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Arbitrary pole placement by state feedback with minimum gain

Robert Schmid, Lorenzo Ntogramatzidis, Thang Nguyen and Amit Pandey

Abstract— We consider the classic problem of pole placement
by state feedback. We offer an eigenstructure assignment
algorithm to obtain a novel parametric form for the pole-placing
gain matrix that can deliver any set of desired closed-loop
eigenvalues, with any desired multiplicities. This parametric
formula is then exploited to introduce an unconstrained nonlin-
ear optimisation algorithm to obtain a gain matrix that deli vers
the desired pole placement with minimum gain.

I. I NTRODUCTION

We consider the classic problem of repeated pole place-
ment for linear time-invariant (LTI) systems in state space
form

ẋ(t) = Ax(t)+Bu(t), (1)

where, for allt ∈R, x(t)∈Rn is the state andu(t)∈Rm is the
control input, andA andB are appropriate dimensional con-
stant matrices. We also assume thatB has full column-rank,
and that the pair(A,B) is reachable. We letL = {λ1, . . . ,λν}
be a self-conjugate set ofν ≤ n complex numbers, with asso-
ciated algebraic multiplicitiesM = {m1, . . . ,mν} satisfying
m1 + · · ·+mν = n. The problem ofexact pole placement
(EPP) by state feedback is to find a real gain matrixF such
that the closed-loop matrixA+BF has eigenvalues given by
the setL with multiplicities given byM , i.e., such thatF
satisfies the equation

(A+BF)X = X Λ, (2)

whereΛ is a n× n Jordan matrix obtained from the eigen-
values ofL , including multiplicities, andX is a matrix of
closed-loop eigenvectors of unit length. The matrixΛ can be
expressed in the Jordan (complex) canonical form

Λ = diag{J(λ1),J(λ2), . . . ,J(λν)}, (3)

where eachJ(λi) represents a Jordan matrix for the eigen-
value λi of order mi, and may be composed of up tom
mini-blocks1

J(λi) = diag{J1(λi),J2(λi), . . . ,Jgi(λi)}, (4)
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1Each J(λi) is composed of up tom mini-blocks because, as will be
mentioned in the sequel, when the pair(A,B) is reachable, the dimension
of ker[A−λ I B ] is equal tom for any λ ∈ C.

where gi ≤ m and for eachk ∈ {1, . . . ,gi}, we denote by
pi,k the order of the Jordan blockJk(λi). It is well-known
that arbitrary multiplicities can be assigned, but the possible
orders of the associated Jordan structures are constrainedby
the systemcontrollability indices (or Kronecker invariants)
as established in the celebrated Rosenbrock theorem, [1].
We useP , {pi, j |1≤ i ≤ ν,1≤ j ≤ gi} to denote the order
of each Jordan mini-blockJ j(λi), and we assume without
loss of generality that for eachi, these are in descending
order pi,1 ≥ pi,2 ≥ ·· · ≥ pi,gi . If L , M and P satisfy the
conditions of the Rosenbrock theorem, we say thatL , M

andP define anadmissible Jordan structure.
In order to consider optimal selections for the gain matrix,

it is important to have a parametric formula for the set of
gain matrices that deliver the desired pole placement, and
numerous such parameterisations have appeared in the liter-
ature in the past three decades. Kautskyet al. [2] introduced
a parametric form involving a QR-factorisation for matrix
B and a Sylvester equation forX , but requiredΛ in (2) to
be a diagonal matrix. In particular this requires the desired
multiplicities to satisfymi ≤ m for all i ∈ {1, . . . ,ν}. This
limitation is inherited by the MATLABR© routineplace.m
that is based on [2]. The pole-placement methods of Byers
and Nash [3] and Tits and Yang [4] similarly employed the
parametric form of [2] and likewise cannot assign poles with
multiplicity greater than the rank ofB. In the recent paper [5]
it is also assumed that the multiplicities of the closed-loop
eigenvalues is at most equal tom.

Other parameterisations have been presented in the litera-
ture that do not impose a constraint on the multiplicity of the
eigenvalues to be assigned. Bhattacharyya and de Souza [6]
gave a procedure for obtaining the gain matrix by solving
a Sylvester equation in terms of ann×m parameter matrix,
provided the closed-loop eigenvalues do not coincide with
the open loop ones. Fahmy and O’Reilly in [7] presented
a parametric form in terms of the inverses of the matrices
A−λi In (whereIn denotes then×n identity matrix), which
also required the assumption that the closed-loop eigenvalues
were all distinct from the open loop ones.

