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Abstract—The present paper describes a torque saturation
control technique applied on vehicular control, operating on
time-varying tire-road adherence conditions and with noise per-
turbation. The method is based on an instantaneous estimation
of the maximum available friction using the Dugoff tire model
[3]. The novelty lies in the modeling of the road conditions,
which are regarded as continuous variables. A ”dynamic”
Pacejka model is built around the classical Pacejka model,
giving a more realistic approach of the tire-road interaction.
The implemented estimation method has to adapt to all the
parameter changes, to produce a reliable maximum friction on
which the control will be applied. The complex modeling of the
road conditions will be enlarged with a noise perturbation, to
test our method’s robustness, which represents the objective of
the present work. At the same time, the vehicle is considered to
be equipped with ”in-wheel” electrical motors, which provide
a quick transmission of the torque directly at the wheel.

I. INTRODUCTION

In vehicular safety, two embedded systems are crucial in
good behavior of the vehicle. The first one is the ABS (Anti-
blockier System) which prevents the wheel from blocking
in case of hard braking maneuver as described in [2], [4],
[13]. The second one is the TCS (Traction Control System)
which prevents the wheel from spinning in case of hard
accelerating maneuver [11]. Both of these systems are based
on the friction between the tire and the road and depending
on it, they act on the appropriate sub-systems of the vehicle
which act on the brakes or the acceleration respectively.
Hence, the tire-road friction plays an important role in the
good functioning of ABS and TCS and so, a good estimation
of the friction is needed. Nevertheless, the influence of the
friction on the longitudinal dynamics is hard to quantify
since it depends on numerous factors which are not easily
separable.

For a better understanding of this phenomena it is helpful
to look closer at the Pacejka formula [14], which is an
empirical formula whose results are usually close to the
reality. Nevertheless, the curves remain at theoretical level,
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since a slight change in the parameters yield different
shapes of the curves. Instead of the curves modeled by
Pacejka, in real environments we find a cloud of points
whose position can vary from a sample time to another for
the same road conditions [8], [15], as shown in figure 1.
In addition, perturbations and noise can easily affect the
estimation process with possible influence on the final control
applied at the wheels.

Fig. 1: Experimental friction estimation

In this paper, a different approach regarding the Pacejka
model is presented. Here, instead of considering only three
theoretical curves modeling the main types of road surfaces
(dry, wet and snowy), we interpret them as continuously
varying during the driving maneuver. This approach will give
a more realistic modeling of the road surface conditions and
will allow to have a better view of the results of the proposed
method in this environment. At the same time, adding noise
on the measurement variables will bring even more realism
to the model, allowing in addition to test the robustness of
our method. Another innovation of the present work consists
in using the in-wheel electric motor as the only actuator in
acceleration and deceleration, in order to provide the
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necessary torque to accomplish both TCS and ABS func-
tions. The in-wheel motor used here is powerful (39 kW), it
has a very low latency and is able to provide a braking torque
on the wheels [10] faster than conventional brakes which are
normally used for this purpose. With the electric motor, due
to a good knowledge of its output torque computed from
the current intensity that passes through the motor, one can
envisage the estimation of the tire-road friction forces. Unlike
the existing, rather conservative, control strategies, described
in [2], [4], [5], [9], [12], which rely on the longitudinal slip
and on a fixed threshold, the electric motor allows to apply a
control on the friction coefficient, while considering the road
conditions.

The remaining of the paper is organized as follows: in
section 2, a new approach into modeling the road conditions
is presented; in section 3, the vehicle model, the estimation
method and the control strategy are described; section 4
shows the results of the proposed control method; some
concluding remarks are presented in section 5.

II. CONTINUOUS VARIATION OF THE ROAD CONDITIONS

Classical Pacejka formula is expressed as follows [14]:

Fx = D sin(C arctan(Bλ− E(Bλ− arctan(Bλ)))) (1)

with Fx being the longitudinal force and λ the longitudinal
slip ratio. The B, C, D and E parameters are calculated as
follows:

• C = b0
• D = (b1Fz + b2)Fz

• B = ((b3F
2
z + b4Fz)e

−b5Fz )/CD
• E = b6F

2
z + b7Fz + b8

with Fz being the normal force on the tire. The constant
parameters b0 − b8 have fixed values depending on the type
of the utilized tire. Here, b0 = 1.5699, b1 = −25.63, b2 =
1305, b3 = 6.825, b4 = 395.69, b5 = 0, b6 = 0.0034, b7 =
−0.0082, b8 = 0.6565. In this formula, parameters C and
D have the most noticeable influence on the curves. One
interpretation of the Pacejka coefficients is the following:

• C represents the behavior of the curves once the maxi-
mum value is exceeded . A small C will be translated in
a small slope of the curve after its peak. This parameter
has also an influence on the slope of the pseudo-linear
segment of the curves.

