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Arbitrary pole placement by state feedback with minimurmngai

Robert Schmid, Lorenzo Ntogramatzidis, Thang Nguyen andt Randey

Abstract— We consider the classic problem of pole placement where gi < m and for eachk € {1,...,g;}, we denote by
by state feedbgck. We offer an .eigenstructure assignment pix the order of the Jordan block(A;). It is well-known
algorithm to obtain a novel parametric form for the pole-placing  {hat arhitrary multiplicities can be assigned, but the jies
gain matrix that can deliver any set of desired closed-loop . .
eigenvalues, with any desired multiplicities. This paramgic orders of the assomgt.ed.\]o.rdan structures arg Constrbwed
formula is then exploited to introduce an unconstrained notin-  the systemcontrollability indices (or Kronecker invariants)
ear optimisation algorithm to obtain a gain matrix that delivers  as established in the celebrated Rosenbrock theorem, [1].
the desired pole placement with minimum gain. We useZ & {pi,j|1<i<v,1<j<g} to denote the order

|. INTRODUCTION of each Jordan mini-blocl;(2;), and we assume without
jap_ss of generality that for each these are in descending
grder Pi1>Pi2>-- > Pig. If £, # and & satisfy the
conditions of the Rosenbrock theorem, we say tiat.#
and & define anadmissible Jordan structure.
X(t) = Ax(t) +Bu(t), 1) In order to consider optimal selections for the gain matrix,

where, for allt € R, x(t) € R" is the state and(t) € R™is the it is important to have a parametric formula for the set of
control input, andA andB are appropriate dimensional con-gain matrices that deliver the desired pole placement, and
stant matrices. We also assume tBatas full column-rank, Numerous such parameterisations have appeared in the liter
and that the paifA, B) is reachable. We le¥” = {A4,...,A,}  ature in the past three decades. Kautgksl. [2] introduced

be a self-conjugate set of< n complex numbers, with asso- & parametric form involving a QR-factorisation for matrix
ciated algebraic multiplicities# = {my,...,m,} satisfying B and a Sylvester equation fot, but requiredA in (2) to
M +---+m, = n. The problem ofexact pole placement be a diagonal matrix. In particular this requires the deksire
(EPP) by state feedback is to find a real gain matrif such Mmultiplicities to satisfym <m for all i € {1,...,v}. This

that the closed-loop matris+ BF has eigenvalues given by limitation is inherited by the MATLAB® routinepl ace. m

the set¥ with multiplicities given by.#, i.e., such thaF ~ that is based on [2]. The pole-placement methods of Byers
satisfies the equation and Nash [3] and Tits and Yang [4] similarly employed the
parametric form of [2] and likewise cannot assign poles with
(A+BF)X=XA, @ multiplicity greater than the rank @&. In the recent paper [5]
whereA is anx n Jordan matrix obtained from the eigen-it is also assumed that the multiplicities of the closedsloo
values of.%, including multiplicities, andX is a matrix of eigenvalues is at most equal o
closed-loop eigenvectors of unit length. The mafkican be Other parameterisations have been presented in the litera-
expressed in the Jordan (complex) canonical form ture that do not impose a constraint on the multiplicity af th
A = diag{I(A1),J(A2), .., I(A)}, 3) eigenvalues to be assigned_. _Bhattacharyya anq de Sou;a [6]
gave a procedure for obtaining the gain matrix by solving
where eachJ(A;) represents a Jordan matrix for the eigeng Sylvester equation in terms of anx m parameter matrix,
value A; of orderm, and may be composed of up to  provided the closed-loop eigenvalues do not coincide with
mini-blocks" the open loop ones. Fahmy and O'Reilly in [7] presented
J(Ai) = diag{I1(A), R2(Ai), .., Jg ()}, (4) a parametric form in terms of the inverses of the matrices
' _ _ A—Ailh (wherel, denotes then x n identity matrix), which
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We consider the classic problem of repeated pole plac
ment for linear time-invariant (LTI) systems in state spac
form



