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h FOR DECADES, THE performance of serial com-
puting systems has grown by leaps and bounds.
Driving this progress has been Moore’s Law; the
number of transistors available has rapidly increased
while costs have plunged. Architecture innovations
and increased core clock frequencies have led to
explosive growth, but limits appear to have been
reached: the 2001 International Technology Road-
map for Semiconductors (ITRS) [21] projected
clock frequencies scaling from 1.684 GHz in 2001
to 6.739 GHz by 2007, but because of a variety of
challenges (primarily power constraints), modern
microprocessors fall far short of this mark.

As an alternative to serial performance gains, the
industry has turned towards parallel computationV
increasing the number of processor cores, while
keeping core clock frequencies relatively stable.
Competition between processor vendors now com-
monly features core counts, rather than clock rates.
The 2009 ITRS [22] projects the number of cores
doubling every other technology generation.

Parallelism is by no means a new idea, and for
many years there has been debate on how much

benefit can be derived [1], [2], [12],
[20]. With little hope for further serial
performance gains, software devel-
opers are now forced to embrace pa-
rallelism, and will naturally look to
the scientific literature to find best
practices.

There are a number of obvious pa-
rallel computing successes, but there

are also a great many pitfalls, and some surprisingly
large errors in the literature. A primary objective of
this paper is to highlight myths and misconceptions,
so that past mistakes can be avoided.

Background
In this section, we will define a few terms, and

briefly recap computational complexity theory.
While most computing professionals know this
material thoroughly, we will summarize the topic,
as it is critical to dispelling common myths.

Parallel scalability and serial constraints
In order for a parallel system to complete a task

more quickly than a serial system, there must be
work that can be divided up to keep multiple pro-
cessors busy. It’s not difficult to find this: if one were
to add vector A to vector B, each of the Ai þ Bi terms
could be computed simultaneously.

We will refer to an algorithm as scalable if it can
be accelerated linearly to large numbers of pro-
cessors. Vector addition, as well as many other tasks,
are scalable.

At the same time, however, there are many tasks
with serial constraints. Some value X might be nec-
essary before beginning a computation for Y, which
is in turn needed by Z. Serial constraints between
operations limit scalability.
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Computational complexity
Complex software applications, whatever they

might be, are algorithms. In practice, an application
has a great many subcomponents, many of which
perform well-known tasks (searching, sorting, and
so on). Algorithmic comparisons are normally done
using the computational complexity framework de-
veloped by Hartmanis and Stearns [15].

As a simple example, consider the problem of
finding

Pn
i¼1 i, the sum of the integers from 1 to n.

This can be accomplished with a simple loop con-
struct; the computational complexity of such an ap-
proach is OðnÞ, with run time growing linearly with
n. A second approach to consider is the closed form,
ðn% ðnþ 1ÞÞ=2. The closed form is Oð1Þ, constant
timeVit should be obvious that no matter how
slowly one might perform the multiplication and
division steps, there is a value of n at which the
closed form is guaranteed to overtake the loop (and
in practice, that value is small).

This basic principle applies to more complex
algorithms. Sorting, for example, is well studied, and
there are a number of well known sorting algorithms
[6]. In Table 1, we show the run times for sorting
between 10,000 and 160,000 randomly generated
integers, using a variety of Oðn2Þ and Oðn log nÞ
algorithms. An ordinary 2.4 GHz %86-based laptop
with the Gnu C compiler was used for this set of
experiments.

The results illustrate the connection between
computational complexity and run time; doubling
the size of the input produces roughly a factor of four
increase in run time for the Oðn2Þ algorithms. Sim-
ilarly, the run times of the Oðn log nÞ algorithms in-
crease slightly more than linearly with problem size.

Source code for the sorting algorithms men-
tioned above is easily available; interested readers
are encouraged to try running the experiments for
themselves. For the next section, it will be useful
to keep in mind the run-time differences between
Oðn2Þ algorithms and Oðn log nÞ algorithms.