• D is the maximum force the tire can generate, at its peak
performance, influencing also the slope of the curves as
shown in figure 3.

The effect of parameters C and D on the friction curves
is shown in figure 2 and 3. So, instead of using fixed
parameters in the computation of C and D, we can consider
them as time-varying in order to model the variation of road
conditions in real situations. In these situations estimation can
be problematic, as the road conditions change continuously.
To model this variation, we have summed up parameters
C and D into one single variable which gives the state of
the road, called Xr. Modeling C and D into one single
variable represents the realistic case of the friction variation.

Fig. 2: Parameter C influence on the friction curves

Fig. 3: Parameter D influence on the friction curves

The friction between the wheels and the road is subject to
variation, its values changing due to numerous factors as the
weather conditions (hot temperatures, rain, snow or ice), road
maintenance and type of the pavement (asphalt, concrete or
cobblestone). Therefore, Xr will vary between [0..1], giving
a maximum adherence when is close to value 1 (simulating
a dry asphalt road for example), and a small adherence when
is close to value 0 (simulating a snowy or icy road), but
will take into account all the other adherences in between,
modeled as a continuous variation of C and D. Parameters
C and D will have the following expressions:

C = Xr + kc (2)

D =
kd1

Xr + kd2

+Xrkd3 (3)

with kc, kd1 , kd2 , kd3 being design parameters. Therefore,
Pacejka formula will be rewritten as follows:

Fx = (
kd1

Xr + kd2

+Xrkd3
) sin((Xr + kc) arctan(Bλ−

E(Bλ− arctan(Bλ))))
(4)

Therefore, we have the variable Xr which will give us
the state of the road surface and we can use this input
variable to model a continuous variation of the road sur-
face condition. This will yield a more realistic approach of
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Pacejka curves, regarded as multiple time-varying curves, as
shown in figure 4. Here we pass through snowy roads with
µxmax = 0.4 ∼ 0.5 and rainy roads with µxmax = 0.7 ∼ 0.8
towards dry roads with µxmax = 0.9 ∼ 1. Nevertheless,
the curves between these values are also taken into account,
giving an approach to model road conditions closer to reality.
To model the continuous change of Pacejka parameters, in

Fig. 4: Realistic modeling of Pacejka curves

the simulation we used the following time evolution of the
variable Xr arbitrary chosen, which gives us the state of the
road surface, as shown in figure 5: This profile passes from

Fig. 5: Time evolution of the state of the road

dry road surface (simulation time 70s-80s), through rainy
road surface (simulation time 10s-20s, 35s-45s) and snowy
road surface (simulation time 54s-65s). In this way, we model
variation of the parameters via a more realistic approach,
testing the performances of our Dugoff-based maximum
friction estimation.

III. VEHICLE DYNAMICS AND CONTROL

A. Vehicle model

To test our estimation method along with the control
applied on it, we have chosen a simple vehicle model as
shown in [7]. Even though it is a simple model, it will allow
us to test the efficiency and robustness of our approach. The
equations of the dynamics of the vehicle and of the wheel

can be written as follows:

mV̇x = Fx − Faero, (5)
Iω̇ = T − rFx −Rx, (6)
Fx = µxFz, (7)

λ =
rω − Vx

max(Vx, rω)
, (8)

where: m is the quarter vehicle mass (kg), Vx is the chassis
speed (m/s), Fz = mg is the normal force on the tire (N),
Faero = (ρCaAV 2

x )/2 is the aerodynamic drag force (N),
Rx = mgCr is the rolling resistance force (N), Fx is the
longitudinal force (N), T is the driving/braking torque (Nm),
λ is the longitudinal slip ratio, ω is the wheel velocity (rad/s)
and r is the effective tire radius (m).

In the model we have considered a Pacejka modeling of
the friction, as presented in section 2, which will give an
approach closer to a realistic tire-road friction environment.
Driver’s actions (acceleration or braking) can be translated in
different torque inputs, depending of the driver requirements.
The driver model is described in [6].

Once the driver torque is computed, it will have to be
limited as function of the maximum available friction, in
order to avoid wheel slip in acceleration or wheel skid in
braking maneuver.