hand, maximum generality in these parametric formulae hag S(A;). It follows that, if Aj;1 = Aj, thenN ;1 is given by
been achieved at the expense of efficiency. Where methods.; = N;. We let
[2]-[7] all employed parameter matrices of dimensiorx n, A +
the parameter matrices in [8] -[9] have dimensior n. Mi = [ A—Ailn B } ) (6)
The aim of this paper is to offer a parameterisation for thghere' indicates the Moore-Penrose pseudo-inverse.
pole-placing feedback that combines the generality of$8]-  For any matrixX we useX(1) to denote thd-th column
with the efficiency that comes from anx n dimensional pa- of X If X is a vector or matrix witt +m rows, we define
rameter matrix. Inspired by the Klein-Moore algorithm [10] the vectors or matrices{X} and i{X}, obtained by taking
we offer a parametric form for the pole-placing gain matrixne firstn and lastm rows of X, respectively.
F to obtain any desired Jordan structure that satisfies thegjyen a set ofv self-conjugate complex number® =
structural constraints imposed by the Rosenbrock theorem, ,} containing exactlyo complex conjugate pairs,
in terms of the Kronecker invariants, without any additionaye say that# is o-conformably ordered if the first @
requirement on their multiplicity or on non-overlap witheth \5jyes of # are complex while the remaining are real
open-loop eigenstructure. The method proposed in thisrpapgg for all oddk < 20 we haveAg,1 = Ax. For example,
obtains the matrixX by building the Jordan chains startingihe set = {10}, -10j,2+2],2—2],7} is 2-conformably
from the selection of eigenvectors from the kernel of thg gered. Notice that, sinc& is symmetric, we haven =
matrix pencils|A—Ailn B, and thus avoids the need forpy, . for oddi < .
matrix inversions, or the solution of matrix equations. Let.Z = {A1,...,Av} be o-conformably ordered. Lef,
We next consider theninimum gain exact pole place- 4 and & define anadmissible Jordan structure. Let K £
ment problem (MGEPP), which involves solving the EPP giag(k;,... K,}, whereK; is a real matrix of dimension
problem and also obtaining the feedback mafithat has mx my, for eachi > 20, K; is a real matrix of dimension
the smallest gain and best accuracy. Tam and Lam [1})x m, and for all oddi < 20, we haveK; = Kj. 1. Further,
addressed the MGEPP problem by posing an unconstraingg eachk; matrix be partitioned as
nonlinear optimisation problem, in which they sought to
minimise the Frobenius norm of the pole-placing matrix Ki= [ Ki1 | Ki2 | | Kig }, (7
|IF ||ero by gradient search methods, to yield a locally optime\IN
gain matrix. However their problem formulation was limited. € {L,...,20} and for eachi € {20+1'... v} andk e
to the case where all the desired closed-loop poles weﬁ ’g-}’ we build vector chains of Ieng;tp-’ as follows:
distinct, and did not coincide with any of the open loop' ™~~~ hk |
poles. Linnemann [12] addressed the MGEPP problem for hi k(1) = NiKjk(2), (8)
the specific case of placing multiple deadbeat modes with hi’k(z) - M ﬁ{hi (D) +NiKi(2), 9)
minimum Frobenius gain. ’ ' '
In this paper we address the MGEPP problem in a manner :
similar to that of [11], and pose an unconstrained nonlin- hik(Pik) = MiTHhik(pik—1)} +NiKix(pi). (10)
ear optimisation problem, to be solved by gradient search o o o
methods, to yield a locally optimal gain matrix. While [11] From these column vectors we construct matrices
required the closed loop poles to all be distinct, the use N . .
of the very general parametric formula for the gain matrix Hik = (LMK (i) (11)
presented in this paper will enable us to achieve any desirefl dimension(n+m) x pjx, and
multiplicities, while also minimising the feedback gaireds

here eachK;y is of dimensionmx p;x. For all odd

We then compare the results against the methods of [9] and , 2%{ & Hi | | Hig }} ' €{L,...,20} odd
[12] and show in two examples that we can obtain repeatéd — Jm{[Hi1a]...[Hisg |} ie{l,...,20} even
pole placement with less gain and superior accuracy of the [Hia|...[Hig ] le{20+1,...,v}
pole placement. of dimension(n+m) x m. Finally, we define real matrices
Il. REPEATEDPOLE PLACEMENT He = [Hil...[HY] (12)
A -
We now revisit the Klein-Moore algorithm [10] and adapt Vi N mi{Hic} (13)

it to give a simple parametric formula for a gain maffixhat Wk {Hk} (14)
solves the pole placement problem, in terms of an arbitra%/

) Lo - f dimensions(n4+m) x n, nx n and mx n, respectively.
real parameter matrix. We begin with some definitions an . i .
. , ) . he dependence updf of the matrices defined in (12-14)
notation. For eache {1,...,v}, we define the matrix

has been made explicit. To guide the readers through these
SA)2[ A-Aln B]. (5) definitions, before presenting the parameterisation fer th
pole placing matrix in the main theorem of this paper, we
Since eaclt$(A;) hasn rows andn+m columns, and the pair illustrate the procedure of construction of the Jordanrmhai
(A,B) is reachable, the dimension of the kernelS§;) is  with the corresponding indices in a simple example.
equal tom. We denote byN; a basis matrix for the kernel



Example 2.1: Consider the reachable pdiA B) with invertible for every choice oK except possibly those laying
in a proper algebraic variety. The set of all feedback masric

PSP 00 such that the Jordan structure A BF is described by
A_|0 0 0 0 5|01 such that the. ructure 2
=lo 10 ol ®° o ol .M an is parameterised i as
0 0 00 10 Fo =Wk Vit (15)
We want to assign the closed loop eigenvaldes= —1—]  \yhereVk andWk are obtained with a parameter mat#x

and Az = —1+ j with double multiplicity, i.e..Z = {-1—  gych thatvk is invertible.

