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Abstract—Resilience aspects of remote electroencephalography 
sampling are considered. The possibility to use motion sensors 
data and measurement of industrial power network interference 
for detection of failed sampling channels is demonstrated. No 
significant correlation between signals of failed channels and 
motion sensors data is shown. Level of 50 Hz spectral component 
from failed channels significantly differs from level of 50 Hz 
component of normally operating channel. Conclusions about 
application of these results for increasing resilience of 
electroencephalography sampling is made. 
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I. INTRODUCTION 

A. Motivation 

Corresponding to the U.S. National Institute of Standards 
and Technology (NIST) the resilience of Cyber Physical 
Systems (CPS) is the ability to anticipate different adverse 
and/or dangerous conditions [1]. Corresponding to this 
definition a resilient system has to be able to resist different 
conditions while providing the acceptable level of operation 
and services quality. System resilience is important for 
applications in different areas including telecommunications, 
logistics, transport, etc. Thus a large number of studies for 
resilience problems are available [2], [3]. Resilient technical 
systems have to be at least self-aware, self-adaptable and self-
reconfigurable to be able to self-repair. Implementing these 
features is a complex task and can require the use of Artificial 
Intelligence (AI) algorithms. To be self-adaptable and self-
reconfigurable the CPSs have to be able “to think” and decide. 
In our opinion, resilience is more than the sum of security and 
dependability i.e. cognition is what makes the difference [4]. 

Systems for monitoring, prediction and control of 
physiological parameters are widely used for clinical and 
research applications. Such systems are commercially available 
and under development. Distributed physiological monitoring 
systems include sensors [5], [6], massive storage and 

processing elements [7]-[9], algorithms and software for data 
analysis [10]-[12]. Standards for physiological monitoring 
sensors sets (body area network, BAN [13], [14]) are under 
development and implementation now. Resilience of such 
systems is of great importance [5]. Engineering of the resilient 
systems include a large variety of physical, technical, security 
and other issues whereby no universal solutions for providing 
system resilience exist. Systems for physiological monitoring 
have a variety of application specific resilience issues. These 
issues are related to biological and physical specificity of data 
sampling. 

Epilepsy is a chronic condition of the brain triggered by a 
heterogeneous group of neurological disorders with diverse 
etiologies, behavioural seizure patterns and pharmacological 
sensitivities. This condition is responsible for a high level of 
suffering. It affects more than 50 million people worldwide 
representing an important public health problem. According to 
data of the European Forum on Epilepsy Research [15], about 
6 million European citizens have epilepsy-related disorders and 
there are ~400,000 new cases in Europe each year, meaning 
one new case every minute. Unfortunately, up to 40% of 
patients suffer from epileptic attacks that cannot be adequately 
controlled by conventional pharmacotherapy. So, new means to 
control or at least predict new seizures are urgently needed. 
Here body area networks recording physiological parameters of 
the patients are a promising approach. 

The use of wireless devices as a means to monitor 
physiological parameters such as pulse, movements etc. is 
becoming widely accepted and has found its way even in the 
consumer devices such as the Fitbit [16], etc. But monitoring 
more complex parameters and events as well as their analysis 
under real time conditions in order to improve numerous 
patients’ lives is still in its infancy. It is known that sometimes 
epileptic patients can predict their seizures several minutes 
before the onset of them. This phenomenon is called aura, 
which is in fact a focal aware seizure [17]. Moreover the 
specially trained dogs can do the same [18]. If a special device 
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that can predict the epileptic seizure with a high accuracy will 
be designed, patients can take precaution actions to avoid 
severe consequences or even supress seizure onset with 
appropriate medications. Research in the field of epilepsy 
requires sampling of large amount of physiological 
experimental data from patients and laboratory animals. The 
prediction of epileptic seizures demands complicated data 
analysis algorithms, e.g. artificial intelligence or numerical 
simulations. The design of smart resilient sensors for such data 
sampling is of great interest. 

B. Resilience in EEG sampling 

Activity of thousands or millions of neurons in the brain 
generates electrical potential fluctuations resulting in 
measurable EEG signals. EEG signals in the “normal” state 
significantly differ from the ones during an epileptic seizure. 
As it was mentioned before, seizures are often preceded by 
aura [17]. One of the challenges here is the short time between 
first signs of the epileptic seizure and its occurrence requiring 
extremely fast data transfer and processing. 

