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Simulation and Bisimulation over Multiple Time Scales
in a Behavioral Setting

Anne-Kathrin Schmuck and Jorg Raisch

Abstract

This paper introduces a new behavioral system model witindisexternal and internal signals possibly evolving
on different time scales. This allows to capture abstracfioocesses or signal aggregation in the context of
control and verification of large scale systems. For this sggtem model different notions of simulation and
bisimulation are derived, ensuring that they are, respelgtipreorders and equivalence relations for the system
class under consideration.

These relations can capture a wide selection of similarityons available in the literature. This paper therefore
provides a suitable framework for their comparison.

. INTRODUCTION

State explosion is a very common problem in the control ajdascale systems due to the interconnection of
numerous subsystems. Therefore, it is usually desireddioceethe state space of subsystems while overapprox-
imating or preserving their external behavior importanttfeeir interconnection to surrounding components.
This mechanism is also used to reduce the complexity of gatifin problems in the theoretical computer science
community. Here, systems are usually modeled by so caletsition systems, a subclass of discrete time state
space models. For these models, the notion of bisimilatiayspan important role. This concept was introduced
by Milner [9] in the context of concurrent processes to diéechow state trajectories of two transition systems
mimic each other while producing the same “external” betvavie., using the same transition symbols. If such
a bisimulation relation exists, it was shown that many e$éing properties expressible in temporal logics, in
particular reachability, are preserved when replacingsiesy by a bisimilar one.

The use of bisimulation relations for other system models diacussed in the survey paper [1]. Here, special
classes of hybrid systems are rewritten into a transiticstesy and it was shown that they allow for purely
discrete abstractions bisimilar to the constructed ttemsisystem. Pappas [12] adapted this method for linear
time-invariant continuous state space models with finiteeokation maps, still using both a rewriting and an
abstraction step. To remove the rewriting step, van der f6¢H@] introduced a notion of bisimulation directly
applicable to continuous systems. He showed that this abpnge interpretation unifies the concepts of state
space equivalence and reduction using controlled invasahspaces. These results where generalized by van
der Schaft and coworkers to hybrid systems [20], switcheeali systems [13] and behavioral systems [8].
Recently, Davoren and Tabuada [5] presented simulationbéichulation relations using general flow systems
[3], preserving properties formulated in the so called gah#iow logic [3]. General flow systems are able to
model continuous, discrete, hybrid or even "meta-hybridtomomous state dynamics also allowing equivalence
relations between systems with different time scales. Téagure extends all previous approaches where only
relations between systems with unique time scales are lgesgilthough Davoren and Moor discussed in [4]
how general flow systems can be equipped with input and outfagts, the simulation relations in [5] do not
incorporate the feature of ensuring identical externahaig of bisimilar systems. In [2] a comparison between
simulation relations on transition systems and simulat&ations on general flow systems is presented.
Tabuada and coworkers extended the work of Alur et.al. [datds finite state abstraction methods ensuring
similarity or bisimilarity between the original and the #iasted system [17], [18], [14], [15], [6], [16]. Inde-
pendently from this work, the notion dfcomplete abstraction [10] evolved as a discrete abstrad¢échnique

in the framework of behavioral systems theory [22]. In batmfeworks a finite state abstraction of a possibly
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continuous or hybrid dynamical system is obtained if theeed! signal space is finite and the trajectories of
external signals evolve on the discrete time a¥%js In the context of bisimilarity relations, these externghgls
should be preserved during abstraction. This raises thkelgmoof deriving a bisimilarity notion that ensures
equivalence of discrete external signals while compartatgsrajectories that evolve on possibly continuous or
hybrid time lines. This issue has up until now not been expliaddressed, neither in the contextlefomplete
approximations nor in the work by Tabuada and coworkershénlatter, as in [1] and [12], the original system
is first rewritten into a transition system, previous to tlsteaction step. The bisimulation relation is then only
ensured to hold between the transition system and its alisina

To also incorporate the rewriting step into the exploratidrequivalence, we introduce a system model with
distinct external and internal signals possibly evolvinga different time axis in Sectidnlll. To cover a very
general class of systems, we use behavioral systems tH22jrto[formalize our notion. We note that this restricts
each time axis to be either continuous or discrete. It isreut@search to also incorporate hybrid time scales
for the internal signals as formalized, for example, in [Wispired by the the work in [8], [7] and [5], we
derive a simulation relation for the newly introduced systmodel in Sectiofi V. We show that the introduced
simulation and bisimulation relations are preorders angvadpnce relations, respectively, for the system class
under consideration.

This work is a first step towards the comparison of differexisteng approaches to construct (bi)similar finite
state abstractions. Due to page limitations this comparisnly shortly touched in various remarks and will
be explored in more detail in subsequent publications.