J;=1+]} and . = {2,2}. First, we notice that a basis proof: For the sake of simplicity and brevity, we only con-
matrix for the null-space 0§(A1) is given by the span of  sjger the case whet# is real. We begin by showing that for

M1 0o anyVk andW in (13-14), and with feedback matrix given by
0 2 (15), the closed-loop matrix has the desired eigenstractur
0 1—j whenevelk is invertible. For eache {1,...,v}, letK; be an
N1 = 1+ 0 ; input parameter matrix as in (7), and for edch {1,...,0i},
—2j 0 let Hix be constructed as in (12). We may partitieh,,
0 -—2-2j which is defined for ali € {1,...,v}, as
and defineN, = N;. Moreover Hiy = \\//vli((ll)) v\ckk((%i)) 7 (16)
3-3j 0 0 -2j ) e _
0 2-2j -1 0 where the column vectors satisfy by construction
e R P (A= Ailn)Vix(1) +Bwi (1) = O, (17)
1+ 0 0 3 (A= Ailn)Vik(2) +Bwik(2) = Vik(1), (18)
0 3 1+ 0 :

so thatM, = My. By choosing for example the parameter  (A—Ajln)Vik(pik) +BWik(pix) = Vik(pik—1). (19)

. 71 .
matrix K 1 = [77 J, we find Define
h11(1) = NiKpi(1) =Ng {,77} Vik = Mk(DVik2)]- - Vik(pix)],
=7[1 -2 —1+j 1+ —2j 2+2j]" Wik = [Wik(D[wik(2)]... wik(pik)],
7
hii(2) = My [ﬁ‘;i} Ny [1] and also
747
Vi=Nal...NVigl, W=Mai|... W] 20
— [6_5J _1+3J 1+9J 4+J 4+21 —10—2j]T. l [ |,1| | I,g|] ( [ |-,l| | |~,g|] ( )
dRVi =W f i 1... . H , (17-19 b
Hence,Hy 1 = [h11(1) | hy1(2)]. Moreover,H; = Re{Hy 1} \?vrr]ittelr(1 as oralli€{1,...,v}. Hence, ( ) can be
andHy=Jm{H; 1}, which yield
7 6 0.5 (A+BFROV =V I(A)) (21)
| -14-10 3 [0 4 -—14 2 orallie{1,...,v}. Thus,
k= 7 17 o W= [14 ~10 14 —2}'
7 471 (A+BFc) Xk =X A (22)
It is easily seen thawk is invertible. Again, a simple WhereXk =[Vi V, ... V] andA as in (3), as required. We
Computation shows that the feedback matrix now show that for every feedback matix that delivers a

1 138 126 154 —236 closed-loop matrixA+ BI_: whose eigenstructure is given by
Fx :ka}gl = [ ] £, # and &, there exists a parameter matixsuch that

41| -1%6 72 170 252 F :WkVK’l, whereVx andWk are computed from (13-14)

yields a closed-loop matri&+BFx whose complex and real with Vi invertible. LetA £ A+ BF. Now, using a change of

Jordan structures are respectively coordinatesT that bringsA into the Jordan canonical form,
-1-j 1 0 0 1 _1‘ 1 0 we can write
0 -1-j| O 0 1 -1j0 1 (A+BF)T =TT IAT, 23)
0 0 |-1+j 1 and 0O O0|-1 -1/ T
0 0 | 0 -—1tj 0 0|1 -1

We are now ready to presént the main result of this pape¥here Ay = diag{As,...,Av} with Aj = A; for all i€
{1,...,v}. LetX=T andY =FT. We find

Theorem 2.1: For almost all choices of the parameter [ A B ] [ X

matrix K, matrix Vk is invertible, i.e.,Vk is generically Y } =X, (24)



Eq. (24) can be written as I1l. 1 LLUSTRATIVE EXAMPLES

In this section, we compare the algorithm presented in
[A B } { i(( ] = X-diag{J1 (A1), ..., Jg; (A1), H(A2); -, this paper with the results obtained in Ait Ramtial. [9]

and Linnemann [12].
Jg,(A2), ..., 1(Av), ..., 3g, (Av) },

Example 3.1: In Example 2.1, the method presented in
whereg; is the number of Jordan mini-blocks correspondinghis paper delivers the feedback matrix

to the eigenvalug; and the generic Jordan mini-blodk(A;)
is of orderp;. Let us partitionX andY conformably with F= 2.0000 00000  —0.0000 —2.0000
’ 0.0000 —2.0000 20000 —0.0000 |’

the corresponding Jordan mini-blocks that they multipky,, i
whose Frobenius norm is equal to 4, whereas the algorithm

