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Abstract— In this paper, a fault detection and isolation (FDI)
approach using a bank of interval observers is developed.
From the methodological point of view, a bank of interval
observers is designed according to different dynamical models
of the system under different modes (healthy or faulty). Each
interval observer matches one system mode while all the
interval observers monitor the system simultaneously. In order
to guarantee FDI, a set of FDI conditions based on invariant
set notions are established. These conditions ensure that the
considered faults can be accurately isolated after a period of
monitoring time. Finally, simulation results are used to present
the effectiveness of the approach.

I. INTRODUCTION

According to the recent literature [2], [3], [5], interval

observers have being successfully used for fault detection

(FD) purposes, but not for fault isolation (FI) purposes. The

aim of this present paper is to extend the use of interval

observers to fault isolation (FI).

The interval observer-based FD approach consists in prop-

agating the effect of uncertainties by means of the system

mathematical models to generate adaptive thresholds for

residuals. Then, the FD is performed by testing the consis-

tency between model predictions and current measurements

of the corresponding residuals [2], [5].

Whatever mode the system is under, an interval observer

consistent with the current mode model of the system always

predict state or output interval vectors that confine the current

system states or outputs at each time instant. This mechanism

provides useful information to detect and isolate faults when

a bank of interval observers is used.

An FDI approach based on a bank of set-valued observers–

different from interval observers–is proposed in [6]. Under a

set of assumptions regarding the system, that proposed ap-

proach can implement FDI scheme. However, comparatively,

the approach proposed in this paper provides a set of definite

and pre-checkable FDI conditions that allow to know a priori

whether faults are detectable and isolable.

Considering the good balance among expressional com-

pactness, computational precision and complexity offered

by zonotopes [1], this paper focuses on the representation
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of uncertainties by zonotopes and the design of interval

observers based on the Luenberger structure.

The contribution of this paper is twofold. First, it extends

interval observer-based approaches to the case of FI, which

implies that interval observers can independently implement

FDI without the help of other FI techniques such as the

fault signature matrices. Second, it establishes a set of FDI

conditions to guarantee interval observer-based FDI.

The remainder of this paper is organized as follows.

Section II introduces the notions of zonotopes and invariant

sets. Section III introduces the plant and interval observers.

The FDI algorithm is presented in Section IV. In Section

V, guaranteed FDI conditions are established. An extension

of the approach for sensor faults is briefly discussed in

Section VI. In Section VII, the examples are used to show

the effectiveness of the proposed approach. In Section VIII,

general conclusions are drawn.

II. PRELIMINARIES

The notation ⊕ represents the Minkowski sum of two

sets, |.| denotes the elementwise absolute value and the

inequalities are interpreted elementwise.

A. Invariant Sets

The linear discrete time-invariant dynamics

xk+1 = A◦xk +B◦δk (1)

are used to introduce the invariant set notions, where A◦

and B◦ are constant matrices and A◦ is a Schur matrix, δk
belongs to ∆ = {δ : |δ − δ◦| ≤ δ̄} with δ◦ and δ̄ constant

and all the elements have compatible dimensions.

Definition 2.1: (Invariant sets) A set X ⊂ R
n is called

a robust λ-contractive (robust positively invariant (RPI)) set

for (1) if and only if there exists a scalar 0 ≤ λ < 1 (λ = 1)

such that A◦X ⊕B◦∆ ⊆ λX . ♦
Definition 2.2: (The mRPI set) The minimal robust posi-

tively invariant set (mRPI set) with respect to (1) is defined

as a RPI set contained in any closed RPI set. ♦
Theorem 2.1: (Invariant sets) [4] Considering the dynam-

ics (1) and letting A◦ = V ΛV −1 be the Jordan decomposi-

tion of A◦ with Λ diagonal and V invertible, the set

Φ(θ) ={x ∈ R
n :

∣

∣V −1x
∣

∣ ≤ (I − |Λ|)−1
∣

∣V −1B◦

∣

∣ δ̄

+ θ} ⊕ ξ◦ (2)

is RPI and attractive for the trajectories of (1), with θ any

(arbitrarily small) vector with positive components, where

ξ◦ is the center of the set that is expressed as ξ◦ = (In −
A◦)

−1B◦δ
◦ where In is the identity matrix.



