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Abstract— The paper observes the Hermite and the Fourier 

Transform domains in terms of Frequency Hopping Spread 

Spectrum signals sparsification. Sparse signals can be 

recovered from a reduced set of samples by using the 

Compressive Sensing approach. The under-sampling and 

the reconstruction of those signals are also analyzed in this 

paper. The number of measurements (available signal 

samples) is varied and reconstruction performance is tested 

in all considered cases and for both observed domains. The 

signal recovery is done using an adaptive gradient based 

algorithm. The theory is verified with the experimental 

results.  
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I.  INTRODUCTION 

The focus of this paper is on two commonly used transform 

domains in signal processing, and their possibility to provide 

sparse representation for specific types of signals. Sinusoidal 

signals are used in the experiments. Specifically, we observed 

the Frequency Hopping Spread Spectrum (FHSS) signals [1]-

[6]. Sparse representation of those signals is of interest in 

Compressive Sensing (CS) approach [7]-[21]. Namely, having 

a sparse representation in a certain transform domain, the signal 

can be represented using fewer samples compared to the 

traditional approach based on the Sampling theorem. Therefore, 

in our paper we provided an analysis to decide which domain is 

better for FHSS signal representation in terms of sparsity. 

FHSS signals consist of sinusoidal components of short 

duration and founds its usage in wireless communications. The 

FHSS modulation technique uses pseudorandom sequence to 

determine the frequency at which carrier will appear, causing 

spreading the spectrum of an unmodulated signal.  

In recent years, the CS has its growth in many fields of signal 

processing and in a number of real applications. It is also used 

in the field of communications. The CS approach assures signal 

reconstruction using a small set of available signal samples, and 

provides satisfactory reconstruction precision if certain 

conditions are satisfied. First condition is sparsity of the 

observed signal in certain domain. Second condition is related 

to the acquisition procedure and it is satisfied if the available 

samples are randomly distributed. Recovering of the signal 

using a small set of available coefficients is a demanding task. 

It is based on the powerful mathematical apparatus and the 

optimization algorithms. 

Let us now discuss the choice of transform domains to be 

tested for sparsification. Since the Hermite functions allow us 

obtaining good localization of the signals in both, the signal and 

transform domains, the Hermite transform (HT) is widely used 

in image and signal processing applications [9], [22]. HT 

functions are similar in shape to the FHSS components so they 

are chosen as a starting basis to be tested. In this paper, we also 

worked with Discrete Fourier Transform (DFT) domain. DFT 

is one of the commonly used transform domains in signal 

processing and analysis. Having in mind that we observe 

sinusoidal signals, and that sinusoid is represented with a peak 

in the DFT domain, this seemed to be a good choice for testing. 

We compared reconstruction of signals by using both, HT 

and DFT domains. The number of measurements (available 

signal samples) is varied and reconstruction performance is 

tested in all considered cases and for both observed domains. 

The paper is organized as follows: Section II is the 

theoretical background on CS technique. In Section III, Hermite 

and Fourier domain are described. The experimental results are 

discussed in Section IV. Concluding remarks are given in 

Section V. 

II. THEORETICAL BACKGROUND 

In order to be applied to the certain signals and in specific 

applications, some conditions related to the CS technique has to 

be satisfied. As it is already mentioned, signal should have a 

sparse representation  in  certain transform domain. Let us 

mathematically describe those conditions. If the length of the 

observed signal is N, then only S transform coefficients should 

have non-zero values, where S<N. For such a signal we say that 

it is compressible and the information about the signal is 

concentrated into the S largest coefficients. Another 

requirement that should be satisfied is an incoherence. Signals 

that have sparse representation in the transformation domain 

must have a considerably denser representation in the domain 

in which are represented. The incoherence condition is satisfied 

if random selection of the signal samples is performed. 



If they are represented in the proper basis, most of the real 

signals can be considered as sparse. The signal x with N 

samples can be represented as a linear combination of the basis 

vectors: 
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where Y is transformation matrix and X is signal in Y domain. 

We can say that the signal has sparsity level S, if only S 

coefficients have nonzero values. Measurements M are samples 

of signal taken from the domain in which the signal has dense 

representation. The number of measurements  satisfies the 

relation M<N. The measurement matrix θ models random 

selection of the signal samples. It has to be incoherent with 

transformation matrix Y, in order to assure the successful signal 

reconstruction. Measurement matrix θ should be chosen in a 

way that provides as small as possible the coherence between 

matrices θ and Y. Small coherence means that it is possible to 

take small number of signal measurements and reconstruct the 

signal with great accuracy. The measurement vector can be 

defined by using the following relation: 

  , y x XY AY            (2) 

where A is the measurement matrix (M×N).  

CS uses some mathematical algorithms for error 

minimization. In this paper we used gradient based algorithm 

[13]. It performs a direct search over all missing samples of the 

signal. If the values of every missing sample are located in the 

range of –M to M then for every missing sample the algorithm 

performs a search over all possible values in the given range by 

taking any given step. Larger steps are taken in the first few ruff 

approximations. As we get close to the true value of the missing 

samples, the step size is lowered in order to achieve a desired 

precision. This algorithm uses adaptive variable step in order to 

perform the reconstruction in a small number of iterations.  

