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Abstract-Noise robust compressive sensing algorithm is 

considered. This algorithm allows an efficient signal 

reconstruction in the presence of different types of noise 

due to the possibility to change minimization norm. For 

instance, the commonly used l1 and l2 norms, provide 

good results in case of Laplace and Gaussian noise. 

However, when the signal is corrupted by Cauchy or 

Cubic Gaussian noise, these norms fail to provide 

accurate reconstruction. Therefore, in order to achieve 

accurate reconstruction, the application of l3 

minimization norm is analyzed. The efficiency of 

algorithm will be demonstrated on examples. 
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I. INTRODUCTION 

 

The applications and algorithms, based on the signals 

sampled according to the Niquist sampling rate, may require 

significant hardware resources, which can further make 

them expensive and complex. A solution has been found in 

Compressive Sensing (CS), a method that allows the 

analysis and reconstruction of the signal, from the small set 

of random samples [1]-[4]. An important conditions for 

successful reconstruction are signal sparsity in one of the 

transformation domains (such as DFT, DCT, Wavelet 

domain etc.). Various algorithms have been proposed for 

signal reconstruction [5]-[9]. However, the situation 

becomes complicate in the presence of noise, and the 

algorithm should be modified to correspond to the nature of 

noise dealing with [10]-[14]. One possibility is to adapt the 

norm minimization problem to the noise nature [10],[11], or 

to apply the noise removing algorithms [13],[14] prior to the 

reconstruction. 

The algorithm considered in this paper provides simple 

reconstruction solution using non-iterative approach, and 

especially offers a possibility to choose and change different 

minimization norms in order to obtain good reconstruction 

results [11]. Moreover, the approach in [11] established the 

relationship between robust statistics and the CS. The 

considered relationship between these two concepts is based 

on the initial robust formulations of the signal transforms 

and the property that incomplete set of samples causes 

random deviations of the DFT outside the signal 

frequencies. In addition, the sum of generalized deviations 

of the values at non-signal frequencies is higher than at the 

signal components positions. Therefore, we have to 

determine the threshold which will select signal components 

in order to provide good reconstruction. The main advantage 

of this algorithm is the possibility to use different of 

minimization norms, which is not the case in the most of the 

existing algorithms. For instance, in [11], it was shown that 

the signal reconstruction in the presence of impulsive and 

Gaussian noise, using l1 and l2 minimization norms, 

respectively.  Here, we consider another types of noise, such 

as Cauchy and Cubic Gaussian noises. Moreover, we show 

that in this case l1 and l2 norms fail, but the accurate results 

can be achieved using the l3 minimization norm. 

The paper is organized as follows. The theoretical 

background is given in Section II, while Section III shows 

full mathematical fundaments of used algorithm. Results 

and possibilities of algorithm are presented in Section IV. 

Conclusion is presented in Section V. 

 

II. THEORETICAL BACKGROUND 

 

      According to the compressive sensing theory signal x or 

its DFT vector X, can be reconstructed, with a high 

probability, from an incomplete set of measurements y, by 

solving a convex optimization problem [11]. This approach 

can be closely related to the robust transformation theory 

based on the modelling and minimization of certain error 

function. Consequently, let us observe a total error in the 

form:  
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and X(k), for k = 0,1,2,…,N, is the Fourier transform of the 

signal x(n). Minimizing total error by X(k): 
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 we can obtain optimal FT for different type of noises. For 

example the standard definitions of the transform domain 

representations for M measurements is obtained as the 

solution of the above optimization problem for |e|
2
: 
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Function |e|
2 

is obtained from principle of estimation using 

maximum likelihood (ML). Based on ML estimation 

function, | ( ) |Le n can be determined as [14]: 

 

| ( ) | log( ( ))L
noisee n p e                       (5) 

 

where pnoise is probability density function (pdf) of noise 

noise(n). For noise with Gauss pdf function            

( )noisep e
2exp( | | )e , function |e|

2
 represents ML 

estimator. However, for impulse noise like Laplace which 

pdf function have form ( )noisep e exp( | |)e , function 

|e|
 

represents ML estimator. Transform domain 

representations in this case for M measurements, is obtained 

using |e| and has form: 

 
2 /( ) { ( ) }j kn NX k median x n e      for k=0,..,M.    (6) 

 

In the case of compressive sampled signal x(n) the number 

of available samples M is much fewer than N so in sequel 

we will only consider M of N total sample. After calculating 

the error values for each available sample, based on function 

| ( ) |Le n , we can calculate the sum of general deviations for 

each frequency [11]: 
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In the case when the function is |e|
2
 GD is equal variance. 