[l. PRELIMINARIES

A dynamical systens given byY = (7, W, 3), consisting of the right-unbounded time afisC R, the signal
spacelV and the behavior of the systeth C W7, whereW? := {w | w : T — W} is the set of allsignals
evolving onT and taking values if¥. Slightly abusing notation, we also writec¢ W7 if v : T —~W is a
partial function This is understood to be shorthand foe Wd°™() wheredom(v) = {t € T | v(t) is defined

is thedomainof v. Furthermorej : T — T is theidentity maps.t@ Vit e T .i(t) =t. Now letWW = W; x Wy

be a product space. Then thejectionof a signalw € W7 to W{ is given by, (w) := {wy € W | Jws €

Wi . w = (w,ws2)} andmy, (B) denotes the projection of all trajectories in the behaw&iven two signals
wi,ws € WT and two points in time,t, € T, the concatenationuvs = w; Ag wo IS given by

wl(t) , t <ty
wot —ty+ta) , t>t

Vt e T . ws(t) :{ (1)

where we denoteAl - by - A, -.

I1l. ¢ - DYNAMICAL SYSTEMS

When reasoning about similarity and bisimilarity of sysseame has to distinguish between “external” signals,
which are required to match or satisfy an inclusion propetd the remaining “internal” signals. Depending
on the chosen system representation and/or the real wodbdlggn at hand, this distinction may differ. To
incorporate a wide range of possibilities, we define a sedaltdynamical system, wherg is a set-valued map
which describes the relation between internal and extesigalals.

Definition 1: Let ¥ = (T, W, B) be a dynamical system. Thetf = (T, Tg, W,T', B, Bg, $) is a ¢-dynamical
systemif
¢ B—2l""xT

Throughout this paper we use the notatian.™, meaning that all statements after the dot hold for all allés in front of the dot.
"3 . " is interpreted analogously.



whereT" is an external signal spac&r C T is a right-unbounded time axis,

T = {T:TATE

T is surjective and
monotonically increasin

is a set of time scale transformations and

BE:{’}/EFTE‘H’LUGB,TGT.(’7,7')6525(10)} 2)
is the external behavior. Furthermore;! : T; — 2T denotes the inverse time scale transformgtidre.,
Y k) ={teT|1(t) =k} <

Remark 1:The construction ofp in Definition[d was inspired by the deterministic map in [11efD12]. Note,
that the map in [11, Def. 12] is required to be strictly causalanalogy, one would typically require that the
map ¢ is non-anticipating, i.e.,

Vw,w € B,y,y el r7' e T teT. T

L (,7) € dlw) (3,7) € p(w)
ANy ) € b)) | =37 e TP 7 e T. | Arloy = Flog
Awlg g = w'[jog AMlo,-] = Yo, (1)

In words: if we change the future af, the past and present of bothandr are allowed to remain unaffected.

Using this concept, systems with single time axis, ilé=s T, as well as systems with multiple time axes, i.e.,
T # T can be described in a unified fashion.

As outlined in the introduction, a large portion of reseamh simulation relations in the control systems
community uses a single time scale. In this context, theadigthat are externally visible “live” in a subspace
of the signal spacél’. Capturing these models in our framework leads to an idetitite scale transformation
and a signal map projecting signalsv € W7 to the externally visible subspate

Remark 2:Consider a dynamical systel= (T, W, B) with 7' = Ny andW = U x Y, whereU is the set of
inputs andY” is the set of outputs. With a special choiceffthis model can capture the dynamics of a transition
system as used by Pappas and Tabuada, e.g., in [12], [L# The assumed that the inputs are chosen and only
the output signals are required to be (bi)simulated by aeédlaystem. This can be expressed by-dynamical
system by choosin@z = No, I' =Y andV¥(u,y) € WT . ¢((u,y)) = {(y,i)}.

Analogously, usingl’ = Rf andW = U x Y x D, where D is the disturbance space, we can consti8ct
such thats captures the dynamics of the linear time invariant systeed ly van der Schaft in [19]. There, the
inputs and outputs are required to match for bisimilar systeThis can be expressed bypadynamical system

by choosingl’r = R}, I' = U x Y andV(u,y,d) € WT . ¢((u,y,d)) = {((u,y),1)}. <

In contrast to the cases described in Renark 2, the conistnuat a ¢-dynamical system witll" # T is not as
straightforward and therefore illustrated by an example.

Example 1:Consider a dynamical systel= (T, W, B) with T = Rj, W = RN [0,40] andw € B iff w is
continuouse. Usindg = Ny, I' = {q1, 92, g3, ¢4} and the sets

I(h = [07 11)7 I(I2 = (9721)7
Iq3 = (19,31), Iq4 = (29,40],

the external signals € B are constructed via the discretization W — 2' s.t.
g €Vv) & rvely

2f Vk € T . |77 *(k)| = 1, by slightly abusing notation, we denote the unique elemgnt 7~ (k) by 7~*(k) itself and write
tr = Tﬁl(k).



