system can achieve 
extremely high measurement resolution on the sub-picosecond order.  It is important to note that 



the number of counts required to obtain such high resolution is very small (i.e. around 100 ROSC 
cycles).  This is crucial for preventing the fast BTI recovery that occurs within microseconds after 
the stress conditions are removed for measurements. The proposed odometer technique can be 
used to measure aging in other circuit structures (for example, a critical path or a memory delay 
path) by simply replacing the inverter stages with other logic gates of interest. It’s also worth 
mentioning that the accuracy of the beat frequency detection scheme becomes higher when the 
two ROSC frequencies are closer to each other. 

Now, we present sample results collected from a previous test chip design to demonstrate 
the effectiveness and convenience of our odometer designs for reliability monitoring. Figure 4 (a) 
displays the frequency shifts measured under different voltage and temperature conditions.  A DC 
stress was applied and the measurement time was limited to less than a microsecond. Results 
show that BTI induced degradation depends exponentially on the stress voltage and stress 
temperature. The acceleration factors with respect to the two stress parameters can be readily 
calculated based on the measured data. Figure 4 (b) shows the frequency shifts for both DC stress 
and AC stress conditions. At low AC stress frequencies, a drop in total degradation of ~1/2 
compared with DC stress is observed, due to the BTI recovery that takes place during in each half 
cycle.  As the frequency is raised, HCI plays a larger role in the aging due to the increased 
switching activity.  This leads to a larger power law exponent, which is a signature of HCI.   
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Figure 5: Comparison of ROSC based aging monitors6. 

Figure 5 compares various ROSC based systems for monitoring frequency shifts 
including the beat frequency detection method. The scheme denoted as “single ROSC” measures 
the output of a single ROSC whose frequency is divided down by a counter for easier off-chip 
frequency measurements using test equipment.  The “2 ROSC, simple” scheme measures the 
degradation in one stressed ROSC by counting the number of periods it cycles through while a set 
number of periods in a fresh reference ROSC are counted7.  The resolution of the first two 
schemes in Figure 5 is simply the measurement time divided by the ROSC period, while that of 
the beat frequency technique can be derived from equation (3), we see that the latter technique 
reaches a maximum resolution of 0.01% within only 0.3 µs with a single measurement recorded, 
while the other systems require 100X more time to reach the same accuracy.  The longer 
measurement times in the standard period counter systems would result in unwanted BTI 
recovery which can occur within a few microseconds or less.  In addition to the high frequency 



resolution, the beat frequency technique benefits from a high immunity to voltage or temperature 
variations due to its differential nature.  Simulation data provided in the bottom row of Figure 5 
verifies that both the “2 ROSC, simple” and “2 ROSC, beat frequency” schemes have 
significantly less error compared to the “Single ROSC” scheme in the presence of common mode 
supply voltage fluctuations.  Considering that these reliability sensors are simpler than the critical 
path monitors widely used in real products8, we do not anticipate the sensor area to be a major 
concern.   

In summary, the beat frequency technique achieves a significantly higher frequency 
measurement resolution (sub-picosecond) in a shorter measurement time (sub-microsecond) than 
traditional measurement techniques with only a modest increase in the number of circuits, and is 
immune to common mode environmental variations. As proven through our previous test chip 
studies, the attractive features of this technique make it an indispensible apparatus for circuit 
aging research.  
3. Process variability sensors for performance prediction 

Process variations, which affect parameters such as dopant density, the effective channel 
length, and the oxide thickness, are widely acknowledged to significantly affect circuit 
performance.  These may be classified into systematic or random variations, depending on 
whether they are deterministic or probabilistic.  Random variations may be either die-to-die 
(D2D) variations from one chip to another, as well as within-die (WID) variations among 
different locations, which often show spatial correlations, within a single die. 

At the presilicon stage, spatial correlations are typically precharacterized for a given 
process, and these parameters are fed into statistical static timing analysis (SSTA) computations 
for circuit analysis. Spatial correlations may be characterized using various models, based on 
square or hexagonal grids, and typically represent the delay as a function of a fundamental set of 
random variables, p1 , …, pn. These variables are typically correlated Gaussians, with the 
correlation decaying with distance: it is common practice to use methods such as principal 
components analysis (PCA) to orthogonalize the variations into a set of uncorrelated normalized 
basis variables, v1, …, vn. The circuit delay D can then be represented in the following canonical 
form: 

D = D0 + Σi=1 to n ki vi + kn+1 vn+1 

where ki, 1 ≤ i ≤ n correspond to the coefficients associated with the n principal components, and 
kn+1 is the coefficient of all uncorrelated random sources, lumped into one variable vn+1. 

