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Abstract—Rapidly shrinking technology node and voltage scal-
ing increase the susceptibility of Soft Errors in digital circuits.
Soft Errors are radiation-induced effects while the radiation
particles such as Alpha, Neutrons or Heavy Ions, interact with
sensitive regions of microelectronic devices/circuits. The particle
hit could be a glancing blow or a penetrating strike. A well ap-
prehended and characterized way of analyzing soft error effects
is the fault-injection campaign, but that typically acknowledged
as time and resource-consuming simulation strategy. As an alter-
native to traditional fault injection-based methodologies and to
explore the applicability of modern graph based neural network
algorithms in the field of reliability modeling, this paper proposes
a systematic framework that explores gate-level abstractions
to extract and exploit relevant feature representations at low-
dimensional vector space. The framework allows the extensive
prediction analysis of SEU type soft error effects in a given
circuit. A scalable and inductive type representation learning
algorithm on graphs called GraphSAGE has been utilized for
efficiently extracting structural features of the gate-level netlist,
providing a valuable database to exercise a downstream machine
learning or deep learning algorithm aiming at predicting fault
propagation metrics. Functional Failure Rate (FFR): the pre-
dicted fault propagating metric of SEU type fault within the
gate-level circuit abstraction of the 10-Gigabit Ethernet MAC
(IEEE 802.3) standard circuit.

Index Terms—GraphSAGE (Graph Based Neural Network),
Gate-level Circuit Abstraction, Deep Neural Networks, Func-
tional Failure Rate (FFR), Single Event Upset (SEU), Single Event
Transient (SET) and Soft Errors.

I. INTRODUCTION

System engineering focuses on the integration of new small-
scale technologies, which constantly advancing the state of the
art. Current quality requirements from industrial standards and
end-user requirements for high dependability applications ex-
pedite reliability modeling and assessment into an increasingly
significant endeavor. The aggressive technology node scaling
increased the vulnerability of radiation-induced soft errors.
The issues due to radiation-based effects, particularly, Single
Event Effects (SEEs) seriously impact the circuit’s reliability
and, the effects of impacts on the functional behavior of
the circuit are challenging to evaluate. A valuable approach
to tackle the challenge is the fault injection (or) simulation
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principle that provides precise and accurate information about
circuit behaviour under stress and allowing the calculation of
actual circuit-level reliability metrics.

A. Motivation

As mentioned above, the exhaustive fault injection method
is the ultimate reliability assessment method in terms of
accuracy, but it is very inconvenient in terms of time and EDA
licenses; which, makes this approach infeasible on medium
and large scale circuits. Therefore, a new test methodology has
proposed here. The fundamental idea is to provide an alternate
solution to avoid unreasonable test costs by maintaining good
statistical significance in results of proposed scope. Research
proposals based on Graph Theory and Deep Learning (DL)
techniques are more advanced and greatly favoured by re-
searchers to learn statistical dependencies of system-function
on related parameters. This motivation develops into a method
of applying GraphSAGE algorithm and trying to find the best
way to develop relevant feature databases from the gate-level
netlist and subsequently applying to a downstream deep neural
network for the functional failure reliability metric assessment.

B. Related Works

Application of Artificial Intelligence (AI) and Deep Learn-
ing approaches to extract feature database of information in
the graph network domain, were benefited in different fields.
In recent years, different supervised and unsupervised DL
approaches have proposed for graphical node embedding. The
process of leveraging a node’s features into a vector form is
called the node embedding. Node2vec [1], Graph Convolu-
tional Networks (GCN) [2] and GraphSAGE [3] have recently
gained much attention from researchers for node embedding
process. The application of graph-based neural network algo-
rithms (GCN and node2vec) for circuit’s reliability modeling,
have proposed in papers [4] and [5] respectively. There is
sufficient literature for machine learning (ML) applications
in system reliability engineering. But, most of the classical
machine learning algorithms rely on black-box modeling (not
transparent in modeling the metrics). Here, we aiming a
framework which could learn the structural information of
circuit’s gate-level abstraction in an unsupervised way (without
the true target-probability information) based on graphSAGE
algorithm and applied these node embedding vectors to a



downstream deep learning algorithm. A proper mathematical
fault propagating metric given in eq.1 has modeled in this sce-
nario. The analyzed results providing the case of much better
numerical superiority in fault propagational metric predictions
and interestingly reducing the time complexity.