So far, this discretization does not include any informatabout its timing, i.e., the formal construction ¢f
Out of the many different options, we discuss two possiblesag and ¢, as depicted in Figurlel 1 and Figure 2.
First, consider a signal mag, s.t. for ally € I'"# 7, € T andw € B, it holds that(y, 7,) € ¢, (w) iff

7(0) € 2(w(0)), 7, '(0) = {0}
and for allk € T,k > 0,

7o (k) = {glb {t > 77 (k — D]w(t) ¢ 97 (v(k — 1))} }
(k) € d(w(ry (), 3)

whereglb denotes the greatest lower bound and (¢;) = I,;. This generates thpoint to point time scale
transformation depicted in Figur€ll (middle), where different pointsdiom (7,) are mapped to different points
in Tg, and an external event is triggered when leaving the intefl@ generated external signalis depicted
in Figure[2. This map), can be extended to generatset to point time scale transformationby defining

7 H(k) = (g (k) 7o Mk + 1)), (4)

where every point ifl" is in the domain ofr,. This time scale transformation is depicted in Figure 1 tto).
Combining the construction af, (4) with the construction ofy in (3) defines a signal magp,.

Now assume, that we have a sigmak B that stays inl,, for all ¢. This signal would only generate one external
eventq; at time 0 but not an infinite sequence of eventsc I'7#, whereT% is right unbounded. Therefore,
the signal mapg, and ¢, mapw to the empty set. Obviously, one could repeat the symgbohfinitely often

to generate a signal in € I'’# from @. However, if one has to know that will never leavel,, to do so, as
suggested in [16, Def.7.2], this generates an anticipaiggal map. A non-anticipating version is, for example,
obtained, if a symbol is repeated after a fixed titgpeif the quantization interval is not left. This would combin

event triggered with slow time triggered discretization. <
Wy
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Fig. 1. lllustration of point to point#,) and set to point+,) time scale transformations as constructed in Exarfple 1.

Examplel shows that in generak T is indeed a function ofv € B when using an event-triggered discretiza-
tion scheme. Of course, using time-triggered discretimatvould result in a unique time scale transformation



q4 '“““““'T """ _'""“"“"*' """"""""""""""
q3 b3 : X . X
q2 t----1 > STLELEELEED $  GELEEEITETEEECEEEEILERERD > SECEELEEEEEEED
a : x v e FTE
I i i i i
0 2 4 6 8 Ty
Fig. 2. lllustration of the external signal constructedngsevent triggered discretization in Example 1 correspupdd the internal

signal depicted in Figurel 1 (top).

independent fromw. Furthermore, the signal maps used in Exaniple 1 are detistinim the sense that every
signalw € B generates a one element set or the empty set. However, eomi@stic maps occur for example
if ¢ is constructed from a cover &% with overlaps of more than two sets.

IV. STATE SPACE ¢ - DYNAMICAL SYSTEMS

States are internal variables for which the axiom of stateddia.e., all relevant information on the past of the
system is captured by those variables. In the literature dammcepts of the state property exist for behavioral
systems. Firstly, the well known version by Willems [22],1]2 where state trajectories; and x5 can be
concatenated, if they exhibit the same value at the same (i@e Vxi,zo andt € T . x1(t) = z2(t) =

x = x1 A\, x2 IS also a state trajectory). And secondly, a generalizediaerthat allows state trajectories to be
also concatenated if they reach the same value at diffareast(i.e., V1, xo andty, to € T . x1(t1) = z2(t2) =

T =1 /\2 xo IS also a state trajectory), as used in the context of stafgsrbs Julius and van der Schaft in
[8], [7]- To clearly differentiate both notions we call thesti one synchronous and the second one asynchronous.
Using these two state properties, we construct state spatygmamical systems such that the discussed state
property is preserved by the signal map

Definition 2: Let ©¢ = (T, Tg, W, T, B, Bg, ¢) be a¢-dynamical systemX be a set and3s C (W x X)7.
Then Eﬁ = (T,Tg, W x X,T',Bg, Bg, ¢) is anasynchronous state space-dynamical systemif

V (wi,21) € B, (w2, 22) € Bs, ti,t2 € T, (2, 72) € ¢p(w2), (71,71) € dp(w1), k1, ke € Th . I

_ 5
t /\zl(tl) —(t-T)Q(t2) N ( (wlal'l) /\ztté (w2’l,2) c BS ) ( )
1= T1(l1 k1 t1 t1 )
Nka = To(t2) ANm Ny V25 T1 N\, (12 +¢)) € p(un Nty ws)

whereVt € T . ¢(t) = k1 — ka. Furthermorezﬁ is anexternally synchronousstate spacé-dynamical system
if (B) holds for k = k; = ko and asynchronousstate space-dynamical system if (5) holds far=¢; = t, and
k= kl = kg. <

It is easy to see that every asynchronous state spalymamical system is also an externally synchronous and a
synchronous one, because we can always piekk; = ko andt = t; = t, in (8). With the same argument, every
externally synchronous state spageynamical system is also a synchronous one. For the asymochs and the
synchronous case in Definitian 2, the implication(t;) = xa(t2) = (w1, z1) Afl (w2, 22) € Bs is equivalent to
the asynchronous and for= ¢; = ¢, to the synchronous state property for the systém= (T, W x X, Bg).
The additional requirement il(5) ensures, that this camatton property also holds for the external behavior.
Note that for the externally synchronous case, synchrtinizés only required on the external time axis.