There is a well-established body of literature that efficiently conducts presilicon circuit 
analysis to determine the effects of random one-time variations on key circuit performance 
parameters such as delay and power.  SSTA and statistical power analysis techniques9 to evaluate 
the effects of one-time process variations in performance have already found their way into 
industrial practice.  The computational efficiency of these methods is made practical through a 
preprocessing step which has shown that Gaussian-distributed correlated variations can be 
orthogonalized using principal component analysis (PCA); similarly, non-Gaussian distributions 
can be processed using independent component analysis (ICA).  
 In our discussion, we refer to the circuit to be evaluated as the original circuit, and the 
detection mechanism as the test circuit.  The parameters of interest for the original circuit are 
typically the delay and power dissipation. Without precisely measuring the original circuit, it is 
not possible to estimate its delay, and our goal is to use a limited set of measurements to 
substantially narrow down the range of the performance distribution. The designer has the 
freedom to design these test structures so that they provide the maximum amount of information. 
 Traditional sensing schemes are based on test structures in the form of ROs, inverter 
chains, “critical path replicas,” a set of simple delay elements, or using a rudimentary look-up 
table approach based on gross estimates of logic and interconnect speeds10  that aim to capture the 
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Figure 6: (a) Distribution of RO test structures over a die area (b) Prediction of circuit performance based 
on measurements from these structures. 

variations in the performance of the original circuit.  However, such structures are based on 
simple assumptions, and may provide incorrect results.  For example, measuring the RO can 
provide accurate information about its behavior – but there is a risk in using this information to 
draw an inference about the original circuit, which can have a very different structure, and very 
different sensitivities to variations.  A critical path replica, on the other hand, can only capture the 
behavior of one path – but real circuits have a very large number of critical paths, each of which 
can have different sensitivities to variation. It is possible, and indeed likely, that after 
manufacturing, the actual critical path is different from the nominal critical path.  Therefore, any 
inference drawn from a replica of a single critical path, such as the nominal one, is unreliable.  
While it is possible to account for these inaccuracies by “padding” the prediction with a 
conservative margin, such an approach must incorporate pessimism, which is liable to 
unnecessarily leave a considerable amount of performance on the table. 

A fundamental limitation of on-chip surrogate test structures is that they cannot capture 
the effects of independent (spatially uncorrelated) variations. By definition, there is no 
relationship between uncorrelated parameter variations (aside from sharing gross statistics) of a 
test structure and those in the rest of the circuit, and the only way to determine these variations 
fully is through delay test of the original circuit.  A second effect is that such variations add noise 
to the measurements from on-chip test structures: this can be overcome by “drowning out” 
uncorrelated random variations by increasing the number of stages in the test structure (noting 
that the sigma/mu of these variations reduces with the number of stages).  

We describe two methods below: one based on building ring oscillators, and another on 
building a synthetic path that represents the variations in the entire circuit. 
3.1 RO test structures 

This framework is based on a set of distributed ROs, spread throughout the area of the 
chip.  By measuring the speed of these ROs, it is possible to infer information about the speed of 
the original circuit, based on the use of conditional probabilities.  Intuitively, each RO can capture 
the spatial variations in the region in its neighborhood; with a sufficient number of well spread-
out ROs, it is possible to recapture the value of the deterministic variations and the spatially 
correlated random variations11,12. 
 Assume that n ROs are placed on a chip, and define a delay vector  

dt = [dt,1, dt,1, · · ·, dt,n]T 
for the test structures, where dt,i is the random variable (over all manufactured chips) 
corresponding to the delay of the ith test structure.  