The algorithmic landscape
An algorithm for a given problem is considered

efficient if there are no other known algorithms for
the problem with lower computational complexity.
When developing a software application, a number
of different algorithms for any given task may be
available. Figure 1 shows a Venn diagram, grouping
algorithms by efficiency and scalability.

Some algorithms, such as bubble sort, are neither
efficient, nor scalable. Others, such as the naive
approach to computing the sum from 1 to n, are
scalable, but inefficient. There are a number of
sorting algorithms (quick sort, heap sort, merge sort)
that are efficient, but have limited scalability at best.
Finally, there are algorithms such as vector addition
that are both computationally efficient, and also
scalable to large numbers of processors.

Note that there is always a serial implementation
of the most efficient algorithm for any problem (a
single processor can emulate multiple processors,

Table 1 Run times (in seconds) for Oðn2Þ and Oðn lognÞ sorting
algorithms, along with the run time ratios for each Oðn2Þ sorting
algorithm compared to quick sort.

Figure 1. A Venn diagram relating efficient algorithms
and scalable parallel algorithms. Each of these sets is
nonempty, with well known examples. Bubble sort is
neither scalable nor efficient. Many sorting algorithms
(quick sort, heap sort, merge sort) are efficient, but not
scalable. The naive summation of 1 to n is scalable,
but not efficient. A simple parallel vector addition
approach is both efficient and scalable.

January/February 2013 59



with no more than a constant factor overhead). Fur-
ther, from the run times illustrated in Table 1, it
should be clear that when implementing an appli-
cation, only efficient algorithms should be consid-
ered for large problems.

Myths of parallel computing
In this section, we will focus on the limits of

parallel computing, and highlight a number of pub-
lished works where popular myths have caused au-
thors to overlook significant errors.

Myth: High scalability implies high performance
The first myth to consider is the idea that

scalabilityVthe ability of an application to utilize
large numbers of processors to reduce run time
linearlyVis equivalent to high performance. Scala-
bility is sometimes measured as processor utiliza-
tion, or by the number of Floating Point Operation
per Second (FLOPS) achieved.

From the brief consideration of complexity in the
previous section, a pitfall should be apparent. The
naive method to compute

Pn
i¼1 i with a simple loop

is scalable; the summation can be split across an
arbitrary number of processors, giving almost limit
less speed-up for large values of n. The closed form,
however, is fasterVdespite not being scalable, and
utilizing only a single processor.

When considering sorting algorithms, a similar
issue arises. The rank sort [19] algorithm makes a
comparison between each pair of elements, to de-
termine the relative position of each in the sorted
output. This can be made massively parallel easily,
with the approach being scalable to large numbers
of processors. With a parallel system (and assuming
no overhead for communication, synchronization,
or memory access), for a problem with 10,000 in-
tegers, one might need close to 500 processors to
match the run time of a single processor using
Quicksort. If the problem size increases to 160,000

integers, one would need more than 5,000 pro-
cessors. It should be clear that even a massively
parallel rank sort would be uncompetitive with a
simple serial quick sort for large data setsVand for
small data sets, there would not be enough work to
distribute to each processor to make doing so
worthwhile.

Further, it should be noted that while parallelism
might recover some of the run time loss due to algo-
rithmic inefficiency, it does not recover power
consumption losses. A less efficient algorithm exe-
cutes substantially more instructionsVresulting in a
dramatic increase in total power use.

It might seem absurd to use a less computa-
tionally efficient algorithm as a means to enhance
parallelismVbut in fact, a surprising number of
published works suggest doing exactly this.

Specific example: shortest path algorithms.
Computing a shortest path between a pair of points
in a graph is a common task in circuit routing (as
well as a number of other applications); there are
two well known algorithms for this, a Oðn2Þ dynamic
programming based approach by Bellman and Ford,
and a Oðn log nÞ approach by Dijkstra [7].

In a 2008 tutorial on General Purpose Graphics
Processing Units (GPGPUs) presented at the Design
Automation Conference [10], one example utilized
a massively parallel version of the Bellman-Ford
algorithm. For the purposes of illustrating a parallel
computing model software model, this is a reason-
able choice; the computational complexity impact
of the approach, however, can be entirely lost on the
casual reader.