Useful EEG information is located in low spectral 
frequencies from about 0 to 60 Hz and sometimes to several 
hundred Hertz. The sampling rate applied to capture the EEG is 
usually in the range of 256 Hz (i.e. 256 Samples/sec) to several 
thousand Hz. The potential fluctuations can be sampled using 
non-invasive electrodes placed on the head skin (scalp) or 
intracranial (implanted) electrodes.  

The common number of electrodes for intracranial 
measurement varies from one to thousands [19]. Intracranial 
electrodes conduct signal values up to hundred millivolts with 
noise level in the range of microvolts. 

Measurements of electric potentials using non-implanted 
(contacted) electrodes on the scalp are more applicable to 
humans. Fig. 1 shows some examples of such non-invasive 
electrodes. The measured values are in a range from several 
microvolts to several hundred microvolts with a noise level up 
to several microvolts or even higher i.e. the signal/noise ratio is 
100 times less than in case of implanted electrodes [20]. Some 
examples of contact electrodes are shown in Fig. 1: most 
common are wet ones, see (a), (b); they are used with a 
conductive gel to achieve low impedance, but their preparation 
for measurements is time-consuming. Dry electrodes, see 
Fig. 1-(c), are much easier to use and their contact quality is 
comparable to the one of the wet ones [21]. 

Figure 1.  Examples of the commercial contact electrodes for EEG 
measurements: (a) Webb and (b) Cup electrodes [22], (c) Wearable Sensing 

(one electrode) [23] 

Common contact EEG uses from 10 to several hundreds of 
sampling channels. EEG signals have to be measured, 

amplified, transmitted/received and stored for further 
processing. EEG data transmission is preferred to be wireless 
due to patient’s movement during trials. Real time EEG data 
processing should implement detection and filtration of such 
movements. Due to the low EEG signal amplitude measured 
using non-implanted electrodes, contact EEG is very sensitive 
to: 

 different kinds of human motions; 

 contact stability; 

 interference from industrial power supply network (the 
range of 50-60 Hz falls into the EEG spectral range). 

Notch filters and screening are used to mitigate 
interference, nevertheless it is always present in real life 
signals. Motion of patients is a main source of signal artefacts.  
Most important are myogram (signal from body muscles) and 
oculogram (signals from eyes motion). Electric potentials 
induced by muscles significantly exceed the EEG signals and 
affect the information of the EEG. Moreover, the motion of 
patients or laboratory animals and drifting of the amplifier’s 
parameters lead to a change in the electrode contact resistance, 
the increase of noise or the degradation of the signal.  

The poor contact quality should be detected and fixed as 
soon as possible and this detection and correction should be 
performed at the sampling device side. Special actions need to 
be taken to increase contact quality [10], nevertheless long time 
monitoring is sensitive to such issues. A large number of 
papers are related to detection of failed EEG channels (e.g. 
[24]-[26]) as well as to detection and correction of EEG 
artefacts (e.g. [8], [26]). Most of them use only the measured 
EEG signals for the analysis, whereby the analysis can include 
the linear approaches (wavelets, Fourier analysis, correlation 
analysis), artificial intelligence approaches (support vector 
machines, artificial neuronal networks), etc. 

In this work we concentrate on the detection of failed/poor 
contacts and investigate the possibility to use additional sensors 
of wearable EEG device to do so. These additional sensors can 
be motion detectors e.g. accelerometer and/or body position 
sensors e.g. magnetometer. Our investigations are based on the 
following assumptions: 

 the signal range from electrodes with a poor contact are 
low and spikes from bad contact are present; 

 the signals from electrodes with poor contact should 
have correlation with motion due to changes of the 
contact resistance. 

Additionally we investigated the possibility to also take 
interference signals from industrial power network into 
account. Combining the correlation of EEG signals with 
signals from motion sensors and with signals from the 
industrial power network can improve the detection of the poor 
contact artefact in EEG traces. 

The rest of this paper is structured as follows. In section II 
we describe our experimental setup. In sections III and IV we 



explain how we processed the data and discuss the results of 
our analysis. Conclusions are given in section V. 