More recently, Chu, [8] revisited the parametric formula
of [2] for the case whereΛ was any admissible Jordan
matrix, and obtained a parametrisation for the pole placing
matrix F by using the eigenvector matrixX as a parameter.
Ait Rami et al. [9] proposed a parametric form in terms
of the solution to a Sylvester equation involving the real
Jordan form of the desired closed-loop eigenvalues and an
arbitrary n× n matrix parameter. These formulations allow
for repeated eigenvalues and does not require the closed-loop
poles to be different from the open-loop poles. On the other



hand, maximum generality in these parametric formulae has
been achieved at the expense of efficiency. Where methods
[2]-[7] all employed parameter matrices of dimensionm×n,
the parameter matrices in [8] -[9] have dimensionn× n.

The aim of this paper is to offer a parameterisation for the
pole-placing feedback that combines the generality of [8]-[9]
with the efficiency that comes from anm×n dimensional pa-
rameter matrix. Inspired by the Klein-Moore algorithm [10],
we offer a parametric form for the pole-placing gain matrix
F to obtain any desired Jordan structure that satisfies the
structural constraints imposed by the Rosenbrock theorem
in terms of the Kronecker invariants, without any additional
requirement on their multiplicity or on non-overlap with the
open-loop eigenstructure. The method proposed in this paper
obtains the matrixX by building the Jordan chains starting
from the selection of eigenvectors from the kernel of the
matrix pencils[A− λi In B], and thus avoids the need for
matrix inversions, or the solution of matrix equations.

We next consider theminimum gain exact pole place-
ment problem (MGEPP), which involves solving the EPP
problem and also obtaining the feedback matrixF that has
the smallest gain and best accuracy. Tam and Lam [11]
addressed the MGEPP problem by posing an unconstrained
nonlinear optimisation problem, in which they sought to
minimise the Frobenius norm of the pole-placing matrix
‖F‖FRO by gradient search methods, to yield a locally optimal
gain matrix. However their problem formulation was limited
to the case where all the desired closed-loop poles were
distinct, and did not coincide with any of the open loop
poles. Linnemann [12] addressed the MGEPP problem for
the specific case of placing multiple deadbeat modes with
minimum Frobenius gain.

In this paper we address the MGEPP problem in a manner
similar to that of [11], and pose an unconstrained nonlin-
ear optimisation problem, to be solved by gradient search
methods, to yield a locally optimal gain matrix. While [11]
required the closed loop poles to all be distinct, the use
of the very general parametric formula for the gain matrix
presented in this paper will enable us to achieve any desired
multiplicities, while also minimising the feedback gain used.
We then compare the results against the methods of [9] and
[12] and show in two examples that we can obtain repeated
pole placement with less gain and superior accuracy of the
pole placement.

II. REPEATEDPOLE PLACEMENT

We now revisit the Klein-Moore algorithm [10] and adapt
it to give a simple parametric formula for a gain matrixF that
solves the pole placement problem, in terms of an arbitrary
real parameter matrix. We begin with some definitions and
notation. For eachi ∈ {1, . . . ,ν}, we define the matrix

S(λi),
[

A−λi In B
]
. (5)

Since eachS(λi) hasn rows andn+m columns, and the pair
(A,B) is reachable, the dimension of the kernel ofS(λi) is
equal tom. We denote byNi a basis matrix for the kernel

of S(λi). It follows that, if λi+1 = λ i, thenNi+1 is given by
Ni+1 = N i. We let

Mi ,
[

A−λi In B
]†
, (6)

where† indicates the Moore-Penrose pseudo-inverse.
For any matrixX we useX(l) to denote thel-th column

of X . If X is a vector or matrix withn+m rows, we define
the vectors or matricesπ{X} andπ{X}, obtained by taking
the firstn and lastm rows of X , respectively.

Given a set ofν self-conjugate complex numbersL =
{λ1, . . . ,λν} containing exactlyσ complex conjugate pairs,
we say thatL is σ -conformably ordered if the first 2σ
values of L are complex while the remaining are real,
and for all oddk ≤ 2σ we haveλk+1 = λ k. For example,
the setL = {10 j,−10 j,2+2 j,2−2 j,7} is 2-conformably
ordered. Notice that, sinceL is symmetric, we havemi =
mi+1 for odd i ≤ σ .