1) For any θ, the set Φ(θ) is (positively) invariant, that

is, if x0 ∈ Φ(θ), then xk ∈ Φ(θ) for all k ≥ 0.

2) Given θ ∈ R
n, θ > 0, and x0 ∈ R

n, there exists k∗ ≥ 0
such that xk ∈ Φ(θ) for all k ≥ k∗. �

Remark 2.1: For θ > 0, the set Φ(θ) is contractive. But

for θ = 0, one can guarantee only the invariance and not the

contractiveness of the set. ♦

Proposition 2.1: (The mRPI set approximations) [4] Con-

sidering the dynamics (1), letting all eigenvalues of A◦ be

strictly inside the unit circle and denoting X0 as a (RPI)

initial set of (1), each of the set iterations

Xj+1 = A◦Xj ⊕B◦∆, j ∈ N,

where j denotes the j-th element in the set sequence and N

represents the set of natural numbers, is a (RPI) approxima-

tion of the mRPI set of (1). Moreover, as j tends to infinity,

the set sequence converges to the mRPI set. �

Remark 2.2: According to Theorem 2.1 and Proposi-

tion 2.1, one can compute a (RPI) approximation for the

dynamics (1) with an arbitrarily expected approximate pre-

cision towards the mRPI set. ♦

B. Zonotopes

According to [1] and [2], several definitions and properties

of zonotopes are introduced.

Definition 2.3: (Zonotopes) Given a vector p ∈ R
n and a

matrix G ∈ R
n×m(n ≤ m), a zonotope X with the order m

is defined as X = p⊕GB
m. ♦

Definition 2.4: (Interval hull) The interval hull �X of a

zonotope X = p ⊕ GB
r ⊂ R

n is the smallest interval box

that contains X and the expression of the interval hull is

denoted as �X = {x | |xi − pi| ≤‖ Gi ‖1}, where Gi is

the i-th row of G, and xi and pi are the i-th components of

x and p, respectively. ♦
Property 2.1: (Minkowski sum) Given two zonotopes

X1 = p1 ⊕ G1B
r1 ⊂ R

n and X2 = p2 ⊕ G2B
r2 ⊂ R

n,

the Minkowski sum of them is also a zonotope denoted by

X1 ⊕X2 = {p1 + p2} ⊕ [G1 G2]B
r1+r2 . �

Property 2.2: (Mapping by a matrix) The image of a

zonotope X = p ⊕ GB
r ⊂ R

n by a linear mapping matrix

K can be computed as KX = Kp⊕KGB
r by a standard

matrix product. �

Property 2.3: (Zonotope reordering) Given a zonotope

X = p ⊕ GB
r ⊂ R

n and an integer s (with n < s < r),

denote by Ĝ the matrix resulting from the recording of the

columns of the matrix G in decreasing Euclidean norm.

Then, X ⊆ p ⊕ [ĜT Q]Bs, where ĜT is obtained from

the first s − n columns of matrix Ĝ and Q ∈ R
n×n is a

diagonal matrix that satisfies

Qii =

r
∑

j=s−n+1

| Ĝij |, i = 1, . . . , n.

�

III. PLANT MODELS AND INTERVAL OBSERVERS

In this section, the plant models with faults as well as

interval observers are introduced.

A. Plant Models

The linear discrete time-invariant plant with faults is

considered as

xk+1 = Axk +BFiauk + ωk, (3a)

yk = CGisxk + ηk, (3b)

where xk ∈ R
n, uk ∈ R

p and yk ∈ R
q are states, inputs and

outputs, respectively, A ∈ R
n×n, B ∈ R

n×p and C ∈ R
q×n

are constant, Fia ∈ R
p×p (ia ∈ Ia = {0, 1, 2, . . . , N}

where N denotes the number of considered actuator faults)

is a diagonal matrix modeling the ia-th actuator mode, F0 is

the identity matrix representing the healthy actuator mode,

Gis ∈ R
n×n (is ∈ Is = {0, 1, 2, . . . ,M} where M denotes

the number of considered sensor faults) is a diagonal matrix

modeling the is-th sensor mode, G0 is the identity matrix

representing the healthy sensor mode, ωk ∈ W and ηk ∈ V

represents bounded uncertainties (disturbances, offsets, etc)

in states and outputs, respectively, and the subscript k denotes

the k-th discrete time1.