For a particular fabricated die, the delay of the original circuit and the test structures 
correspond to one sample of the distribution that describes the underlying process parameters, and 



 
Figure 7: A comparison between the predicted and true delay for a synthesized RCP. 

this results in a specific value of d = dreal and of dt = dreal. Since the n-RO scheme is much smaller 
and less complex than the original circuit, these measurements can be performed rapidly. The 
problem of delay prediction can be stated as a conditional probability evaluation, corresponding 
to finding  

dreal = f (d|dt = dr). 
Based on the underlying statistics of the characterized process distribution, it is 

possible11,12 to compute the function f above.  This computation is based on a presilicon analysis 
of the probability distribution of d and dt in canonical form, based on which the conditional 
distribution can be determined.  With a sufficient number of test structures, the variance of the 
conditional distribution can be made sufficiently small, as illustrated in Figure 6.  The widely-
spread curve marked “SSTA” shows the overall distribution of delays based on presilicon SSTA 
for a placed instance of the ISCAS89 benchmark circuit, s38417. For a manufactured part whose 
real delay is shown by the dotted line marked “Real Delay,” a prediction based on 60 ROs is 
shown by red curve marked “60 RO”, and one using 150 ROs by the green curve marked “150 
RO”: these can be seen to have progressively narrower variances. 
3.2 Building a Representative Critical Path 

The above RO-based approach consists of three steps: a) presilicon test structure insertion 
b) postsilicon test structure measurement c) postsilicon computations to infer the speed of the 
chip.  The third step requires additional computation, which may not always be reasonably 
possible in the context of postsilicon adaptation.  To bypass this step entirely, an alternative 
approach replaces the ensemble of ROs by a single synthesized test structure that replicates the 
delay characteristics of the original circuit13. 
 This structure, which we refer to as a representative critical path (RCP) for the circuit, 
leverages the property of spatial correlation between parameter variations and we optimally 
determine its structure and physical locations. Specifically, we synthesize the RCP and place it on 
the die so that its delay is highly correlated with that of the original circuit.  Since the RCP is an 
on-chip test structure, it can easily be used within existing post-silicon tuning schemes, e.g., by 
replacing the nominal critical path in a typical sense/respond adaptive loop14.  Two heuristic 
approaches for building the RCP were presented in our work13, and were demonstrated to work 
effectively. 

This approach differs from the method based on a critical path replica in several ways.  
First, while the critical path replica attempts to exactly match the delay of the circuit by 
reproducing one or more critical paths, the delay of the RCP can be quite different from that of 
the circuit.  Specifically, the criterion for building the RCP is to ensure that the sensitivity of its 
delay to variations is similar to that of the original circuit.  In other words, if its delay changes by 
a certain value, then with a predictable level of confidence, we can forecast that the delay of the 
circuit changes by a specific value.   



Figure 7 shows a quantitative comparison of our approach with a conventional method 
that replicates the nominal critical path for a benchmark circuit.  The nominal critical path 
approach is always optimistic: to see this, note that the delay of any path (including the nominal 
critical path) in the circuit is a lower bound on the delay of the actual critical path in the 
manufactured circuit.  Therefore, using the nominal critical path as a delay estimator is 
guaranteed to underestimate the actual delay.  In contrast, the accepted practice in timing 
characterization is that delay estimates should be overestimated, or pessimistic. 

In its purest form, our method may be either optimistic or pessimistic, and the scatter plot 
can be seen to lie on either side of the x=y line in Figure 7.  To overcome this, the mapping 
between the real and predicted delay is chosen to be on the black line, which captures a certain 
percentile (e.g., 99 percentile) of all points: the percentile can be chosen according to the required 
level of confidence.  While such a pessimistic approach can also be applied to the nominal critical 
path, for the same confidence level, the inaccuracy is improved by 2x or more using the RCP.  
This result follows from the narrow variance of the predicted delay, similar to the sharp curve 
illustrated in Figure 6. 

In this presentation, we have considered the use of an RCP to measure process variations. 
However, the same idea may also be used to measure aging variations: the RCP should be 
constructed so that its delay sensitivity to aging resembles that of the circuit it represents.  
4. Conclusion 
We have presented several case studies showing how sensor structures may be used to 
characterize process and aging variations in a chip.  Various schemes have been presented, some 
of which rely purely on postsilicon measurements while others leverage presilicon 
characterizations of the process. Clearly, the latter class of structures are as accurate as the 
presilicon characterization, but if the process is seen to drift due to characterization, the updated 
parameters may be used, with occasional additional offline computations, to interpret the results 
of test structure measurements.  Our case studies also show structures that are independent of the 
circuit structure and capture chip-wide variations, as well as others are more closely tied to the 
specific structure they aim to measure. 
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