Let L = {λ1, . . . ,λν} be σ -conformably ordered. LetL ,
M and P define anadmissible Jordan structure. Let K ,

diag{K1, . . . ,Kν}, where Ki is a real matrix of dimension
m×mi, for eachi ≥ 2σ , Ki is a real matrix of dimension
m×mi, and for all oddi ≤ 2σ , we haveKi = Ki+1. Further,
let eachKi matrix be partitioned as

Ki =
[

Ki,1 Ki,2 . . . Ki,gi

]
, (7)

where eachKi,k is of dimension m × pi,k. For all odd
i ∈ {1, . . . ,2σ} and for eachi ∈ {2σ + 1, . . . ,ν} and k ∈
{1, . . . ,gi} we build vector chains of lengthpi,k as follows:

hi,k(1) = Ni Ki,k(1), (8)

hi,k(2) = Mi π{hi,k(1)}+Ni Ki,k(2), (9)
...

hi,k(pi,k) = Mi π{hi,k(pi,k −1)}+Ni Ki,k(pi,k). (10)

From these column vectors we construct matrices

Hi,k , [hi,k(1)|hi,k(2)| . . . |hi,k(pi,k)] (11)

of dimension(n+m)× pi,k, and

Hi ,







Re
{[

Hi,1 . . . Hi,gi

]}
i ∈ {1, . . . ,2σ} odd

Im
{[

Hi−1,1 . . . Hi−1,gi

]}
i ∈ {1, . . . ,2σ} even

[
Hi,1 . . . Hi,gi

]
i ∈ {2σ +1, . . . ,ν}

of dimension(n+m)×mi. Finally, we define real matrices

HK , [H1| . . . |Hν ] (12)

VK , π{HK} (13)

WK , π{HK} (14)

of dimensions(n +m)× n, n× n and m × n, respectively.
The dependence uponK of the matrices defined in (12-14)
has been made explicit. To guide the readers through these
definitions, before presenting the parameterisation for the
pole placing matrixF in the main theorem of this paper, we
illustrate the procedure of construction of the Jordan chains
with the corresponding indices in a simple example.



Example 2.1: Consider the reachable pair(A,B) with

A =







0 0 0 −1
0 0 0 0
0 −1 0 0
0 0 0 0






, B =







0 0
0 1
0 0
1 0






.

We want to assign the closed loop eigenvaluesλ1 =−1− j
and λ2 = −1+ j with double multiplicity, i.e.,L = {−1−
j,−1+ j} and M = {2,2}. First, we notice that a basis
matrix for the null-space ofS(λ1) is given by the span of

N1 =











1 0
0 2
0 1− j

1+ j 0
−2 j 0

0 −2−2 j











,

and defineN2 = N1. Moreover

M1 =
1
7











3−3 j 0 0 −2 j
0 2−2 j −1 0
0 −2 j 3−3 j 0
−1 0 0 2−2 j

1+ j 0 0 3
0 3 1+ j 0











,

so thatM2 = M1. By choosing for example the parameter
matrix K1,1 =

[
7 1
−7 1

]

, we find

h1,1(1) = N1 K1,1(1) = N1

[
7
−7

]

= 7[1 −2 −1+ j 1+ j −2 j 2+2 j]T

h1,1(2) = M1

[ 7
−14

−7+7i
7+7i

]

+N1

[
1
1

]

= [6−5 j −1+3 j 1+9 j 4+ j 4+2 j −10−2 j]T
.

Hence,H1,1 = [h1,1(1) | h1,1(2) ]. Moreover,H1=Re{H1,1}
andH2=Im{H1,1}, which yield

VK =







7 6 0 −5
−14 −1 0 3
−7 1 7 9
7 4 7 1






, WK =

[
0 4 −14 2
14 −10 14 −2

]

.

It is easily seen thatVK is invertible. Again, a simple
computation shows that the feedback matrix

FK =WK V−1
K =

1
41

[
138 −126 154 −236
−196 72 −170 252

]

yields a closed-loop matrixA+BFK whose complex and real
Jordan structures are respectively






−1− j 1 0 0
0 −1− j 0 0
0 0 −1+ j 1
0 0 0 −1+ j







and







−1 −1 1 0
1 −1 0 1
0 0 −1 −1
0 0 1 −1






.

We are now ready to present the main result of this paper.