All diagonal entries of Fia and Gis belong to [0, 1] where

0 and 1 represent that the corresponding actuators/sensors

are completely faulty or healthy, respectively, while a value

in the range (0, 1) denotes a partial degradation of the

corresponding actuators/sensors. W and V are defined as

W = {ωk ∈ R
n : |ωk − ωc| ≤ ω̄, ωc ∈ R

n, ω̄ ∈ R
n},

V = {ηk ∈ R
q : |ηk − ηc| ≤ η̄, ηc ∈ R

q, η̄ ∈ R
q},

where ωc, ηc, ω̄ and η̄ are constant vectors.

Due to the structure above, W and V can be rewritten as

zonotopes

W = ωc ⊕Hω̄B
n, (4a)

V = ηc ⊕Hη̄B
q, (4b)

where B
n and B

q are unitary boxes (interval vectors) com-

posed of n and q unitary intervals, respectively, Hω̄ ∈ R
n×n

and Hη̄ ∈ R
q×q are diagonal matrices with the diagonal entry

in each row having the same value with the corresponding

entry in each row of ω̄ and η̄, respectively.

Assumption 3.1: (Fault occurrence) The system keeps op-

erating in a dynamic mode for a sufficiently long time such

that it goes into steady state before a switching of dynamic

mode induced by a fault occurrence. �

Assumption 3.2: (Detectability and stabilizability) The

pairs (A,BFia ) and (A,CGis ) are respectively stabilizable

and detectable under all the considered modes. �

B. Interval Observers

1) The Notions of Interval Observers: Assuming that the

plant (3) is in the healthy mode, an observer based on the

Luenberger structure

x̂k+1 =Ax̂k +Buk + L0(yk − ŷk) + ω̌k, (5a)

ŷk =Cx̂k + η̌k, (5b)

1Generally, sensor faults are modeled as yk = ǦisCxk + ηk , but for
simplicity of mathematical derivations, in this paper they are modeled as
yk = CGisxk + ηk .



is designed, which includes uncertain variables ω̌k ∈ W and

η̌k ∈ V , to model the effect of unknown disturbances ωk and

noises ηk in the real states xk and outputs yk of the plant,

respectively, and where L0 is an observer gain matrix that

can ensure the observer convergence.

By introducing zonotope description of noises and dis-

turbances as indicated in (4a) and (4b) into the observer

mapping (5) and using zonotope arithmetic at each time in-

stant [1], a healthy interval observer based on the Luenberger

structure is given as

X̂0
k+1 =(A− L0C)X̂0

k ⊕ {Buk} ⊕ {L0yk}

⊕ (−L0)V ⊕W, (6a)

Ŷ 0
k =CX̂0

k ⊕ V, (6b)

where X̂0
k and Ŷ 0

k are respectively state and output zonotopes

predicted by the interval observer at time instant k. Eventu-

ally, it is guaranteed that the predicted zonotopes for ŷk (or

x̂k) confine both yk (or xk) and ŷk (or x̂k), respectively.

2) Interval Observers for Actuator Faults: In (3), letting

Gis be the identity matrix, one can obtain the models

of the plant under actuator faults. The interval observer

corresponding to the model of the ja-th system actuator

mode is designed as

X̂
ja
k+1

=(A− LjaC)X̂ja
k ⊕ {BFjauk} ⊕ {Ljayk}

⊕ (−Lja)V ⊕W, (7a)

Ŷ
ja
k =CX̂

ja
k ⊕ V, (7b)

where ja ∈ Ia represents the index of the interval observer

(ja = 0 denotes the healthy interval observer as seen in (6)),

X̂
ja
k and Ŷ

ja
k are state and output zonotopes predicted by

the ja-th interval observer at k, respectively, and Lja is an

observer gain matrix which makes A−Lja be a Schur matrix.