II. EXPERIMENTAL SETUP 

For the recording and further analysis of EEG data we used 
the low-cost general-purpose commercial headset Emotiv Epoc 
Plus (2018 year version). Key features of this non-medical 
EEG acquisition system are: 

 16 EEG channels (14 in operation, 2 as reference), 

 256 Hz sampling rate with 16 bit resolution, 

 embedded accelerometer and magnetometer with 
64 Hz sampling rate, 

 built-in rechargeable battery, 

 wireless communication, 

 saline soaked contact pads with simplified positioning 
method [27]. 

This device shows better performance than similar 
solutions used in research [28]. Data from the headset are 
transferred via 2.4 GHz radio channel with proprietary protocol 
to the computer with USB receiver. Additionally it is possible 
to grab the data via Bluetooth Low Energy (BLE) with an 
application for Android/iOS smartphones provided by the 
manufacturer. A general connection diagram for the device in 
our experiments is shown in Fig. 2. 

 
Figure 2.  Our measurement setup: portable wireless EEG headset 

The manufacturer’s software allows to monitor EEG and 
auxiliary data in real time, provides spectral EEG signal 
representation and specific characteristics (excitement, fear, 
stress, happiness, etc.), the battery level, external marks and 
events from the COM port or the USB input device.  

We selected the Emotiv Epoc Plus headset due to the 
following features: 

 wireless connection grants some mobility to a test 
subject and increases safety as high voltage discharge 
through cables is impossible; 

 data export to popular formats; 

 visual representation of the pads’ connection quality in 
real time that we used for the evaluation of our 
experiments. 

From our point of view the headset has some drawbacks: 

 Due to the online authorization of the provided 
software the headset works only with an operational 
internet connection. This limits its use particularly 
when the internet connection is limited or absent. 

 Occasional drops and data stuttering between the 
headset and the USB receiver at a distance less than 3 
meters. The headset does not contain any internal 
memory thus the data measured during these drops are 
lost. 

 No audio/visual indication about low battery and out of 
range position. 

 Some persons state that continuous wearing of the 
headset for longer than 1 hour leads to headache, 
nevertheless they recovered within short time after the 
headset was putted off. 

Here we analysed the data measured from a healthy person 
during different kinds of movements: walking, head 
movements/shaking and eyes blinking. These data were 
collected from 14 EEG channels, 3 accelerometer channels for 
X, Y, Z axes, and 3 magnetometer channels for X, Y, Z axes. 

Fig. 3 shows schematically the location of the EEG 
electrodes on a human head and their contact quality. The 
headset performs conductivity measurements to derive the 
contact quality of the electrodes [29]. This metrics is 
represented by integer values from 0 (low contact quality, 
marked in red) to 4 (good contact quality, marked in green), 
updated in real time during the measurements and indicated in 
the software. Also contact quality measurements can be 
exported, and we used it to evaluate our analysis results. 

 
Figure 3.  Location of the electrodes on a head and colour-coded contact 

quality representation during measurements  

We recorded the data for about 60 seconds during walking 
and head motion and 24 seconds for eyes blinking. During the 
test no data drops were detected. 

III. PROCESSING COLLECTED DATA 

Examples of signals sampled during walking, head motion 
and eyes blinking are shown in Fig. 4. 

Electrodes P7 and O1 a have poor contacts during all of our 
experiments (see lines marked red and orange in Fig. 4). 
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Figure 4.  Signals sampled during walking (a), head motion (b) and eyes blinking (c). The 3 top lines represented on the light blue background are signals from 
3 accelerometer channels. The 3 bottom lines (green background) are signals from 3 magnetometer channels of the EEG headset. 14 lines in the middle (white 

background) are EEG signals 

 
Also some channels show waveforms that differ from other 

channels during different tests: 

 signals from the electrodes F8, F4 and F7 are weak 
during walking, see Fig. 4-(a); 

 signals from the electrodes F3 and AF3 are sometimes 
weak during head shaking, see the first 3 seconds in 
Fig. 4-(b); 

 P7 presents spike artefacts, see Fig. 4-(b). 

Additionally, Fig. 4 illustrates the following facts: 

 Walking is characterised by moderate accelerometer 
signals and strong magnetometer signals.  

 Head motion produces strong accelerometer and 
moderate magnetometer signals. 

 Eyes blinking generates no accelerometer and 
magnetometer signals, only noise can be seen in Fig. 4-
(c). 