C. Organization of the Paper

The organization of the paper includes a brief introduction
followed by sections II, III, IV, and V. Section II covers not
only the theoretical background of the physical phenomena
and mathematical functions to be modeled but also a brief
description of graph theory and graph-based neural networks.
The workflow of the framework has provided in section III.
Section IV illustrates the results of the fault propagating metric
predictions and, finally, a conclusion to the holistic approaches
provided in section V.

II. BACKGROUND & METHODOLOGY

A. Reliability Modeling at Gate-Level

Single Event Upset (SEU) and Single Event Transient (SET)
are the principal consequences of Single Event Effects (SEEs).
Single Event Effects are challenging phenomena to analyse
or predict when the silicon material of the circuit interacted
with the radiation particles. The Single Event Upset widely
used here as a prominent SEE representative, and use-case
mainly implies an inversion of the stored value in a flip-flop,
latch, or memory cell as the result of the radiation-induced
charge. Single Event Transient represents a transient pulse of
an arbitrary width due to the radioactive event and probably
propagate through the combinatorial network and latched to
the downstream sequential element. Among SEU and SET
events, more probably SEUs will change the state sequences
of the circuits and lead to a classified functional failure of the
circuits. The functional failure rate due to SEU (FFRi,seu) at
the given flip-flop (i), predicting through this framework. The
fault propagational probability metric FFRi,seu described as:

FFRi,seu = FITi,seu ·
∏

j∈T,L,F

DRij (1)

FFRseu =
∑
i∈FF

FFRi,seu (2)

where, DRiT , DRiL, and DRiF represent the fault derating
or masking factors such as Temporal Derating (TDR), Logical
Derating (LDR) and Functional Derating (FDR) respectively.
Similarly, FITi,seu denotes the rate of soft errors at the flip-
flop (i) in Failure-In-Time (FIT) unit. Readers could refer
the papers [6]–[10] for the deep insights about the radiation-
induced soft errors and their inevitable intrusive nature in the
functioning of microelectronic devices in aggressive radiation
environments.

1) Temporal Derating: Temporal (or time) derating rep-
resents the opportunity window of an event (SET or SEU)
and it’s probability to be latched to the downstream sequential
elements like flip-flop, latch or memory.

2) Logical Derating: The porpagational probability of SEU
or SET, within the combinational (or) sequential cell networks
based on their logical boolean functions is quantified as logical
masking probability (or) logical derating factor.

3) Functional Derating: The probability of the SEU/SET
event affects the function of the circuit’s actual application.
Even though the possibility of changing the circuit’s state
sequences is significant due to SEU/SET, the effect may be
benign or masked because of the application scope.

B. Graph Theory and Deep Learning Algorithms

1) Graph Theory: The graph theory is renowned for a
mathematical representation of the data objects and their
pairwise relationships in a graph model. In this context, the
gate-level abstraction of the circuit has transformed into a
graph network where vertices (ν) analogous to the flip-flops
and gates, and the directed edges (ε) represent the connection
between them from input ports to output ports direction. The
mathematical graph-function G of the transformed network
given as:

G = (ν, ε) (3)