B. Maximum friction estimation using Dugoff tire-model [6]

Dugoff tire model [3] has an interesting feature, assuming
a uniform vertical pressure distribution on the tire contact
patch. This is a simplification compared to the more realistic
parabolic pressure assumed in Pacejka model (figure 6).
However, the longitudinal forces are directly related to the
maximum friction coefficient in more simple equations than
in Pacejka model, hence the interest to estimate Dugoff
parameters in order to obtain a maximum friction coefficient
estimation.

Fig. 6: Friction coefficients compared on Pacejka and Dugoff
curves.

In Dugoff’s tire-model, longitudinal efforts are modeled as
follows:

FD
x = f(τ)Kxλ. (9)

where f(τ) is a piecewise function:

f(τ) =

{
(2− τ)τ, τ < 1

1, τ � 1
, τ =

µxmaxFz

2|Kxλ|
(10)

It is not difficult to see that µxmax can be expressed in terms
of four a priori known variables Fx, Fz, λ,Kx.
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The µ − λ characteristics have two specific regions. The
first one is linear corresponding to a single value τ = 1. The
second is nonlinear defined for all values of τ inferior to 1.
In the linear region, the longitudinal efforts are calculated as
FD
x = Kxλ. Therefore, the values for Kx can be derived in

the linear region of the friction curves (f(τ) = 1), as shown
in [6].

Next, let us take the non linear region case of the f(τ)
function, i.e. f(τ) = (2− τ)τ . Then, the longitudinal efforts
can be expressed as follows:

FD
x =

(
2− µxmax

Fz

2|Kxλ|

)
µxmax

Fz

2|Kxλ|
Kxλ. (11)

This expression can be rewritten as a second algebraic
equation of the maximum friction coefficient:

µ2
xmax

F 2
z − 4µxmax |Kxλ|Fz + 4|Kxλ|FD

x = 0, (12)

whose two solutions are:

µxmax =
2(|Kxλ| ±

√
Kxλ(Kxλ− FD

x ))

Fz
. (13)

As observed in ”off-line” calculations, Dugoff tire model
saturates at a different peak value than Pacejka tire model. It
is in fact a weighting factor (called α) between Dugoff and
Pacejka models that drives Dugoff model to cross through
Pacejka model exactly in the peak of the curve (figure 7). Its
values can be calculated only close to the peak of the µ− λ
curve. The two key parameters, Kx and α are used in the
computation of the maximum friction coefficient and their
estimation is presented in [6]. Hence, we are using a simple
Dugoff tire model in order to achieve an on-line estimation
of a more complex Pacejka tire model which is closer to a
realistic friction environment.

Fig. 7: Weighting parameter α at the peak of longitudinal
efforts built with Pacejka and Dugoff models.

C. Torque saturation control

A high value of the torque computed from driver’s actions
will induce wheel slip in acceleration or wheel skid in braking
maneuver. Therefore, its value has to be limited with a
computed torque that takes into account the state of the road
and its maximum available friction. The proposed control
method will saturate the demanded torque, coming from
driver’s requirements, with a maximum torque value, which is

computed starting from wheel dynamics Eq.(6) of the overall
model. Replacing Fx by Eq.(7), and extracting the torque T
will yield:

T = Iω̇ + rµxFz +Rx. (14)

Therefore, the saturation torque will be given by:

Tsat = Iω̇ + rµxmaxFz +Rx. (15)

The maximum friction coefficient µxmax
will be calculated

following the estimation strategy presented in subsection B.

IV. SIMULATION RESULTS

A. Noise-free environment

Along with the state of the road profile input shown in
figure 5, the following speed profile was used in simulation.
In figure 8 we find hard acceleration and braking phases,
simulated to push the estimation and control strategies at their
limits and to test the robustness of the proposed method.

Fig. 8: Speed profile used in the simulations

Having set up the estimation of the maximum friction
estimation as described in section 2.B, along with the control
strategy presented in section 2.C, will yield the following
result in terms of maximum friction tracking.

Fig. 9: Maximum friction tracking

In figure 9 can be seen that even though the maximum
friction changes in time, the estimation method provides a
reliable value for µxmax . The µxcontrolled

line in figure 9
shows that the instantaneous friction never exceeds the max-
imum estimated value, therefore accomplishing the purpose
of the control. An interesting fact happens at simulation time
t=53s. Here the maximum friction drops from approximately
0.7 to 0.4 during the acceleration phase. In other words
we go from a rainy road to a snowy road. Nevertheless,
the control tracks this variation of the maximum available
friction, giving a stable wheel behavior, as shown in figure
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10.b. Given the variation of parameter Xr which will also
induce the variation of parameters C and D of Pacejka
formula, the slope of the linear segment of the friction
curves is continuously changing. In our strategy, the slope
of the linear segment is defined by parameter Kx. We have
computed its off-line values for the state of the road profile
shown in figure 5 to have a reference value to compare
with its estimated value. Its evolution is shown in figure 11
and one can see that even if the slope varies continuously,
the estimation follows the modeled value. Also, one has to
take into account that Kx updates only when the values of
the longitudinal slip are in the linear zone of the friction
characteristics.