According to (7) and zonotope operations, the center x̂
c,ja
k+1

and segment matrix Ĥ
ja
k+1

of X̂
ja
k+1

, and the center ŷ
c,ja
k and

segment matrix Ĥ
ja
k of Ŷ

ja
k are computed as

x̂
c,ja
k+1

=(A− LjaC)x̂c,ja
k +BFjauk + Ljayk

− Ljaη
c + wc, (8a)

Ĥ
ja
k+1

=[(A− LjaC)Ĥja
k − LjaHη̄ Hω̄], (8b)

ŷ
c,ja
k =Cx̂

c,ja
k + ηc, (8c)

Ĥ
ja
k =[CĤ

ja
k Hη̄]. (8d)

3) Interval Observers for Sensor Faults: Similarly, in (3)

letting Fia be the identity matrix, the models of the plant

under sensor faults can be obtained. The interval observer

corresponding to the js-th system sensor mode can be

expressed as

X̂
js
k+1

=(A− LjsCGjs)X̂
js
k ⊕ {Buk} ⊕ {Ljsyk}

⊕ (−Ljs)V ⊕W, (9a)

Ŷ
js
k =CGjsX̂

js
k ⊕ V, (9b)

where js ∈ Is represents the index of the interval observer

(js = 0 denotes the healthy interval observer as seen in (6))

and the gain matrix Ljs can make A−LjsCGjs be a Schur

matrix. Similar with (8), the expressions of the center and

segment matrix of X̂
js
k+1

and Ŷ
js
k can be derived.

Assumption 3.3: (Initial conditions) The initial state of the

plant is denoted as x0 and x0 belongs to a known initial

zonotope X̂0 for all the interval observers, i.e., x0 ∈ X̂0. �

Since the prediction of interval observers and the computa-

tion of interval vectors is based on zonotopes, the discussions

in the remaining of the paper are mainly based on zonotopes.

Additionally, since the principle of the proposed technique

for actuator and sensor FDI is similar, in this paper only

FDI of actuator faults is discussed in detail. However, the

extension of the method to the case of sensor faults is

summarized afterwards.

IV. PROPOSED INTERVAL OBSERVER-BASED FDI

The interval observer-based FDI is introduced and the

proposed FDI algorithm is presented.

A. FDI using Interval Observers

1) FD using Interval Observers: According to [3], the

interval observer-based FD uses the heathy interval observer,

which is based on propagating model uncertainties to the

residuals and checking if

0 ∈ �R0
k, (10)

where R0
k = {yk} ⊕ (−Ŷ 0

k ) denotes the residual zonotope

predicted by the healthy interval observer at time instant k

and 0 represents the zero vector. If (10) does not hold, it is

assumed that a fault has occurred at k.

2) FI using Interval Observers: The proposed FI tech-

nique is based on a bank of interval observers and each

observer is designed to match a given system mode. At

each time instant, a set of residual zonotopes predicted by

the bank of interval observers can be obtained. After the

transition from one operating mode to another, the residual

zonotope matching the current mode should include 0 and

simultaneously all the other residual zonotopes not matching

the current mode should always exclude 0.

B. FDI Algorithm using a Bank of Interval Observers

Since each interval observer matches one certain system

mode, it means that each interval observer has different

dynamical behaviors under different modes. Since a fault

occurrence always induces the corresponding uncertainties

on dynamical behaviors of interval observers during the

transition, there exist possibilities that at some time instants

several residual zonotopes predicted by several different

interval observers simultaneously contain 0 during the tran-

sition.

In order to guarantee the correct and timely FI, a waiting

time T is necessary after a fault is detected. This waiting

time is used to delay FI process such that the incorrect FI

possibilities are completely avoided. The procedure of this

proposed FDI method is presented in Algorithm 1.