2) GraphSAGE: The GraphSAGE [3], a general inductive
framework which leverages node’s feature information to effi-
ciently generate node embeddings for previously unseen data.
GraphSAGE could be also explained as a graph based neural
network with sampler and aggregator functions. Basically the
GraphSAGE framework learn a function that generates the
node embeddings by sampling and aggregating features from
a node’s local neighbourhood. Most common approaches like
node2vec algorithm [1] require the availability of all the
graph-nodes during the training phase of the node embedding
process, and those approaches are inherently transductive and
generally unable to postulate the learning function to unseen
nodes. But an inductive node embedding meant to be an
optimized generalization across the graph with same form
of features. That is, we can leverage the node features of
unseen graph part of a circuit by the embedding generator
which trained once with a more generalized graph models of
the circuit. This embedding part provides not only the local
role of nodes in the graph but also their global positions. A
sampler function defines the node’s neighborhood definition
through a uniform sampling of a fixed number of nodes instead
of sampling the entire neighborhood space at each depth-
wise iteration. It will result in boosting the optimal usage of
memory and reduce run-time complexity. Generally, usage of
the word ‘Depth’ means a measure of a fixed distance from the
source node for the neighborhood search. At each iteration of
depth, an aggregator function has employed. From the state-
of-art of the graphSAGE framework, numerous aggregator
functions are available like Mean aggregator, Long short-term
Memory (LSTM) aggregator, Pooling aggregator and Graph
Convoultional Network (GCN) based aggregator. Here we
implemented a Pooling aggregator with help of a python neural
network libraries. The basic idea of the graphSAGE simplified
and explained in the figure 2.



3) Deep Neural Network: Deep Neural Network (DNN) is
an important step in machine learning applications. DNNs are
trying to model data of complex distributions by combining
different non-linear transformations. The elementary bricks of
deep learning approaches are artificial neurons (perceptrons),
which are inspired by biological neurons. An artificial neuron
combines the input signals with adaptive weights and uses an
activation function to deliver the output. In this work, a gen-
eral fully connected DNN has implemented. The other main
categories of deep learning methods are Convolutional Neural
Network (CNN) and Recurrent Neural Networks (RNN).

C. Fault Injection Simulation Paradigm

As above mentioned, the true database required to train
and predict the fault propagating metric (FFRi,seu), obtained
through an exhaustive Fault Injection (FI) campaign. In an
exhaustive FI campaign, an SEU type fault injected indepen-
dently at each flip-flop in each clock cycle of the time duration
between transmission and reception of the input packets, as
given in figure 1. If the injected fault (SEU) in a single clock
cycle propagates through the circuit and subsequently causes
the circuit’s function to fail, it will account for the functional
failure. Finally, FFRi,seu was obtained by summing the
functional failures per flip-flop over the total number of clock
cycles required for the operation. In total, 1100 flip-flops from
different blocks of the circuit (such as TX, RX, Wishbone
Interface, Fault State-machine, and Sync clk), are tested and
recorded functional failure rates (FFRi,seu) as true database.

Fig. 1. Transmission between XGE MAC Transmitter (TX) and it’s Receiver
(RX)

III. METHODOLOGY ILLUSTRATION

The whole approach has explained through successive work-
phases as follows:

A. Phase I

The proposed work implements a method to map the gate-
level netlist as a Probabilistic Bayesian Graph (PGB) in the
Graph Modeling Language (GML) format. To accomplish
this goal, a Verilog Procedural Interface (VPI) based library
function (a user-defined library) linked to a standard simulation
tool (ModelSim/open-source tool). A gate-level netlist mapped
to the graph model has represented in figure 2. Parallelly, the
FI database simulated in this phase of the workflow.