Fig. 10: Maximum friction variation tracking

Fig. 11: Reference and estimated value for Kx

The adaptation parameter α will also be variable, depend-
ing on the state of the road. As in the case of Kx, off-line
values for α were computed, for the same state of the road
input Xr. Its evolution is shown in figure 12. The range
of variation of α is reduced compared to the one of Kx.
The estimation of parameter α will compensate the errors
that arise in the estimation of Kx, therefore its estimated
values differ from the the modeled values, yet they follow the
modeled profile. The large variation of Pacejka parameters
brings a modeling closer to real situations, giving estimations
that no longer stay only one curve, but on multiple curves,
as shown in figure 13.

Even if the estimation points seem to be more dispersed
than in a conventional modeling, it can be seen in figure
13 that µ(λ) never exceeds the peak of the curves, showing
good performance of the control scheme. The conditions vary

Fig. 12: Reference and estimated value for α

Fig. 13: Friction estimation on time-varying road conditions

from rainy roads with µxmax
= 0.9 to snowy roads with

µxmax
= 0.3. So, a large range of tire-road friction is ran

through, testing the estimation and control methods and their
limits, yielding good results in terms of friction tracking and
vehicle behavior.

B. Noise perturbation

In real systems, noise can affect the performances of
the estimation strategy propagating to the control that is
applied at the wheel. In the following we take into account
a random noise coming from wheel acceleration that affects
the estimation of µxmax

.

Fig. 14: Noise affecting the estimation of µxmax

Adding noise will increase the complexity of the problem,
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since it can propagate at the final control applied at the
wheels. As seen in figure 15, the noise coming from the max-
imum friction estimation is propagated on the computation
of the control. But, having taken into account the filtering
provided by the electric motors, with their small delays, the
final torque applied at the wheels is less affected by the noise
(see figure 15).

Fig. 15: Noise affecting the computation of Tsat

Hence, even in noisy environment with continuous vari-
ation of Pacejka parameters, the control performs good
tracking of the maximum friction, as seen in figure 16.

Fig. 16: Speed and maximum friction tracking

As expected, the estimation of µxmax gives a larger dis-
persion of points in noisy environment (figure 17), coming
closer to the view seen in real experimental results (see figure
1). This shows that our approach into modeling the road
surface conditions comes closer to what is found in real
environments. It can be seen in figure 17 that even when the
noise affects µxmax , the parameter α compensates possible
estimation errors, therefore, the peak of the curves is never
exceeded, showing the robustness of our method.

Fig. 17: Maximum friction estimation in noisy environment

A closer look on the points shows the behavior of the
estimation and control strategy. In figure 18 can be observed
that the transition from one type of road surface to another is
made in a continuous manner, as it arrives in actual tire-road
environments.

Fig. 18: Maximum friction estimation in noisy environment

The overall estimation process, gives the expected results,
detecting the variation of road conditions even when the
estimation process is affected by noise. Some of the noise
is attenuated by the electric motor [10] and the adaptation
parameter α, achieving the tracking of the maximum avail-
able friction in varying surface conditions.

V. CONCLUDING REMARKS

In this paper, a new approach regarding the modeling
of road surface conditions has been presented. It considers
a continuous variation of the friction curves, as it arrives
in true environments. A ”dynamic” behavior of Pacejka
parameters is considered in order to model a state of the
road variable, Xr. On this new approach of tire-road model,
a maximum friction estimation method based on Dugoff
model has been tested in noise-free and noisy conditions,
giving promising results in terms of adaptation to operating
conditions. Even though the estimation process is computed
on a time-varying road conditions, and in addition affected
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by noise, it provides maximum friction values that do not
exceed the peak of the friction curves. The results show that
the estimation and control strategies perform well in complex
circumstances, providing robustness to the proposed method.
All the accomplishments were ”facilitated” by the use of the
electric motor and its consideration as an unique actuator. The
electric motor provided the knowledge of the instantaneous
torque transmitted at the wheels. In a conventional ICE
vehicle, the complexity of the approach increases, since an
on-line torque estimator has to be set up and the response
times of the actuators in ICE vehicle configuration are greater
than in an EV configuration.
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