Definition 4.1: (Waiting time T ) It is defined as, at least,

the maximum of all the settling time of all the interval

observers such that residual zonotopes predicted by interval



observes not matching the current system mode do exclude

0 by waiting T after the detection of a fault. ♦

Algorithm 1 Proposed FDI algorithm

Require: x0, X̂0, mode index ia ∈ Ia;

Ensure: Current fault index f ;

1: Initialization: X̂
ja
0 = X̂0 (ja ∈ Ia) and fault ←

FALSE;

2: At time instant k: 0 ∈ Ria
k and 0 6∈ R

ja
k (ja ∈ Ia \{ia});

3: while fault 6= TRUE do

4: k ← k + 1;

5: Obtain Ria
k ;

6: if 0 6∈ Ria
k then

7: fault← TRUE (Fault detection);

8: k ← k + T ;

9: end if

10: end while

11: Obtain: R
ja
k , ja ∈ Ia \ {ia};

12: for ja ∈ Ia \ {ia} do

13: if 0 ∈ R
ja
k then

14: f ← ja (Fault isolation);

15: break;

16: end if

17: end for

18: return f;

Remark 4.1: When a fault occurs, it always results in

changes in the system outputs (or the inputs of interval

observers) and induces a transition for the estimations of each

interval observer. Theoretically, the transition is assessed by

the observer settling time, i.e., the eigenvalues of the interval

observer matrix. Thus, by adjusting observer gain matrices of

all the interval observers, one can obtain a satisfactory wait-

ing time to guarantee reliable FDI. However, this adjustment

should depend on the particular applications. ♦

V. GUARANTEED FDI CONDITIONS

This section establishes a set of FDI sufficient conditions

based on a bank of interval observers.

A. Characterizing Residual Sets using Zonotopes

When the system is under the ia-th actuator mode, the

residual zonotopes predicted by the ja-th interval observer

is defined as

R
iaja
k = {yk} ⊕ (−Ŷ ja

k )

= {Cxk + ηk} ⊕ {(−CX̂
ja
k )⊕ (−V )}

= C{{xk} ⊕ (−X̂ja
k )} ⊕ {ηk} ⊕ (−V ). (11)

In order to describe the residual zonotopes defined in (11),

one has to obtain X̃
iaja
k which is written as

X̃
iaja
k = {xk} ⊕ (−X̂ja

k )

= {(xk − x̂
c,ja
k )} ⊕ Ĥ

ja
k B

s
ja
k

= x̃
c,iaja
k ⊕ H̃

iaja
k B

s
ja
k , (12)

where x̃
c,iaja
k = xk− x̂

c,ja
k , H̃

iaja
k = Ĥ

ja
k and s

ja
k represents

the order of the zonotope X̂
ja
k .

According to (3) and (8), the center and segment matrix

of X̃
iaja
k+1

are computed as

x̃
c,iaja
k+1

=(A− LjaC)x̃c,iaja
k +B(Fia − Fja)uk

− Lja(ηk − ηc) + (ωk − ωc), (13a)

H̃
iaja
k+1

=Ĥ
ja
k+1

= [(A− LjaC)Ĥja
k − LjaHη̄ Hω̄]. (13b)

In order to establish guaranteed FDI conditions, assume

that all possible values of control inputs uk belong to a set

denoted as

U = {uk ∈ R
p : |uk − uc| ≤ ū, uc ∈ R

p, ū ∈ R
p},

where uc and ū are constant. Moreover, U can be rewritten

as a zonotope

U = uc ⊕HūB
p,

where Hū ∈ R
p×p is a diagonal matrix with the diagonal en-

try in each row having the same value with the corresponding

entry in the same row of ū.

By substituting U , W and V to replace uk, ωk and ηk in

(13a), respectively, one can compute a bounding zonotope

denoted as X̆
iaja
k+1

to bound X̃
iaja
k+1

at time instant k+1, and

the center and segment matrix of X̆
iaja
k+1

are derived as

x̆
c,iaja
k+1

=(A− LjaC)x̆c,iaja
k +B(Fia − Fja )u

c, (14a)

H̆
iaja
k+1

=[(A− LjaC)Ĥja
k B(Fia − Fja)Hu − LjaHη̄

LjaHη̄ Hω̄ −Hω̄]. (14b)

Comparing (13) with (14), it is seen that as long as

the dynamics of X̃
iaja
k+1

and X̆
iaja
k+1

are initialized under the

condition X̃
iaja
0 ⊆ X̆

iaja
0 , after the initialization X̃

iaja
k+1

⊆

X̆
iaja
k+1

holds for all k > 0.