From the previous sections, the results of actual
runs shown in Table 2 should not be at all sur-
prising [9]. One might expect that massive pa-
rallelism would allow for much faster path
computations; in reality, the scalable parallel solu-
tion is far slower.

It might be easy to dismiss this as an anomaly-
but in fact, this type of error is surprisingly common.
For example, one research group implemented a
custom circuit using an FPGA to solve the shortest
path problem [23]Vbut failed to implement an effi-
cient priority queue, resulting in a massively parallel
Oðn2Þ solution. The authors did not make any
comparison with an efficient serial implementation
of Dijkstra’s algorithm, preventing them from recog-
nizing the misstep.

Table 2 Shortest path computation times comparing a GPGPU
with a parallel implementation of the Oðn2Þ Bellman-Ford algorithm,
and a serial CPU using either Bellman-Ford or the Oðn lognÞ
Dijkstra algorithm.
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More surprising is a doctoral dissertation [14], in
which a custom VLSI circuit was designed and fabri-
cated. The hardware design implemented a varia-
tion of the Bellman-Ford algorithm; comparisons
with a software implementation of Dijkstra’s algo-
rithm were profoundly flawed due to an obvious
error in the implementation.

We limit the discussion of shortest path to three
examples, due to space constraints; a number of
other similar errors are easy to find in the open
literature. While Bellman-Ford is less efficient than
Dijkstra’s algorithm, it has the advantage of being
applicable to graphs with negative edge weights; if
a graph has negative weighted edges, then a
parallel implementation of Bellman-Ford is a good
solution.

Specific example: lithography and n-body prob-
lems. As a second algorithmic example, we will
consider the problem of rectangle overlap detection
as part of processing a design for lithography. Circuit
designs can contain hundreds of millions of rec-
tangular areas that may overlap in the construction
of a maskVdetecting these overlaps is an impor-
tant step.

In a recent paper from an industry research
group [16], a massively parallel approach to de-
tecting overlaps between rectangular regions of a
lithographic mask was presented. Each rectangle in
a design was compared to every other, resulting in
a straight-forward Oðn2Þ approach. While the paral-
lel solution provides a massive speedup of the
brute force algorithm, there are computationally ef-
ficient Oðn log nÞ methods based on computational
geometry.

To implement a faster serial method, one first
sorts the rectangles by their x and y coordinates;
these can then be arranged into a tree-like structure,
or embedded into a number of smaller tiles. By
arranging the rectangles into an appropriate data
structure, vast numbers of potential overlaps can be
ruled out, resulting in a far more computationally
efficient approach.

The underlying problem is similar in many ways
to n-body problems found in physics. While one
might implement a naive Oðn2Þ approach to com-
pute forces between all pairs of objects, there are
more efficient methods [5]. Despite the massive
advantage of the efficient algorithm, one can
find many instances of the naive parallel imple-

mentations in the supercomputing community
(e.g., [13]).

Another related problem is in collision detection,
for applications such as video games with large
numbers of independently moving objects. A ‘‘cure
for the multicore blues’’ was described [11], in
which a naive all-pairs solution was presentedVas
with the other examples, the scalable parallel solu-
tion is Oðn2Þ, while the reasonable serial approach is
Oðn log nÞ.

It’s not wrong, but it’s not right either. Strictly
speaking, the research cited in this section is not
wrong; the parallel implementations are in fact sca-
lable, obtaining reduced run times over serial
implementations. What is easily missed, however,
is that the scalable parallel algorithms are slower
and consume more power than efficient serial
algorithmsVby a factor bounded only by the prob-
lem size. For the tasks mentioned (and many
others), there are no known algorithms that are
both scalable and efficient.

This misconception has been noted before. In a
well known paper in the supercomputing field,
Bailey [3] detailed ‘‘twelve ways to fool the masses
when giving performance results on parallel com-
puters.’’ The use of inefficient algorithms to boost
scalability is only one of these ways. Bailey’s paper
took a tongue-in-cheek approach to highlight very
serious problemsVbut despite the best efforts of
many researchers in the supercomputing field, the
problems persist.