‘AB] {él’l él,gl év,l év,gv ] — [X h(Ay) N [9] vields
e /[ 16346 00042 00480 —19325
c X1 Jgy (A1) - Xag, Jgy (A1) -ov Xug, Jg, (Av) ] | 24959 20675 23738 09088 |’

Consider the generic term of this product whose Frobenius norm is equal ta8346. Another perfor-
mance consideration is the accuracy of the pole placement
achieved by each method. We use the measure

A(F) 2 max{|eig(A+BF) —Aj| : A € .2}, (27)

whereJc(Ai) is the generid-th Jordan mini-block relative to which represents the largest absolute value difference be-
the eigenvalue\i. PartitioningXi x = [Vik1 Vik2 --- Vikp,] tween each eigenvalue &+ BF, and the corresponding

(A B] { ékk } = X (), (25)

andYix = Wik1 Wik2 ... Wikp,J, We can write (25) as in Z. In the present case we obtal{F) = 9.97x 10713
and A(F') = 2.47 x 1078, This result indicates that the
[A B] [ Vikl Vik2 oo Vikpig ] method introduced in this paper achieves more accurate pole
Wikt Wik2 - Wikpy placement by some orders of magnitude.
A1 O 0
0 A 1 0 . .
Example 3.2: We consider the boiler system controller
= [ ViK1 Vik2 - Vikpe | O O A 0 Nan i AN _ :
KL LK Lt . . . .| givenin [13] withn=9 states andn= 4 control inputs. In
Door b e [12] a gain matrix is sought to place all the closed loop poles
0 0 0 ... A atA = —0.55. The controllability indices for this example are
) ) {3,2,2,2}. Thus, this pole placement can be achieved with
which yields a largest Jordan block of dimensions of at least three, and

at most 9. Hence we may obtain a feedback md&riguch
[ AVik1+BWik1 AVika+BWikz .. AVikp+BWikp, |  that(A+BF) =0, for anyl between 3 and 9.
= [Vi,k,1/\i Vik1tAiVik2 <o Vikpe1TAiVikp } (26) For the casgA— Al +BF)3 =0, in [12] the feedback
' matrix F; was reported with|Fy||rro = 1.5 x 10”. Applying
the method described in this paper, we obt&n with
|IF2llero = 4.4 x 10°.

Therefore, [vi’k‘l

A-Ajln B . )
Wi,k,l} € ker{ c D] implies that there exists

Vi k, .
Kik(1) such that[wiiﬂ = NiKik(1). Moreover, from (26)  For the cas¢A— Al +BF)®>=0, [12] reported the solution
we find Fs with ||Fs||rro = 9.2 x 10%. Using the procedure described
here, we are able to obtafy with ||Fs/rro = 6.8 x 107,
[ A=Al B] [ Vik2 ] — Vi1, Finally, for the case(A— Al +BF)? =0, in [12] the
Wik2 . feedbackFs was obtained with|Fs||rro = 2.8 x 10°. Again,

o _ applying the method described here, we obt&in with
which implies that there exists; j(2) such that |[Fslro = 1.6 x 101
_ . We see that in each case the method described in this paper
[ V|-,k,2 } — |\/|i7_'[{ { V'_’kﬂl } } +NiKik(2). obtains the desired eigenstructure with considerablyaedu
Wik2 Wikl matrix gain than that of [12], by some orders of magnitude.

Repeating this procedure for alE {1,...,p;«}, we find the IV. CONCLUSION
parameterss (1), ..., Kik(pix) which satisfy (8)-(10) with

Vieh We have introduced a novel parametric form for the

hi(h) = [Wi‘k,h . This procedure can be carried out for allproblem of exact pole placement that can accommodate
Jordan mini-blocks. The fact that for almost every choice adiny desired eigenstructure with arbitrary multiplicitigis
the parameter matrik, the matrixVx computed from (13) method places no restrictions on the set of poles that can
is non-singular follows from [14, Lemma 2.4]. B be assigned, or their multiplicities. The effectivenesshaf




method has been compared against that of the alternatives
[9] and [12]. Examples were given to show that this method

delivers pole placement that is substantially more aceurat

El

and with less matrix gain than these two methods. Future
work will consider the application of the parametric form tol10l

achieving robust closed-loop eigenstructure that mirgsnis

sensitivity to uncertainties in the system matriqgsB),
as well as the exploitation of the parameterisation to the
end of achieving non-overshooting, non-undershooting a 92]
monotonic step response in the MIMO case, see e.g. [15]-
[18].
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