Thus, one can obtain the set-based dynamics of (14),

which is derived as

X̆
iaja
k+1

=(A− LjaC)X̆ iaja
k ⊕B(Fia − Fja)U ⊕ Lja(−V )

⊕W ⊕ LjaV ⊕ (−W ). (15)

In order to establish a set of guaranteed FDI conditions,

this paper is interested in X̆ iaja
∞

at infinity. In fact, it is

not possible to accurately compute X̆ iaja
∞

. Then, one has

to compute an approximation for X̆ iaja
∞

and as long as the

precision of the approximation is satisfactory, it can be used

to replace the use of X̆ iaja
∞

.

By following Theorem 2.1 and Proposition 2.1, assigning

an arbitrarily initial zonotope2 for (15) and iterating (15), a

satisfactory approximation of X̆ iaja
∞

denoted as Siaja with

the center Oiaja can be obtained.

2Note that according to Theorem 2.1 a RPI set of (15) can be obtained.
Thus, if the initial zonotope is RPI, it is guaranteed that Siaja is a RPI

approximation of X̆
iaja
∞ . if the initial is not RPI, a non-RPI approximation

for X̆
iaja
∞ can be obtained. However, as long as the iterative time is

sufficient, the non-RPI approximation can also be satisfactory.



B. Guaranteed FDI Conditions

For each considered system mode, an interval observer

is designed to match the corresponding mode. According

to (11) and (12), the residual zonotope at time instant k is

rewritten as

R
iaja
k =CX̃

iaja
k ⊕ {ηk} ⊕ (−V ). (16)

By substituting V to replace ηk in (16), a residual-

bounding zonotope R̆
iaja
k at k can be obtained as

R̆
iaja
k =CX̆

iaja
k ⊕ V ⊕ (−V ). (17)

As k tends to infinity, guaranteed FDI sufficient conditions

based on R̆iaja
∞

can be established.

Theorem 5.1: (Guaranteed FDI conditions) Considering

the plant (3) and a bank of interval observers (7), as long

as the residual-bounding zonotope R̆iaja
∞

(ja 6= ia and ia,

ja ∈ Ia) satisfies

| Pl(0− r̆ciaja) |> max
r∈Ĕ

| Pl(r − r̆ciaja) |, (18)

where r̆ciaja denotes the center of R̆iaja
∞

, Ĕ represents the

set of all vertices of R̆iaja
∞

, Pl(.) represents the projection

towards the axis l ∈ {1, 2, . . . , q}, once a fault occurs, the

accurate FDI can be guaranteed after a waiting time.

Proof : The proof has two parts. The first part is to prove

that R̆iaja
∞

(ja 6= ia) does not contain 0, which is the asymp-

totic FDI condition. The second part concentrates on that

the dynamical behavior of the residuals at infinity (R̆iaja
∞

)

translates those after a waiting time, which guarantees the

FDI reliability and accuracy.

The satisfaction of (18) implies that the limit set R̆iaja
∞

does not contain 0. Thus, one only focuses on the proof

of the second part as follows. Since residual zonotopes and

their bounding zonotopes are determined by (13) and (14),

without loss of effectiveness, the main elements used next

will be these set-based dynamics.

The equation (15) shows that the time-variant term is (A−
LjaC)X̆ iaja

k , which means that the difference of values of

X̆
iaja
k at different time instants is determined by the shape

of X̆
iaja
0 , while the contractive factor is determined by the

placement of the eigenvalues of A−LjaC that corresponds

to the ja-th interval observer.

Thus, whenever a fault occurs, after a waiting time as-

sessed by the eigenvalues of the interval observer, (15)

enters into steady state. Then, the set value of X̆
iaja
k can

be sufficiently3 close to that of X̆ iaja
∞

, which means that

X̆ iaja
∞

can approximately describe the dynamical behaviors

of the system after the waiting time. �

As long as Theorem 5.1 is satisfied, the FDI of any of

considered faults can be guaranteed. However, since R̆iaja
∞

can not be accurately computed but only approximated,

Theorem 5.1 has only a theoretical value. For the sake of

finding a set of practical FDI conditions, one has to turn

3X̆
iaja
k

is inside the set described as the Minkowski sum of {Piaja} ⊕

(1 + ǫ){X̆iaja
∞ ⊕ {−Piaja}}, where Piaja denotes the center of X̆

iaja
∞

and ǫ is a scalar that satisfies ǫ > 0.

to an approximation Siaja of R̆ij
∞

. Further, a satisfactory

approximation of R̆iaja
∞

is derived as

R̊iaja
∞

=CSiaja ⊕ V ⊕ (−V ), (19)

where the center of R̊iaja
∞

is computed as

r̊ciaja = COiaja . (20)

Based on (19), (20) and Theorem 5.1, a set of usable FDI

conditions can be established

| Pl(0− r̊ciaja) |> max
r∈E̊

| Pl(r − r̊ciaja) |, (21)

where E̊ represents the set of all vertices of R̊iaja
∞

(ja 6= ia).