Theorem 2.1: For almost all choices of the parameter
matrix K, matrix VK is invertible, i.e.,VK is generically

invertible for every choice ofK except possibly those laying
in a proper algebraic variety. The set of all feedback matrices
such that the Jordan structure ofA + BF is described by
L ,M andP is parameterised inK as

FK =WK V−1
K (15)

whereVK andWK are obtained with a parameter matrixK
such thatVK is invertible.
Proof: For the sake of simplicity and brevity, we only con-
sider the case whereL is real. We begin by showing that for
anyVK andWK in (13-14), and with feedback matrix given by
(15), the closed-loop matrix has the desired eigenstructure,
wheneverVK is invertible. For eachi∈ {1, . . . ,ν}, let Ki be an
input parameter matrix as in (7), and for eachk ∈ {1, . . . ,gi},
let Hi,k be constructed as in (12). We may partitionHi,k,
which is defined for alli ∈ {1, . . . ,ν}, as

Hi,k =

[
vi,k(1) . . . vi,k(pi,k)
wi,k(1) . . . wi,k(pi,k)

]

, (16)

where the column vectors satisfy by construction

(A−λi In)vi,k(1)+Bwi,k(1) = 0, (17)

(A−λi In)vi,k(2)+Bwi,k(2) = vi,k(1), (18)
...

(A−λi In)vi,k(pi,k)+Bwi,k(pi,k) = vi,k(pi,k −1). (19)

Define

Vi,k = [vi,k(1)|vi,k(2)| . . . |vi,k(pi,k)],

Wi,k = [wi,k(1)|wi,k(2)| . . . |wi,k(pi,k)],

and also

Vi = [Vi,1| . . . |Vi,gi ], Wi = [Wi,1| . . . |Wi,gi ]. (20)

andFK Vi =Wi for all i ∈ {1, . . . ,ν}. Hence, (17-19) can be
written as

(A+BFK)Vi =Vi J(λi) (21)

or all i ∈ {1, . . . ,ν}. Thus,

(A+BFK)XK = XK Λ (22)

whereXK = [V1 V2 . . . Vν ] andΛ as in (3), as required. We
now show that for every feedback matrixF that delivers a
closed-loop matrixA+BF whose eigenstructure is given by
L , M andP, there exists a parameter matrixK such that
F =WK V−1

K , whereVK andWK are computed from (13-14)
with VK invertible. LetΛ , A+BF. Now, using a change of
coordinatesT that bringsΛ into the Jordan canonical form,
we can write

(A+BF)T = T T−1 ΛT
︸ ︷︷ ︸

ΛJ

, (23)

where ΛJ = diag{Λ1, . . . ,Λν} with Λi = λi for all i ∈
{1, . . . ,ν}. Let X = T andY = F T . We find

[
A B

]
[

X
Y

]

= X ΛJ. (24)



Eq. (24) can be written as

[
A B

]
[

X
Y

]

= X ·diag{J1(λ1), . . . ,Jg1(λ1),J1(λ2), . . . ,

Jg2(λ2), . . . ,J1(λν), . . . ,Jgν (λν)},

wheregi is the number of Jordan mini-blocks corresponding
to the eigenvalueλi and the generic Jordan mini-blockJk(λi)
is of order pi,k. Let us partitionX andY conformably with
the corresponding Jordan mini-blocks that they multiply, i.e.,

[
A B

]
[

X1,1 . . . X1,g1 . . . Xν,1 . . . Xν,gν
Y1,1 . . . Y1,g1 . . . Yν,1 . . . Yν,gν

]

=
[

X1,1 J1(λ1)

. . . X1,g1 Jg1(λ1) . . . X1,gν Jgν (λ1) . . . Xν,gν Jgν (λν )
]
.

Consider the generic term of this product

[
A B

]
[

Xi,k

Yi,k

]

= Xi,k Jk(λi), (25)

whereJk(λi) is the generick-th Jordan mini-block relative to
the eigenvalueλi. PartitioningXi,k = [vi,k,1 vi,k,2 . . . vi,k,pi,k ]
andYi,k = [wi,k,1 wi,k,2 . . . wi,k,pi,k ], we can write (25) as

[
A B

]
[

vi,k,1 vi,k,2 . . . vi,k,pi,k

wi,k,1 wi,k,2 . . . wi,k,pi,k

]

=
[

vi,k,1 vi,k,2 . . . vi,k,pi,k

]










λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0
...

...
...

. . .
...