MythVThe parallel section is most important
A second myth to consider is the notion that high

performance can be achieved by focusing on sec-
tions of parallel code, and that other sections of an
application can be dismissed. The fundamental
problem with this view has become known as
Amdahl’s Law [1]Va simple limit case where one
assumes that a parallel portion P of an application
can be accelerated linearly with k processors. The
remainder of the run time, S ¼ 1& P, is assumed to
be serial in nature.

With k processors, the total run time of an appli-
cation is S þ ðP=NÞ. As the number of processors
increases, run time converges to S. If only 10% of an
application is serial in nature, it is impossible to
obtain more than a factor of 10 improvement in run
time. In practice, there is almost always a portion of
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an application that is serial in nature (for example,
each of the cases covered in the prior subsection
have limited scalability if one uses an efficient algo-
rithmic approach).

To say that Amdahl’s Law was not warmly re-
ceived would be an understatement. The law paints
a very bleak picture for parallel computing efforts.
The dogmatic support for parallel computing by
Amdahl’s peers can be inferred from the opening
statement of his talk:

For over a decade prophets have voiced the
contention that the organization of a single
computer has reached its limits and that truly
significant advances can be made only by in-
terconnection of a multiplicity of computers in
such a manner as to permit cooperative solu-
tion. Variously the proper direction has been
pointed out as general purpose computers
with a generalized interconnection of mem-
ories, or as specialized computers with geome-
trically related memory interconnections and
controlled by one or more instruction streams.

As a means of circumventing the law, an
unusual method of measurement has become
common. By reporting only the run time of the
parallel sections, one can obtain the appearance
of scalability. To provide a specific real-world
example, we refer to a demonstration program dis-
tributed with the IBM Cell processor Software De-
velopment Kit.

The matrix_mul program performs matrix
multiplicationVa task with a great deal of inherent
parallelism. For large matrices, the program reports
that the Cell processor achieves 23.85, 42.93, and
71.55 GFlops, for 1, 2, or 4 processing units,
respectivelyVnear linear speedup. If one inspects
the source code, one can see that the time required
to transfer data between processing units, or to
synchronize results, is omitted.

The actual run time improvement (when one
counts both the serial and parallel work required) is
only 13% when moving from one processing ele-
ment to two. Moving to four processing elements
provides an additional 7% gain. While it might ap-
pear that one could achieve near linear speedup on
a problem that clearly has a great deal of parallel
potentialVthe reality is rather modest gains, with
benefit diminishing quickly.

MythVScalability can be achieved with
sufficient effort

The final myth we consider is the notion that
challenges to scalability can be achieved by sim-
ply working harderVhaving programmers be
more innovative, developing new architecture
designs that minimize communication delays,
and so on.

While skilled programmers and clever architec-
ture designers are certainly valuable, we would note
that the algorithms available play a critical role. If
one needs to compute a shortest path, for example,
even a Herculean effort will obtain only a modest
improvement over a reasonable serial implementa-
tion of Dijkstra’s algorithm.

The degree of scalability possible for an algo-
rithm is a function of the algorithm itself. If the most
efficient algorithm for a problem is serial in nature,
or has limited parallelism, no amount of effort
can make it scalable. A more formal description
of these limits are Leiserson’s work and span laws
[18]. Work is analogous to the computational com-
plexity of an approach. The span of an algorithm is
in some sense the length of the ‘‘critical path’’ of
logical dependencies. For many important prob-
lems, the most efficient algorithms have spans that
are comparable to the workVpreventing large scale
parallelism. Even when the work and span mea-
surements are of different orders, gains can rapidly
diminish.

The quick sort algorithm, for example, can be
accelerated; it uses a divide-and-conquer approach,
allowing parts of the data to be sorted in parallel
following an initial partitioning. The partitioning
function, however, contributes to the span of the
algorithmVit is nearly impossible to achieve more
than a factor of ten speedup for even exceptionally
large problems [18].