B. Phase II

In the second phase of the approach, a feature matrix (X)
corresponding to graph nodes extracted using the GrpahSAGE
algorithm. As mentioned in section II-B2, GraphSAGE in-
cludes two principal steps. The premier step was the sampler
algorithm. The sampler algorithm defines the neighbourhood
space of a source node. In this scenario, we defined the
parameter K = 2, which means that the sampler will sample
up to the depth of 2 neighbourhood space. In the second step
of the GraphSAGE algorithm, an aggregator has implemented
at each depth (1 ≤ k ≤ K). This could be seen in Phase II of
figure 2, where blue and green line indicates the aggregators
at depth k = 1 and k = 2 respectively. Here, a max-pooling
aggregator was implemented. The mathematical abstraction of
the pooling aggregator [3] formulated as:

AGGREpool
k = max({σ(Wpoolh

k
ui
+b),∀ui ∈ Nk(v)}), (4)

where equation 4 represents the aggregator function at depth
k and it basically a neural network with parameters Wpool

and b. Parameters optimized through unsupervised learning.
Nk(v) represents k-neighbourhood of vertex v and hkui

in-
dicates the aggregated neighborhood vector and, σ is the
activation function of the neural network. In this way, we could
represent the whole GraphSAGE algorithm as a graph-based
neural network. At the end of this phase, each node reformed
into a corresponding vector and alternatively form a matrix
representation (X) of the circuit as given in figure 2.

C. Phase III

Phase III of figure 2 elucidates the DNN algorithm that
exercised for prediction purposes. There are two parts included
in phase III. The first part is the training part of DNN, and
the second one is the testing part of DNN. In the training
part, 40 % of the feature matrix and corresponding target
probability metric from FI - database, are taken to postulate a
hypothesis that best describes the target probability distribution
(FFRi,seu) by supervised learning method. The optimized
parameters (Weights and Bias) of the best fit of the target
distribution should provide as model parameters. In the testing
part, the proposed model applies to an unknown input vector
and predicts the target probability metric. The DNN architec-
ture consists of 5 dense layers, including the input and the
output layers.

D. Phase IV

The final phase includes a comparison between the predicted
and target probability metrics. The compared results plotted in
figure 3, as well as the impacts of results provided in table I.

IV. EXPERIMENTAL RESULTS

In figure 3, the functional failure rates of flip-flops to be
predicted were shown in red color, and the corresponding
predicted probabilities have shown in blue color. The case
study has conducted with the gate-level circuit of the 10-
Gigabit Ethernet MAC. The graphical comparison gives a



Fig. 2. A Systematic workflow diagram of the implemented scientific work

Fig. 3. Graph Comparison : Mean Absolute Error (MAE) = 0.0186 and
coefficient of determination (R2 Metric) = 0.96 with a test size of 60%

visualization of how well the prediction replicates the ob-
served database. In this case, the DNN prediction achieves
the coefficient of determination (R2) value of approximately
0.96, where the best model fit value of R2 metric is 1, and the
worst value is 0. In statistics, the R-squared (R2) value is the
measure of goodness-of-fit of the proposed regression model
and, the projected R-squared value (0.96) able to explain most
of the variation in the response data. The entire work repeated
and achieves a good prediction accuracy with other standard
circuits (e.g., The USB 1.1 Function IP Core).

Table I outlines the impacts of accelerated predictions in

TABLE I
IMPACT OF PREDICTION IN TIME AND TOOL REQUIREMENTS

Model Time Tool Model Fit (R2)

Fault Injection 17 hours 7 Modelsim Target Model
Fault Injection ≈ 5 days 1 Modelsim Target Model
GraphSAGE + DNN
(Test + Training) < 10 minutes 1 Modelsim 0.96

terms of time and simulation tool requirements. Even-though
GraphSAGE and DNN based ensemble algorithm provide
a significant reduction in the required test resources with-
out compromising the quality of modeling, the implemented
algorithm depends on 40% of FI-database for training the
downstream DNN as picturized in Phase III of fig.2. But, it
is quite impressive to note that the test and training phase of
the whole algorithm takes only less than 10 minutes.

V. CONCLUSION

An accelerated testing methodology; that is scalable and
very cost-effective in resource handling, has developed for
medium and largescale circuits to predict Functional Failure
Rate due to SEU type fault without dropping the significance
of the statistical modeling.
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