Note that the guaranteed FDI conditions are a set of suffi-

cient conditions, not necessary conditions due to the series of

approximations contained in the design method. Thus, their

satisfaction can guarantee FDI, but the dissatisfaction does

not mean that the faults are non-detectable or non-isolable

with extra effort.

VI. THE EXTENSION FOR SENSOR FAULTS

When the plant (3) is under a sensor fault, similarly,

residual zonotopes predicted by the js-th interval observers

under the is-th system mode can be derived as

R
isjs
k ={yk} ⊕ (−Ŷ js

k )

={CGisxk + ηk} ⊕ {(−CGjsX̂
js
k )⊕ (−V )}

={CGisxk} ⊕ (−CGjsX̂
js
k )⊕ {ηk} ⊕ (−V ). (22)

In order to establish a set of sensor FDI conditions like

(18) in the case of actuator faults, in the is-th mode one

has to compute the corresponding bounding zonotope R̆
isjs
k

to bound R
isjs
k at each time instant. According to (22), one

further has

R
isjs
k ⊆CGis{{xk} ⊕ (−X̂js

k )} ⊕ C(Gis −Gjs)X̂
js
k

⊕ {ηk} ⊕ (−V ). (23)

As discussed in the previous sections, the bounding zono-

topes of {xk} ⊕ (−X̂js
k ) and X̂

js
k , respectively denoted as

X̆
isjs
k and

˘̂
X

js
k , can be computed in the same way. Thus,

R̆
isjs
k to bound R

isjs
k can be derived as

R̆
isjs
k = CGisX̆

isjs
k ⊕ C(Gis −Gjs)

˘̂
X

js
k ⊕ V ⊕ (−V ).

Similarly, by obtaining satisfactory approximations of

X̆ isjs
∞

and
˘̂
Xjs

∞
, the corresponding approximation R̊isjs

∞
for

R̆isjs
∞

can be obtained. Thus, based on the same principle

with the case of actuator faults, a set of guaranteed FDI

conditions can be established for sensor FDI.

However, from the derivation indicated in (23), it is shown

that the proposed method for sensor FDI is conservative.

Thus, in this paper the discussions are restricted to this

remark. Note that, if a less conservative method can be found,

the conservativeness of guaranteed FDI conditions for sensor

faults will be further reduced, which will be an important

point of our further research.



VII. NUMERICAL EXAMPLE

The dynamics of the second blade subsystem of a wind tur-

bine benchmark indicated in [7] are used for the illustrative

example. Considering the length of this paper, please refer

to Eqs.(4), (5) and (6) in [7] for the details of the subsystem

dynamics structure.

1) The Case of Actuator Faults: We assume that the

dynamics have two actuator-fault modes, i.e, the dynamics

Eq.(4) in [7] are rewritten as

x+
β2

= Aβ2
xβ2

+Bβ2
Fia(βr + β2f ), (24)

β2 = Cβ2
xβ2

, (25)

where the notation +, consistent with [7] for simplicity,

denotes the successor time instant, Fia models the ia-th

actuator mode (ia ∈ {0, 1, 2}) and F0, the identity matrix,

represents the healthy actuator mode.