In the remainder of this paper, we refer to a system as intediun Definition(2 simply astate spacep-
dynamical systemif the respective adjective (asynchronous, externallychyonous, synchronous) is irrelevant.
Since possibly not all states are reachable by a state twajein =y (Bs), we define the following reachable
subsets of the state space (comp.[7, Def.5.37]).



Definition 3: Let Eﬁ = (T,Tg, W x X,T', Bs, Bg, ¢) be a state spacg-dynamical system. Then

Xr=|JX} and Xp:= |J XE st
teT keTy
Xb={¢ e X|3(w,r) € Bs . x(t)=¢} and

XE —Jeex 3 (w,x) € Bg, (7,7) € ¢p(w),t € 771(k) . !
Loaft) = ¢
are the internal and external time-indexed state spageS X and Xz C X, respectively. <

Obviously, the internal and external time-indexed statecep are equivalent if is a total function.

V. SIMULATION RELATIONS

One system simulates another one, if its external behaviotains the external behavior of the latter, while
ensuring that the state trajectories generated by botlersgsonly visit states, at each instant of time, that are
associated by a relation. To formalize this property, a igpeelation, calledsimulation relation is constructed
between both state spaces.

In the behavioral framework signals are usually right-unied. It is well known that a local (i.e., on a finite
time interval) evaluation of properties is only possibfethie system is complete [22]. Inspired by [7, Def. 5.21],
we therefore define a concatenation based simulationael&ir ¢-dynamical systems. In contrast to the locally
defined simulation relation used for transition systemg.{én [12], [17]) or general flow systems (in [5]), it
also relates not necessarily complete systems.

Definition 4: Let X%, = (T1, T, W1 x X1,T,Bs1,Be1,¢1) and X%, = (T, T, Wa x X5,T, Bs2, Br 2, ¢2)
be state space-dynamical systems.
Then a relationR C X; x X, is an asynchronous simulation relation from %%, to %%, (written R ¢

9%2‘(2271,232)) , e, Egz asynchronously simulat@?l, if
V& € Xpy . (3 e Xpa . (61,&) €R) (6a)

and
V (wi,z1) € Bg,1, (W', 2') € Bs2, (71,71) € ¢1(wr), (7, 7") € pa(w'), t1 € Tt € To, ki, ko € Tr . l

3 (w2, 22) € Bs2, (72, 72) € ¢a(w2) - ¢

Y2 =7 AZm
(z1(t1),2'(t2)) € R wa(t) = w'(t) (6b)
Ak1 = 71 (t1) = AVt € To,t <ty . | Axa(t) = 2/(t)
Nko = T/(tg) AT (t) = T/(t) .

/\1‘2(t2) :l‘l(tg)
/\Vk > kg,tll € ’7'171(]€ — ko +/€1),t/1 >ty . !

L3ty e m k)t > 1 - (20 (), 22(8y)) € R

It is an externally synchronous simulation relationfrom X%, to X%, (written R € %, (3%, 3%,)) if

Wk € T, &1 € Xp, . (agz € Xk, . (6,8) € R) (72)

and [6b) holds fok = k; = ko.
Furthermore, if7" = 171 = T3, thenR is a synchronous simulation relation from Eﬁ,l to 232 (written
R € R,(55,,55,)) if

VieT & e Xy . (I € Xpy. (61,6) €R) (8a)

and [6b) holds foik = k; = ko andt =t = to. <



Remark 3:The construction of the externally synchronous simulatgation in Definition 4 is inspired by the
so calledsynchronized simulation relatiotefined in [7, Def. 5.38]. However, the latter does not res{6h) to
hold only fork = k1 = k. N

The intuitive interpretation of the terms asynchronousgcéyonous and externally synchronous is strongly related
to the ones used in Definitidd 2. However, in Definitidn 4 theayonization takes place between signals of
differentsystems that are related.

In contrast to Definition12, it is not true that every asynetoos simulation relation is an (externally) synchronous
one, sincel(Ga) does generally not imglyl(7a) and (8a).timé&ly, if R is an asynchronous simulation relation, we
know that [€b) holds for = t; = t; andk = k1 = ko. However, we can generally not ensure that for every state
in Xg, reachable at external time and internal time, there exists a related state X » that is reachable at
the same external and internal time. We can therefore pgggsi relate the whole state space in a synchronous
or externally synchronous fashion, implying tatmay formally not be an (externally) synchronous simulation
relation.