 

III. THE HT AND DFT IN TERMS OF SIGNAL SPARSITY 

Frequency Hopped Spread Spectrum signals (FHSS) are 

communication signals with very close components. They are 

sinusoidally modulated signals that belong to the spread 

spectrum modulations. The spread spectrum (SS) modulation is 

a commonly used modulation technique in communications. It 

has many desirable properties such as robustness to inter-

symbol interference, noise, jamming and other environmental 

factors. This modulation technique spreads the frequency 

spectrum of data-signal, producing the signal with much higher 

bandwidth than before.  There are two common types of spread 

spectrum modulations: direct sequence spread spectrum 

(DSSS) and frequency hopping spread spectrum. Our focus in 

this paper are on the FHSS modulated signals. 

The HT is observed for representation of the FHSS signals 

having in mind similarity in shape between Hermite expansion 

functions and the FHSS signal components. The definition of 

Hermite functions is given by: 
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where ( )Hp n  is the p-th order Hermite polynomial. Also, the 

definition can be done using the following recursion formula: 
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A continuous-time signal f(i) is defined by using N Hermite 

functions as: 
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where Cp denotes Hermite expansion coefficients. To calculate 

the Hermite expansion coefficients the Gauss-Hermite 

quadrature technique can be used, defined as: 
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Considering this technique the direct Hermite transform can be 

defined in a matrix form as follows: 

 C Hf , (7) 

where C and H are vector of Hermite coefficients and Hermite 

transform matrix respectively. The inverse transform reads: 

 f C , (8) 

whereΨ stands for inverse Hermite matrix  -1
Ψ H . 

  Having in mind that sinusoidal signals, in Fourier transform 

domain, are represented by a peak at the signal frequency, the 

second choice in our analysis is the DFT. If the matrix Ψ stands 

for the inverse Fourier transform matrix, then  it is defined as 

follows: 
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IV. EXPERIMENTAL RESULTS 

 

We considered following FHSS signal: 
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where t=1:1/100:1-1/100, and N is the signal length.  The total 

signal length is 600 samples and signal has 3 components - 

hops.  Duration of every hop is the same but they have different 

frequencies.  The considered three-component signal in time 

domain, and its DFT and HT domains are shown in Fig. 1. It 



can be seen that signal has better sparsity in DFT domain. 

Reconstruction is tested using different number of samples and 

both domains – HT and DFT. The results for DFT case are 

shown in Fig.2. In this particular case the reconstruction is done 

from 180 samples (30% the total signal length) and 480 (80% 

the total signal length), respectively. 

 

 

 
Figure 1. The considered three-component signal: first row - time domain, 

second row – DFT, third row– HT domain 
 

      The reconstruction results by using the HT domain are 

shown in Fig. 3, for the same number of available samples as in 

the DFT case. The signal has worse sparsity in the HT domain, 

what can be seen from the Fig.1. Therefore, the reconstruction 

results are worse compared to the case where the DFT is used 

as a sparse basis.  

 

      Increasing the number of measurements in both DFT and 

HT domain improves the sparsity and produces smaller error 

between the original and the reconstructed signal. Still, the HT 

domain shows worse reconstruction results compared to the 

DFT, even in the case when 80% of the samples are available. 

Fig. 4 shows original and reconstructed signals in time domain, 

using 30% and 80% of the available samples and DFT as a 

sparse basis. It can be seen that signal reconstructed from 80% 

of the signal samples produces almost negligible error. 

 

 However we cannot say that the reconstruction from the 

same number of measurements in HT domain gives the same 

results. On the contrary, HT fails to give reliable reconstruction, 

even in the case when large number of measurements (80%) is 

used. The reconstruction results are using HT domain are 

shown in Fig. 5. The reconstructed signal is almost 

uncrecognizable when using 30% of measurements and HT as 

a sparse basis.  

     The previous results are also confirmed in Fig.6, by 

calculating MSE for both DFT (red line) and HT (blue line) for 

different number of measurements. It is demonstrated that HT 

for 80% measurements produces almost the same MSE as DFT 

for 30% of measurements. 

 

 

 
Figure 2. Reconstructed signal in DFT domain using:  180 samples or 30% of 
the signal length –first row;  480 samples or 80% of signal length-second row 

 

 

 

 
Figure 3. Original signal – HT domain,180 samples or 30% of signal 

length(first row);Original signal – HT domain – 480 samples or 80% of signal 

length(second row) 

 

 

 

 
Figure 4. Time domain of the original and reconstructed signals by using 30% 

and 80% of the signal samples for the reconstruction and DFT as a sparse 

basis  
 



 

 
Figure 5. Time domain of the original and reconstructed signals by using 30% 

and 80% of the signal samples for the reconstruction and HT as a sparse basis 

 
Figure 6. MSE for different number of measurements for DFT (red line) and 

HT (blue line) 
 

V. CONCLUSION 

The comparison between HT and DFT domains used 

for spread spectrum modulated signals sparsification is 

observed in the paper. The CS reconstruction using different 

number of signal measurements and both considered 

transformations as a sparse basis, is tested. The gradient 

based algorithm is used for the reconstruction. The results 

showed that the DFT domain is a better choice for the sparse 

representation of the multicomponent spread spectrum 

modulated signals. The HT may be a better choice if 

separated signal components are observed, and it can be a 

topic for future research. The paper demonstrates that the HT 

fails to give a reliable reconstruction, even when a large 

number of measurements is used. The results are verified by 

measuring the MSE between original and reconstructed 

signal for HT and DFT domains and for different number of 

measurements. 
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