0 0 0 . . . λi










,

which yields

[
Avi,k,1+Bwi,k,1 Avi,k,2+Bwi,k,2 . . . Avi,k,pi,k+Bwi,k,pi,k

]

=
[

vi,k,1 λi vi,k,1+λi vi,k,2 . . . vi,k,pi,k−1+λi vi,k,pi,k

]
. (26)

Therefore,
[ vi,k,1

wi,k,1

]

∈ ker
[

A−λi In B

C D

]

implies that there exists

Ki,k(1) such that
[ vi,k,1

wi,k,1

]

= Ni Ki,k(1). Moreover, from (26)
we find

[
A−λi In B

]
[

vi,k,2
wi,k,2

]

= vi,k,1,

which implies that there existsKi, j(2) such that

[
vi,k,2
wi,k,2

]

= Mi π
{[

vi,k,1
wi,k,1

]}

+Ni Ki,k(2).

Repeating this procedure for alll ∈ {1, . . . , pi,k}, we find the
parametersKi,k(1), . . . ,Ki,k(pi,k) which satisfy (8)-(10) with

hi,k(h) =
[ vi,k,h

wi,k,h

]

. This procedure can be carried out for all
Jordan mini-blocks. The fact that for almost every choice of
the parameter matrixK, the matrixVK computed from (13)
is non-singular follows from [14, Lemma 2.4].

III. I LLUSTRATIVE EXAMPLES

In this section, we compare the algorithm presented in
this paper with the results obtained in Ait Ramiet al. [9]
and Linnemann [12].

Example 3.1: In Example 2.1, the method presented in
this paper delivers the feedback matrix

F =

[
2.0000 0.0000 −0.0000 −2.0000
0.0000 −2.0000 2.0000 −0.0000

]

,

whose Frobenius norm is equal to 4, whereas the algorithm
in [9] yields

F ′ =

[
1.6346 0.0042 0.0480 −1.9325
−2.4959 −2.0675 2.3738 0.9088

]

,

whose Frobenius norm is equal to 4.8346. Another perfor-
mance consideration is the accuracy of the pole placement
achieved by each method. We use the measure

∆(F), max{|eigi(A+BF)−λi| : λi ∈ L }, (27)

which represents the largest absolute value difference be-
tween each eigenvalue ofA+BF , and the correspondingλi

in L . In the present case we obtain∆(F) = 9.97× 10−13

and ∆(F ′) = 2.47× 10−8. This result indicates that the
method introduced in this paper achieves more accurate pole
placement by some orders of magnitude.

Example 3.2: We consider the boiler system controller
given in [13] with n = 9 states andm = 4 control inputs. In
[12] a gain matrix is sought to place all the closed loop poles
at λ =−0.55. The controllability indices for this example are
{3,2,2,2}. Thus, this pole placement can be achieved with
a largest Jordan block of dimensions of at least three, and
at most 9. Hence we may obtain a feedback matrixF such
that (A+BF)l = 0, for anyl between 3 and 9.

For the case(A− λ I + BF)3 = 0, in [12] the feedback
matrix F1 was reported with‖F1‖FRO= 1.5×107. Applying
the method described in this paper, we obtainF2 with
‖F2‖FRO= 4.4×105.

For the case(A−λ I+BF)5 = 0, [12] reported the solution
F3 with ‖F3‖FRO= 9.2×102. Using the procedure described
here, we are able to obtainF4 with ‖F4‖FRO= 6.8×102.

Finally, for the case(A − λ I + BF)9 = 0, in [12] the
feedbackF5 was obtained with‖F5‖FRO= 2.8×105. Again,
applying the method described here, we obtainF6 with
‖F6‖FRO= 1.6×101.

We see that in each case the method described in this paper
obtains the desired eigenstructure with considerably reduced
matrix gain than that of [12], by some orders of magnitude.

IV. CONCLUSION

We have introduced a novel parametric form for the
problem of exact pole placement that can accommodate
any desired eigenstructure with arbitrary multiplicities. This
method places no restrictions on the set of poles that can
be assigned, or their multiplicities. The effectiveness ofthe



method has been compared against that of the alternatives
[9] and [12]. Examples were given to show that this method
delivers pole placement that is substantially more accurate
and with less matrix gain than these two methods. Future
work will consider the application of the parametric form to
achieving robust closed-loop eigenstructure that minimises
sensitivity to uncertainties in the system matrices(A,B),
as well as the exploitation of the parameterisation to the
end of achieving non-overshooting, non-undershooting and
monotonic step response in the MIMO case, see e.g. [15]-
[18].
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