To generate some intuition for the simulation relation ¢arded in Definitio #, we will discus$§ (6b) using some
graphical illustrations. For this purpose assume that we Isignals(w.,z1) € Bs, (w',2') € Bsa, (71,71) €
¢1(wr) and (v, 7') € ¢o(w') such that the states = x1(t1) and&s = 2/(t2), with k1 = 71(¢1) andks = 72(t2),

are related. To simulatEﬁ’l, the systemz‘g2 must be able to continue from tine, with the same external
signal as produced byﬁ’l after k1. This is expressed in_(6b) by requiring the existence of aereal signal

v2 € B2 Which is constructed from the concatenation of the signaland~,, as depicted in Figurie 3.

TA

Fig. 3. Visualization of the concatenation =+’ /\ﬁf ~v1 in (€0).

To ensure thaty, is non-anticipating, this concatenation is not allowed bargye the past, which is why we
require that the past of,, w, and » match the paEtof 2',w' and7’. Moreover, we have to ensure, that the
state trajectories’ andx, match at timet,, expressed by:s(to) = 2/ (t2).

The last line of[(6b) basically says that the state trajéesar; andx, need to stay related for all future external
time instants. However, the nature ofsignificantly influences how restrictive this requirementfFor example,
having a point to point time scale transformation in bothteys only requires state trajectories to be related at
sampling points (Figurgl4), while a set to point time scad@s$formation, for example, requires state trajectories
to be related at all future times (Figuré 5). However, asrgtedasible in Figure[4 and5, both cases allow for
a stretching or shrinking of time between related stateettayies. If both systems have an identity time scale
transformation (and therefof = T} = T, = Tg) this stretching or shrinking of time is no longer allowed, a
shown in Figuré 6. Note that the latter case only implies thatconstructed asynchronous simulation relation
is also a synchronous one, if we additionally require- k; = k2, which immediately implieg = ¢; = t5.

Remark 4:The intuitive interpretation of the different simulatioelations depicted in Figui€ 41 6 is very similar
to the idea behind the-, p- and¢-simulation relations constructed in [5] for general flovst®ms. This suggests

% In contrast to [7, Def. 5.21], we only require the strict pasimatch, because our concatenation definitidn (1) sligtiiffiers from
the one used in [7].
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Fig. 4. Visualization of the last line if_{Bb) for two point {moint time scale transformations and 2, with 7 7' (k1) = {t1},
71 (k1 4+ 1) = {t}, o (k2) = {t2} and 2! (k2 + 1) = {t5}. Gray lines connect related states.

Fig. 5. Visualization of the last line ifi.(Bb) for two set toipbtime scale transformations and e, with a = 717 (k1) = [t1,t}) and
b= 1" (ko) = [ta,th). Gray lines connect related states.

that for the subclass of discrete and continuous systenmssiowlation relation can reproduce the relations in
[5] by choosing different time scale transformations. Heere our relation extends the constructions in [5] by
allowing to include the simulation of external trajectsri€-urthermore, relating two systems with different time
scale transformations gives an even richer variety of ielat <

Remark 5:Recall thatp-dynamical systems capture the dynamics of transitioresystand linear time-invariant
continuous systems (see Remaik 2)7if= Ty = T, = Tg. Relating two systems implies a state trajectory
matching requirement as depicted in Figure 6. Additiondlg external signaj, which, in the case of transition
systems is the outpuj, and, in the case of linear time-invariant continuous systés the pair(u,y), needs

to satisfy the requirement depicted in Figlie 3. Observe fttracomplete systems this interpretation coincides
with the locally defined simulation relation for transitiegstems, e.g., in [12], [18], [16]. The same is true for
the simulation relation constructed for linear time ingati systems in [19]. This suggests that both notions of
simulation relations can be captured by our notion. <

t2
Fig. 6. Visualization of the last line i _(bb) for two identitime scale transformations = 7 = i.



Using the simulation relations constructed in Definitionvg can define similarity and bisimilarity for the class
of state space-dynamical systems in the usual fashion.

Definition 5: Eﬁl is asynchronously simulatedby 232, denoted bﬁls1 = = 32, if there exists an asynchro-

nous simulation relation frorhs ; to X ». 231 andES2 areasynchronously bisimilar, denoted b)ES = %%,

if there exists a relatiolR C X; x Xp s.t RandR~! = {(x2,21) | (z1,72) € R} are asynchronous simulation
relations fromXg; to ¥go and fromX g, to X5, respectively.