The algorithmic barriers to parallelism are
well known to those who study the area carefully.
One of the most noted researchers in algorithms,
Prof. Donald E. Knuth, recently made the following
comment [17].

During the past 50 years, I’ve written well
over a thousand programs, many of which have
substantial size. I can’t think of even five of
those programs that would have been en-
hanced noticeably by parallelism or multi-
threading.
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FOR MORE THAN half a century, considerable effort
has been invested to move parallel computing from
a niche technology, and into the mainstream. There
is tremendous intuitive appeal for the ideaVthe
limited success might be somewhat puzzling. A
survey of the field from close to 20 years ago, noted
the following [8]:

A decade ago, university researchers were in
love with parallel computers, and the U.S. gov-
ernment amorously responded. Those were the
days of glory, but times have changed: the mar-
ket for massively parallel computers has col-
lapsed, and many companies have gone out of
business, but the researchers are still in love
with parallel computing.

In this paper, we have argued that a number of
myths have fueled unreasonable expectations. First,
we noted that the computational complexity of an
algorithm is of primary importanceVthis was well
established years ago, but seems to be overlooked.
By mistaking scalability for performance, many
authors have ‘‘found’’ abundant parallelism with in-
efficient algorithms, failing to realize that their pro-
posed solutions are far slower than conventional
serial methods.

The necessity of efficient algorithms unravels the
second myth. If even a portion of the work to be
performed requires algorithms that are serial in na-
ture, or have limited opportunity for parallel speed-
up, Amdahl’s Law comes in to play. As tempting as it
might be to focus on sections of an application with
tremendous scalability, it is the serial portions that
ultimately limit gains. There is little reason to suspect
that there are many efficient, scalable algorithms
waiting to be discoveredVmany of the techniques
used to achieve algorithmic efficiency introduce se-
rial constraints.

The final myth we considered is the notion that
scalability can be achieved through effort, and that
by simply investing more time, energy, and funding,
we can overcome the limitations of Amdahl’s Law.
Unfortunately, the limits imposed are fundamental
to the mathematics of computation; no amount of
effort will turn an unscalable problem into a scala-
ble one.

To demonstrate that these are not hypothetical
errors, or cases that occur at the margins of the
computing field, we have noted papers from both

academia and industry, drawn from top IEEE and
ACM conferences and journals, a doctoral disserta-
tion from a major university, a university level paral-
lel programming text, and a software development
kit for a parallel processor. We have restricted our
algorithmic examples to cases where a massively
parallel solution is Oðn2Þ, while the efficient ap-
proach (with limited parallelism) is Oðn log nÞV
most of the errors noted are obvious from the text of
the papers, and do not require access to either
source code or benchmark data. The algorithms
considered are not difficult to implement or ob-
scure; Dijkstra’s algorithm, for example, is standard
fare for undergraduate computer science programs.
For the Cell processor example, the source code was
available, allowing for direct inspection. While we
have been rather blunt in our critique, there does
not appear to be deliberate deception in any of
these instances. Because of space constraints, we
have restricted our discussion to only the most ob-
vious cases where the errors are easy to identify.

While no research field is free of problems, the
magnitude of the errors we have addressed here
may be surprising. As evidenced by the struggles of
the supercomputing community over many years
[3], [4], eliminating these types of errors is excep-
tionally difficult.

The philosopher George Santayana noted ‘‘those
who cannot remember the past are condemned to
repeat it.’’ We would suggest that one lesson that
can be learned from the history of parallel com-
puting is that there are pitfalls that can ensnare
nearly anyone. Many times, solutions that appear to
offer tremendous gains are in fact little more than
illusions.

Despite these challenges, there is no choice but
to forge ahead with parallelismVthere is little hope
for further serial performance gains. For a handful of
niche areas, there are already well established
parallel solutions; outside of this, the future looks
much more difficult. To make progress, the research
community will need to focus on solutions that truly
advance the state of the art. h
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