We assume that the two sensors of the subsystem are

healthy (i.e., K = 1 in Eq.(5) of [7]) and that the feedback

β2f is obtainable. Three interval observers are designed as

indicated in (7) corresponding to the three modes. After

system discretization with the sampling time 0.01s, the

parameters of the discrete-time dynamics are given as

• model parameters:

Aβ2
=

[

0.8667 −1.2343
0.01 1

]

, Bβ2
=

[

0.01
0

]

,

Cβ2
=

[

0 123.4321
]

,

• measurement noises:

η̄β2,m1 =0.03, ηcβ2,m1 = 0.3,

η̄β2,m2 =0.03, ηcβ2,m2 = 0.3,

• Three observer gains:

L0 = L1 = L2 =

[

−0.001
0.003

]

,

• fault magnitude:

F1 =
[

0.1
]

, F2 =
[

0.5
]

,

• sinusoidal control input:

βc
r = 3, Hβr

= 0.3,

• initial conditions:

xβ20
=

[

0
0

]

, x̂
c,0
0 = x̂

c,1
0 = x̂

c,2
0 =

[

0.1
0.1

]

,

Ĥ0
0 = Ĥ1

0 = Ĥ2
0 =

[

0.5 0 0 0
0 0 0.5 0

]

.

By iterating (15) thirty steps to obtain a satisfactory

approximation of X̆ iaja
∞

, and according to (17), the cor-

responding approximation of residual-bounding zonotope

R̊iaja
∞

is computed. Eventually, all approximations of all

relevant residual-bounding zonotopes are presented as

• for the interval observer 0:

R̊10
∞

= [−0.8325, −0.2937],

R̊20
∞

= [−0.5570, −0.0778],
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Fig. 1. The FDI of actuator faults

• for the interval observer 1:

R̊01
∞

= [0.2889, 0.8015],

R̊21
∞

= [0.0187, 0.4567],

• for the interval observer 2:

R̊02
∞

= [0.0730, 0.5255],

R̊12
∞

= [−0.4732, −0.0352],

which shows that all the three considered actuator modes

can satisfy the FDI conditions as indicated in (21). The

simulation scenarios are considered as: from 0 to 50 the

system is healthy, from 51 to 80 the second fault occurs,

from 81 to 110 the system recovers to health and from 111
to 140 the first fault occurs.

The simulation results presented in Figure 1 show the

effectiveness of this approach, where a transition appears

when a fault occurs, which implies that the waiting time

is necessary for the accurate FI.
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2) The Case of Sensor Faults: The original dynamics of

the second blade subsystem characterized by Eqs.(4), (5) and

(6) in [7] is used. The sensor faults are located in the second

sensor described by Eq.(5) of [7]. In this simulation, the

magnitudes of two sensor fault modes 1 and 2 are set as

K1 = 0.5, K2 = 0.05.



Noises and control inputs (all the other parameters respect

those in the case of actuator faults) are given as

• measurement noises:

η̄β2,m1 =0.005, ηcβ2,m1 = 1.5,

η̄β2,m2 =0.005, ηcβ2,m2 = 1.5.

• sinusoidal control input:

βc
r = 15, Hβr

= 0.03.

Similarly, by iterating the corresponding bounding zono-

tops like (15) 50 steps, one computes the approximations of

all relevant residual-bounding zonotopes

• for the interval observer 0:

R̊10
∞

= [−10.400, −10.249],

R̊20
∞

= [−229.38, −227.53],

• for the interval observer 1:

R̊01
∞

= [1.2694, 1.5076],

R̊21
∞

= [−0.9769, −0.9292],

• for the interval observer 2:

R̊02
∞

= [0.8013, 4.4751],

R̊12
∞

= [−4.2844, −3.2450],

which satisfy the corresponding guaranteed FDI conditions

like (21).

Similarly, one sets simulation scenarios: from 0 to 40 the

system is healthy, from 41 to 80 the first fault occurs, from

81 to 120 the system recovers to health and from 121 to

170 the second fault occurs. The simulation results presented

in Figure 2 and Figure 3 illustrate the effectiveness of the

method for sensor FDI.

VIII. CONCLUSIONS

This paper proposes an interval observer-based guaranteed

FDI approach by using a bank of interval observers. For

guaranteed FDI, a set of FDI conditions are established

by analyzing the limit sets connected with invariant set

notions. The advantage of the approach is that it can precheck

whether the faults are detectable and isolable without the

need of guaranteeing that residual zonotopes predicted by all

the interval observers are separatable from each other. The

following research is to explore ways of further reducing the

conservativeness of FDI conditions for sensor faults.
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