%, is externally synchronously simulatedby %% ,, denoted byx%, <, 5% ,, if there exists an externally

synchronous simulation relation froMs; to Xg . Y1 and Ygo are externally synchronously bisimilar,

denoted byx% | =, %% ,, if there exists a relatioR C X; x X, s.t. R and R~" are externally synchronous
simulation relations fronkg; to g and fromXg, to 2571, respectively.
Eﬁl is synchronously simulatedby 232, denoted byES1 = 232, if there exists a synchronous simulation

relation fromXg; to Mg . 231 andx%, 5.2 aresynchronously bisimilar, denoted bew =, 232, if there exists
a relationR € X; x X, s.t. R and R T are synchronous simulation relations frdﬂ@l to X592 and fromXs o
to Xg 1, respectively. <

VI. EQUIVALENCE OF EXTERNAL BEHAVIORS

Before proving the soundness of our construction we inttedanother simulation relation to discuss the con-
nection between behavioral equivalence and bisimilaritfp@ systems.

Definition 6: Let ©%, = (71, T, W1 x X1,T,Bs1, Be1,61) and X%, = (Tv, Te, Wa x Xa,T, Bsa, Bra, ¢2)
be state space-dynamical systems and létc Tg.
ThenR C X; x X, is anl-initial simulation relation from %%, to %%, (written R € %,(£%,,%%.,)) if

Ve € X, . (352 € Xy (€1,6) € R) (92)
and [6b) holds. q

For this simulation reIationL initiaIIy similar and bisimilar systems are defined analogly to Definition 5 and
are denoted byjs1 <, 2%, and x5 51 = 252, respectively.

Observe that in Definitionl6, the statement-(6b) still reeénl hold for arbitraryk,, ke andty,ts (as for the
asynchronous simulation relation). However, we requird@a) that stateg; reached at external time = [

are related to states also reachable at external time= [. Observe that this does in general not imply that
(62) holds. Due to the iterative nature 6f(6b), intuitivelglating states reached at external tilme- [ leads

to a relation between all states reachable for external #ime [ (explaining the name for this relation). In
particular, if the external time axis has a minimal elemente.g., 7 = Ny or Tp = RJ with v = 0), a
v-initial simulation relation will imply that all reachablkgates are related in an externally synchronized fashion.
The following lemma formalizes this intuition by provingri@us connections between the different relation types.

Lemma 1:Let £§, = (T1, T, W1 X X1,T, Bs,1,Bg,1,61) and 5§, = (Ta, T, Wa x X2,T, Bs 2, B2, ¢2) be
state-space-dynamical systems sip has the minimal element. Then
(i) R R (S 21,222) = R € R(Z spE?,z),
(i) R € Ry (25,,55,) = R € %y (55,,22,), and
R € 9%1:,,(2317 22,2)
iy | M=T2=Te
AYw1, (71, T1) €1 (wq
AVwa, (2, T2) € P2 (we 2—1

). = RER(X§,.55,).
) -
Proof: Pick R € S%l:V(ES 19 252) and observe the following facts:

T1=i



(A) (7d) holds forR:
As (93) holds forR (using Definition[B) we can fiw:,z1) € Bs 1, (v1,71) € ¢1(w1),t1 € 1~ (v) and
(w',x") € Bsa,(Y,7) € ¢a(w'),ta € 7271 (v) St (z1(t1),2'(t2)) € R. SinceR € 9%1(2?’1,2?’2),
(60) implies that there existws,2) € Bga, (y2,72) € ¢o(w2) St.VEk > vty € m~1(k) . Tty €
k) . (z1(t)),z2(th)) € R. Using Definition[B and the fact that is the minimal element of/ i,
this implies that[(7a) holds.

(B) (Z2) implies [(6h) since&r; := Uyer, X}jﬂ,i for i € {1,2} from Definition[3.

(C) Leti € {1,2}. If T; = Ty andVw;, (vi, ;) € ¢i(w;) . 7, =ithenVt € T; . Xt . = XL . from Definition[3
implies [72) iff [Ba). ’ ’

(D) If (BD) holds, it also holds fok = ki = ko andt =t = ts.

Now (i) follows from (A) and [D), (ii) follows from [[A) and[(B)and (iii) follows from [A), [G) and[{D). m

Remark 6: The inverse implication in Lemma 1 (i) does not hold, Rs= 9%1,(2271,2272) does not imply that
(60) holds for arbitraryk; # k-. q

Remark 7:Recall from Remark]2 thap-dynamical systems can represent transition systems asingxternal
time axisTgr = Ny (with minimal element = 0). For this system class, simulation relations are usuafynéd
by requiring that the initial states are related and a locaperty, similar to[(6b), holds (see, e.qg., [12], [17],
[16]). This suggests, that simulation relations definedtfansition systems aré-initial simulation relations in
our sense. q

As the main result of this section we generalize the resnl{3,i Thm. 5.41] to state spagedynamical systems
with external time axis having the minimal elementand show that the existence ofuainitial simulation
relation from one system to another one implies that the \oehaf the first is a subset of the second one. As
an immediate consequence, behavioral equivalence isnelotafi two systems are-initially bisimilar.