The measured signals for each kind of motion were 
represented as a separate matrix S  that contains different 
channels in columns: 14 columns are EEG signals, 3 columns 
are signals measured from magnetometer and 3 columns are 
accelerometer signals. Taking into account that EEG signals 
were sampled at 256 samples/second and motion detectors 
signals were sampled at 64 Hz rates the EEG signals in 
matrices S were reduced to 64 samples/second. Each channel 
was normalised by subtraction of its mean value and scaled by 
its standard deviation. 

We applied the Principal Components Analysis (PCA) for 
investigating the correlation between motion sensor signals and 
EEG signals. We used the svd function in GNU Octave [30] to 
perform the PCA analysis. Singular values decomposition of 
the matrices S for each motion type was performed: 

 TS U V   

Matrices ,U V  are orthogonal and matrix  is diagonal with 
positive values sorted in ascending order and equal to variances 
of principal components. Trace of matrix  i.e. the sum of 
elements on the main diagonal of  is the total variance. 
Columns of matrix T U   contain the principal components 
that are also called scores. Columns of matrix V  are called 
loadings and contain contributions of original signals to 
principal components. 

The variance of the largest principal component PC1 for 
walk, head motion and eyes blinking does not exceed 20% of 
the total variance for each motion type. The smallest variance 
of PC20 is not smaller than 2% of the total variance. It means 
that no significant correlation between all signal channels 
exists and no signal channels may be determined from other 
signals channels by linear combination for all investigated 
motion types. 

Correlation coefficients between individual channels are 
described by loadings matrix V . Channels that have large 
contributions to the same principal component are correlated or 
anti-correlated depending on the signs of their contributions.  

Principal components PC1 and PC2 were selected for 
further analysis due to maximal informational impact. Loading 
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plots of selected components for the walking and the head 
motion are shown in Fig. 5-(a) and Fig. 6-(a) respectively. Blue 
dots on each plot represent EEG channels, green – 
accelerometer, red – magnetometer. 

To assess the effects of movements on EEG signals and to 
determine other dependences in our data, correlation between 
each feature (channels in our case) within PC1 and PC2 
components were calculated. This was performed by 
representing each channel in PC1, PC2 coordinates as a vector 
(see Fig. 5-(a) and Fig. 6-(a)) and further computing the angle 
between each vector. The cosine of that angle is a desired 
correlation of the selected channels. Correlation maps for the 
walking and the head shaking are shown in Fig. 5-(b) and 
Fig. 6-(b) respectively. 

 
Figure 5.  Walking: representation of main PCA analysis results 

 
Figure 6.  Head shaking: representation of main PCA analysis results 

As a result of analysing the correlation map for the head 
shaking (see Fig. 6) we make the following statements: 

 strong correlation within all channels of the movement 
sensors, except the magnetometer channel M.X – it has 
anti-correlation; 

 EEG signals from the left cerebral hemisphere, 
(electrodes AF3, F7, F3, FC5, T7, P7, except O1) 
correlate with each other, and the same relation exists 
for the right hemisphere (see electrodes O2, P8, T8, 
FC6, F4, F8 and AF4); 

 most of the EEG channels of the left cerebral 
hemisphere have anti-correlation or no correlation with 
the right hemisphere and vice versa; 

 strong correlation between EEG signals from the left 
cerebral hemisphere and the movement sensors (except 
the EEG channel F7); 

 anti- and no correlation between EEG signals from the 
right hemisphere and movement sensors (except for 
accelerometer channel A.Y). 

 F7 indicates moderate anti-correlation with the left 
hemisphere and no correlation with the motion sensors; 

 O1 shows strong anti-correlation with the left cerebral 
hemisphere. 

For the walking experiment (see Fig. 5) relations between 
left, right cerebral hemispheres and motion sensors in general 
are the same as for the head movement test. In addition to this, 
channels P7 and O1 have very strong anti-correlation with all 
EEG signals, however, they correlate with themselves. F7 and 
F4 also indicate moderate anti- and no correlation with other 
EEG channels. Here F7 shows strong positive relation with the 
motion sensors. Correlation of the motion sensors with the left 
cerebral hemisphere is less pronounced and anti-correlation 
with the left hemisphere was becoming much stronger. 

Such relations are also seen in loading plots, but less 
distinctive, particularly for the loadings near zero. 

As a result we have concluded that: 

 Poor contact quality of EEG channels O1 and P7 can 
certainly be detected using PCA; the known contact 
quality of the headset electrodes confirm the 
conclusion about these poor contacts. 