From [11] GD is in this case also equal: 
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where k=kj is frequency of signal component and Ai is 

amplitude of signal. Note that changing L we obtain 

different minimization norm. Norm 𝑙1 is obtained with 

(𝑛) = |𝑒| , while norm 𝑙2 is obtained with 𝑒(𝑛) = |𝑒|2. In 

case of impulse noise is already proved that norm 𝑙1 gives 

the best signal reconstruction because of form of its pdf 

function.  The 𝑙3 −norm is obtained with 𝑒(𝑛) = |𝑒|3. In 

sequel it will be tested how minimization of function |e|
3 

influence on signal with different noises except already 

tested Gauss and Laplace.  

 

III. ALGORITHM 

 

In this sequel, the algorithm for CS reconstruction of 

sparse signals will be described. The algorithm will be 

described in few steps [11]: 

1. For each k=0,1,..,N calculate X(k) and GD(k) for l3 

norm which use |e|
3
 function. 

2. Determine the position of the all minimum values 

in order to remove the highest component Ai. 

 

         arg{ ( ) },jk GD k    for k=1,...,N,             (10) 

 

where 𝑇 is threshold. 𝑇 can be calculated considering

max{ ( )}V k ,e.g., max{ ( )}V k where α represents a constant 

between  0.85 and 0.95. The appropriate value for α we 

obtained experimentally. Threshold can be also calculated 

considering { ( )}mean V k  or { ( )}median V k . 

In CS matrix formed from DFT matrix, we keep only the 

rows that correspond to the extracted frequencies 𝑘𝑂𝑖  and 

columns coresponding to the available measurements 𝑛𝑚. In 

this way we obtain indeterminate system of equations 

𝑦 = 𝐴𝐶𝑆𝑋, which can be defined as: 

* 1 *( )CS CS CSX A A A y                        (11) 

The reconstructed amplitudes 𝐴𝑖 of coefficients in 𝑋, 

containing initial phases 𝜑𝑖, are accurate for all 𝑘𝑂𝑖 . 

IV. EXPERIMENTAL RESULTS 

 

      The sinusoidal signal, with length of 128 samples, is 

considered. It is sparse in DFT domain, so we use it for 

signal reconstruction, based on CS. The signal has three 

components and has the folowing form: 

  

2 16 2 32 2 64

1 2 3

j n j n j n

N N Nx n A Ae e A e

       
     
         (12) 

where  A1=4, A2=3,A3=2 are amplitudes of signal x(n). 

Since these components behave in a similar manner, the 

intention is to estimate all components at once, without 

using the iterative procedure, from a small number of 

random signal measurements. The number of 

measurementsused for reconstruction and parameter  α are 

constant (M=64 and α=0.89). Other parameters vary from 

one to another example so we will explain it later. 

Example 1:In this case we considered the signal 𝑥(𝑛) 
corrupted by Couchy noise: 
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where 1 1   and 2 1  . Reconstruction of this noisy 

signal is tested with different minimization norms using 

algoritm described previously.  

 
Fig. 1.  GD with |e|3 minimization function (blue line) and 

treshold 0.89*max{ ( )}T V k (green line) 

We also obtained GD using l2 and l1 minimization norms. 

The algorithm gives different results for different 

minimization norms as we can see on Fig.2, Fig.3. By 

analyzing the result from Fig.2 and Fig.3 conclude that l3 

minimization norm provides best result and most credible 

reconstruction. If we run that same algoritm with same 

parameter 30 times l2 will give better result comparing to 

norm l1 but worse comparing to norm l3. 

 
Fig. 2. Desired and reconstructed signal in FT domain using l3, l2 and l1 

minimization norms 

 
Fig. 3. Original  and reconstructed signal in time domain using l3, l2 and 

l1 minimization norms 

 

 

Example 2: Here, we considered an example with the signal 

corrupted by this specific noise: 

 

1 2( (1, )) ^ 3 ( (1, )) ^ 3noise randn N j randn N      (14) 

where 1 1   and 2 1  .  

Reconstruction of noisy signal is tested with different 

minimization norms. For this specific noise results are 

presented on Fig.4 and Fig.5. 

 

Fig. 4. Desired and reconstructed signal in FT domain using l3, l2 and l1 
minimization norms 
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Fig. 5. Original  and reconstructed signal in time domain using l3, l2 and 
l1 minimization norms 

 

From these figures we have the same concludion as we had 

in example 1 that norm l3 gives the best reconstruction. 

Beside this, for both noisy signals from example 1 and 2,  

except changing minimization norms, we also changed 

treshold. Treshold max{ ( )}V k , median{ ( )}V k and
 

{ ( )}mean V k  is tested but we got similar results when 

parameter α is α=0.89. 

 

V. CONCLUSION 

 

 The non-iterative CS algorithm for signal 

reconstruction is considered. This algorithm is tested for 

signal corruped by Cauchy and Cubic Gaussian noises. In 

accordance with the nature of considered noises, we found 

that l3 minimization norm provides accurate results. The 

achieved results are compared with the results obtained 

using l1 and l2 minimization norms. In this way, the 

presented theory and results proved that by using only minor 

modification, the same algorithm can run using various 

minimization norms.  
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