Theorem 1:Let 22,1 = (Tl, T, W1 x X1,T, 85’71, BE71, ¢1) and 22’2 = (TQ, T, Wy x Xo,T', 8572, BEQ, ¢2) be
state-space-dynamical systems sip has the minimal element. Then
(i) (Xs1 == Xs2) = (Be1 € Bg2)
(i) (Xs1 ==y Xs2) = (Be1 = Bg2)
Proof: Using [2), the statemer8z ; C Bg 2 is equivalent to

\V/’}/ c FTE 3(1‘1,11}1) S 6571,7'1 c 7-1 . (’y,Tl) € ¢1(’u}1) = T

Iz, w2) € Bso, 72 € T . (7,72) € ¢pa(w2),
whereT7;, i € {1,2} is the set of valid time scale transformations fr@into Tg. FiX v, x1,wi, 71 S.t. (y,71) €
¢1(w1). Since g1 <=, Ys2, (@3) holds fork = v. Therefore, we can pick; € =~ '(v), (v',2') €
Bsa, (7, 7') € ¢o(w'),ta € 771 (v) st (z1(t1), 2/ (t2)) € R. Using [Bb) fork; = ko = v this implies that
I(we, x2) € Bs2, (72, 72) € ¢p2(w2) . v2 =~ AL~ =, which proves statement (i). Part (i) follows immediately
from (i) and Definition5. [ |

Remark 8: Theorenl Il does not extend to the asynchronous simulatian sae here we cannot ensure finding
pairsz; andz’ s.t. their initial states are related. <

VIlI. SOUNDNESS

As the main result of this paper we show that the simulatidetions in Definitior 4 are well defined by proving
that they are preorders for their respective class of sfzaees)-dynamical systems.

Theorem 2:The relations<, , <,, <, and=; are preorders for the class@fynchronousstate space-dynamical
systems.



Proof: To simplify notation, we denote the conjunction on the ripand side of[(6b) by, i.e.

Ye =T A Va
we(t) = wp(t)
AVE € Tt <te. | Axe(t) = xp(t)
ATe(t) = (t)
Q ‘as by ‘c) =
Car ) Azolte) = zp(te)
A V> ket €1k — ket ko), t), >tg . 1

LS e r MRt > o (2alt) 2olt)) € R
A relation is a preorder, if it is reflexive and transitive.
1. reflexivity:
To prove reflexivity, pick an arbitrarﬁﬁ = (T,Tg, W x X,I', Bs, Bg, ¢), constructR C X x X s.t. ({1,&) €
R < & = & and show thatl {6)[{7)[18) and](9) hold:
« (63), [72),[(8a) and_(9a) hold by construction.
« Remember from fact (D) in the proof of Lemrha 1 that[if|(6b) I®ld also holds fork = k; = k, and
t =t = to.
« To show that[(6b) holds, fiXwq,x1) € Bg, (w',2') € Bg,(y1,71) € ¢(w1),(v,7) € ¢p(w'),t1,t2 €
T, k1, ko € Ty s.t. the left side of((@b) is true, picks € W7, x5 € XT, 49 € T72, 1 € TpT sit.

wg = w' ARt wn Ty =/ N w1 m=1 A (o) r=v"Agm  (10)

and show that the right side df (6b) is true.
» Observe that the first three lines Qf -, -/, -5) follow directly from (10) and from the construction &
implying z1(t1) = 2'(t2).
» Now using Definition[2 we can conclude thébs,z2) € Bs and (v2,72) € ¢(w2) since (wy,z1) €
Bg, (w’,:n’) € Bg and:nl(tl) = :L'/(tg) = ﬂj‘g(tg).
» To show that the last line of2(-1,,-2) is true, observe thaf (10) impliegk > ko, ¢} € 71 1(k —
ko + k1),ty > t1,th € o (k) th > to . x1(t]) = z2(t5). From the construction oR this implies
(@1(t1), 22(t3)) € R.
2. transitivity
To prove transitivity, pick arbitraﬂ/zﬁvl, 2?72, 2273 s.t. (231 = 2272) A (232 = 227?,). This implies that there
exist simulation relation®R; > and R 3 from 2?71 to 2272 and 232 to 233, respectively. Now construd®; 3

S.t.
(£1,83) ER13 & (F&2 € Xo . ((€1,82) € R12 A (62,83) € Ra3))