 Our previous assumption about poor contact quality of 
the channels F7 and F4 for the walking supported by 
theirs relatively low amplitude derived from the visual 
analysis of the EEG recording is confirmed by PCA 
but is not confirmed by the quality information 
exported from the headset. This means that PCA may 
additionally detect non-related signal differences to the 
quality. 

 The assumption about poor contact quality of the 
channels F8, F3 and AF3 is not confirmed by both 
PCA and quality information exported from the 
headset. This means that these electrodes virtually have 
a firmly contact and their low amplitude may be 
explained by their forehead position. 

 Data obtained during the EEG recording from the 
accelerometer and magnetometer cannot be used to 
detect EEG electrodes with the poor contact quality. 
However this can be achieved by the calculating the 
correlation between EEG channels only. 

Eyes blinking has scanty motion activity and thus very 
weak signals from the motion detectors (see Fig. 4-(c)). 

 (a) – channel loadings distribution (b) – correlation map 
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 (a) – channel loadings distribution (b) – correlation map 
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Thereby there is no sense to investigate the correlation between 
EEG and motion detectors signals in this case. For the eyes 
blinking as well for sitting, lying and other steady activities 
another kind of poor signal detection is proposed and 
investigated in the next section. 

IV. ASSESSMENT OF THE INDUSTRIAL POWER NETWORK 

INTERFERENCE  

Another possible source of information about EEG 
channels with poor contact quality is the analysis of signals 
induced by the industrial power network. Such interference is 
almost always present. Equal parameters of different electrodes 
and amplifiers should provide a nearly equal level of the 
interference signal at 50 Hz or 60 Hz. Larger energy of this 
spectral component on some electrode may appear due to bad 
contact of the electrode with the skin, different amplifier gain 
or due to the EEG signal itself. Such information may be 
applied to determine EEG channel with the poor contact to the 
head skin or with the device terminal or amplifier gain 
reduction. 

We calculated the Power Spectral Density (PSD) of EEG 
channels using Welch periodogram with Hanning window that 
provides a spectral resolution of 1 Hz. Fig. 7 displays values 
of 50 Hz PSD component normalized on the maximum value 
between channels for walking, head motion and eyes blinking. 

 
Figure 7.  Normalized level of 50 Hz spectral component in the EEG 

channels 

The electrode with a poor contact with the skin can be 
detected by assessment of the 50 Hz component in two cases: 
the affected electrode picks up the interference signal with a 
larger amplitude than the brainwaves and when the electrode 
has no contact and as a result 50 Hz component will be low. In 
this manner we supposed that 25% of EEG channels have a 
poor contact. Our criteria states that this channel should have 
the highest or the lowest 50 Hz component. Thus we selected 
one channel with the highest impact and three with the lowest 
one for each of the three activities. 

As a result for the walking these channels are F4, F7, O1, 
P7; for the head shaking – P7, F4, F8, F7; for blinking – T8, 
F7, F4, P7. Certainly known channel P7 with a poor contact is 
presented for all three activities. Channels F4 and F7 also are 
presented in the each case and additionally they are highlighted 
by PCA, but the headset did not indicate any quality decrease 
during the recording. This means that these channels actually 
have an unstable contact. Certainly known channel with a poor 

contact O1 is detected only for the walking case. In the other 
cases for the channels F8 and T8 the detection reason was 
probably artefacts or another influences. 

In general, the results of the described approach correspond 
to the previously implemented PCA and known information 
about the failed channels, however a reliable detection of the 
failed channels is not always possible. 

V. CONCLUSION 

Results of this paper demonstrate that there is no significant 
dependence between electroencephalography signals from 
channels with bad contacts and signals from motion sensors 
(accelerometer and magnetometer). Calculation and analysis of 
the correlation between EEG channels is sufficient to detect 
failed channels. Analysis of 50 Hz interference from industrial 
power network in different electroencephalographic channels 
demonstrates a large difference of this component for failed 
channels and degraded signals. We consider that the use of 
additional sensors (such as motion skin impedance meter, 
electrical muscle activity detector, oxygenation level, etc.) in 
combination with electroencephalography signals can increase 
the resilience of the wireless EEG sampling by early detection 
of failed channels and degraded signals and their further 
correction. Automated correction of such sampling errors is 
possible in most cases but additional investigation of this 
problem is required. 
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