and show that({6)[{7)[18) andl(9) hold f@&, 3, implying X%, < %% ..
« Observe that(6a)[(Va), (8a) andl(9a) hold ®r, and R, 3, implying
V6 € Xy (& € Xp, & € Xy ((§1,62) ER12 A (§2,€3) € Ras) )
Vk € Tp, &1 € Xy - (F2 € Xo,& € Xy ((61,62) € R12 A (2,&) € Ras),)
VteT, & e Xy, . (FaeXio &€ Xy ((61,6) € RiaA(6,6) € Rag),)
V& €Xp, . (B €Xha b€ Xhs. ((1,6) €RiaN(&,&) €Raa),)
respectively. Using the construction &f; 3 this implies that[(6a),[(7a)[ (Ba) and [9a) hold f&j ;.
« Remember from fact (D) in the proof of Lemrha 1 that[if|(6b) I®ld also holds fork = k; = k, and
t=1t; = to.
o To show [Bb), fix(wi,z1) € Bsy, (w',2") € Bgs, (y1,71) € é1(w1), (v, 7") € ¢3(w'),t1 € Ti,t3 €
T3, k1 = Tl(tl), ks = T/(tg) S.t. (ml(tl),x’(tg)) S R173.
» From the construction dR, 3 we know that there exists sonie”, z”") € Bgsa, (7", 7") € ¢2(w"),t2 € T,
ko = Tg(tg) S.t. (:L'l(tl),l’”(tg)) S RLQ and (l’”(tg),l’,(tg)) € R273.
» This implies that we can fix som@vs, z2) € Bg2, (72, 72) € ¢2(w2) S.t.Q(-1,-”,-2) holds and therefore

4Since the proof is equivalent for all relations, we do notcifyethem and use< as their unique representative.



(:L'l(tl),l'g(tg)) € RLQ and (:L'g(tg),:L’l(tg)) € R273.
» This implies that we can fix som@us, z3) € Bg3, (73,73) € ¢3(ws) S.t. Q(-2,,-3) holds.
« With this choice of signals, we show th@{-;, -, -3) also holds:
» Observe, that the second and third line @f1,-',-3) are equivalent to the second and third line of
Q(-2,-,-3), respectively.
» Using the first line of2(-1, -, -2) andQ(-2, ', 3) We getys = 7' A 2 = v A2 " A2y =+ AP m
implying that the first line of2(-1, -, -3) holds.
» Finally, to show that the last line d®(-1, -/, -3) holds, observe that it is equivalent to

Vk> kg,tll S Tlfl(k—kg—‘r]ﬁ),t/l >t . T

(11)
/ /
L th € m (k) th > to, th € 37 (k) th > 13 <A222252§ZB 2 %i) :
To show that[(IN) holds, fix > ks, t} € 71 1(k — ks + k1),t} > t1,t5 € 37 1(k),t, > t3 and pick
t/2 S ’7'2_1(]{7 — kg + k‘g),té > to.
> With this choice it follows immediately from the last line 6X(-2, -/, -3) that (z2(t5), x3(t5)) € Ra,3.
> If we now pick k = k — k3 + ko, we havek > ko, sincek > ks.
> Now it follows from ¢} € 7171 (k — k3 + k1) thatt) € 71‘1(/% — ko + k1) and fromt), € 1 (k — k3 + k2)
thatt) € 7~ (k).
> Using the last line of(-1,-”,-2) this implies that(z(t]), z2(t})) € Ri1 2. n

Theorem 3:The relations=,, and =<, are preorders for the class ekternally synchronous state space-
dynamical systems.

Proof: This proof is identical to the proof of Theordm 2 by usihg= k1 = ko in all statements. This
substitution is applicable since (6b) is also restricted te k; = ko for <, and=,,. [ |

Theorem 4:The relation=,, is a preorder for the class sfynchronousstate space-dynamical systems.
Proof: This proof is identical to the proof in Theordm 2 by usihg= ki = ko andt = t; = ¢ in all
statements. This substitution is applicable sificé (6b)sis gestricted tok = ky = ko andt =ty = t, for <,. W

Corollary 1: The relations=, , =, =, and=; are equivalence relations for the classsfnchronousstate space
¢-dynamical systems. Furthermore, the relatiéhsand=, are equivalence relations for the classeaternally
synchronousstate space-dynamical systems, and the relatiéfy is an equivalence relation for the class of
synchronousstate spaceé-dynamical systems.

Proof: A relation is an equivalence relation, if it is reflexive,nsitive and symmetric. From Definitidn 5, it
follows that all relations= are defined by two simulation relations. Therefore reflaéxiaind transitivity follows
from Theoreni R 4.

To prove symmetry, pick arbitrary ;, X% , and shovv(Z‘,‘g1 = 22’2) = (2‘52 o 22’12. Observe that it follows

immediately from Definition 5 that for any bisimulation rétan R bet\NeenE‘g , andX, we can pickR = R~!
as a bisimulation relation betweéif, , and %% |, implying %, = 2% . |

VIIl. CONCLUSION

We have proposed a behavioral system model with distinareat and internal signals possibly evolving on

different time scales. For this new system model differestiams of simulation and bisimulation were derived

and their soundness was proven. In Rematks 2, 4 and 5, wesdistin an intuitive manner that our notion can
capture a broad selection of similarity concepts availabléhe literature. The formal proofs of these intuitive

connections will be presented in a subsequent paper. It risgoal for the near future to use the presented
framework to compare existing abstraction techniques éncitntrol systems community.
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