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Abstract— The goal of this paper is to compute transmission
intervals and delays that provably stabilize Linear Time-
Varying (LTV) control systems in the presence of disturbances.
In other words, given some signal delay existent in a control
system, we determine rates at which information between the
controller and plant need to be exchanged such that the closed-
loop system is stable (in some appropriate sense). Depending
on information noise and disturbances, the computed trans-
mission intervals lead to stability, asymptotic stability and Lp-
stability with bias. The proposed notion of Lp-stability with
bias integrates noisy information into our stability analysis.
The salient feature of our emulation-based methodology is
the consideration of delays that are greater than transmission
intervals. This feature stems from impulsive delayed system
modeling and Lyapunov-Razumikhin techniques employed in
the paper. Our methodology is demonstrated on the benchmark
problem of batch reactor and compared with a related work.

I. INTRODUCTION

Nowadays control systems are increasingly implemented
in digital technology due to its notable advantages in terms
of performance, flexibility and affordability over analog
technology [1]. At the same time, digital technology entails
delayed and sampled signals between plants and controllers
in control loops. Furthermore, sensors and actuators are
becoming more spatially distributed which additionally aug-
ments delays [2]. Delayed and sampled information can
have detrimental effects on the control system performance
and might even lead to instability [3]–[12]. Accordingly,
control laws designed on the premise of continuous and
instantaneous information exchange ought to be thoughtfully
transferred into a digital and networked control setting.

The present paper takes up the emulation-based approach
presented in [4] and [7] when investigating effects of delayed
and intermittent data. In emulation-based approaches one
first designs a controller without taking into account the com-
munication network. Subsequently, one determines how often
control and sensor signals have to be transmitted/exchanged
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over the network so that the closed-loop system remains sta-
ble (in some appropriate sense such as asymptotically stable
or Lp-stable). In other words, even though our modeling
can incorporate various delay compensation or model-based
control schemes (consult [6], [8], [11], [13] for more) that
produce greater stabilizing delays and transmission intervals,
we do not explicitly design such schemes but rather aim
our attention at analyzing the robustness of a given control
system to realistic networking artifacts.

When analyzing sampled-data systems with delays, it is
often required that delays are smaller than the transmis-
sion/sampling intervals (see [7], [11], [14] and the references
therein). This case is known as the small delay case. Such
a requirement might be overly restrictive for many control
systems. In order to circumvent this prohibitive requirement,
our paper employs impulsive delayed system modeling with
Lyapunov-Razumikhin techniques and proposes a framework
for computation of Maximally Allowable Transmission In-
tervals (MATIs) that stabilize control systems even for large
delays. Furthermore, we propose the notion of Lp-stability
with bias as a way to integrate noisy information into stability
results. As far as Linear Time-Varying (LTV) dynamics and
one packet transmissions are concerned, the present paper
is an improvement upon the state-of-the-art approach of [7]
with respect to large delays and noisy data. According to
[9], one packet transmissions correspond to the setting in
which all the information are sent together in a single packet.
Notice that MATIs reduce requirements posed on sensors and
processors in control systems without compromising stability
or the performance of control systems. As in [7], we quantify
the control system performance by means of Lp-gains.

The main contributions of this paper are fourfold: a) the
design of MATIs for the large delay case; b) the Lyapunov-
Razumikhin-based procedure for rendering Lp-stability of
LTV impulsive delayed systems and computing the associ-
ated Lp-gains; c) the consideration of distorted information;
and d) the novel result relating asymptotic stability and Lp-
stability for a class of LTV impulsive delayed systems.

The reminder of the paper is organized as follows. Sec-
tion II presents notation and various stability notions for
impulsive delayed systems. Depending on the assumptions
imposed on LTV control systems, Section III states the prob-
lem of finding transmission intervals and delays that stabilize
such systems in some appropriate sense. Our methodology
to solve the problem of interest is found in Section IV. This
methodology is illustrated and verified in Section V using the
well-studied batch reactor example. Conclusions and future
challenges are in Section VI.



II. PRELIMINARIES

A. Notation

To simplify the notation, we use (x, y) := [x> y>]>.
The dimension of a vector x is denoted nx. Next, let f :
R → Rn be a Lebesgue measurable function on [a, b] ⊂ R.
We use

‖f [a, b]‖p :=

(∫
[a,b]

‖f(s)‖pds

) 1
p

to denote the Lp norm of f when restricted to the interval
[a, b]. If the corresponding norm is finite, we write f ∈
Lp[a, b]. In the above expression, ‖·‖ refers to the Euclidean
norm of a vector. If the argument of ‖·‖ is a matrix A, then it
denotes the induced 2-norm of A. The n-dimensional vector
with all zero entries is denoted 0n. Likewise, the n by m
matrix with all zero entries is denoted 0n×m. In addition,
Rn+ denotes the nonnegative orthant. The natural numbers
are denoted N or N0 when zero is included.

Left-hand and right-hand limits are denoted x(t−) =
limt′↗t x(t′) and x(t+) = limt′↘t x(t′), respectively. Next,
for a set S ⊆ Rn, let PC([a, b],S) =

{
φ : [a, b] →

S
∣∣ φ(t) = φ(t+) for every t ∈ [a, b), φ(t−) exists in S

for all t ∈ (a, b] and φ(t−) = φ(t) for all but at most a finite
number of points t ∈ (a, b]

}
. For ψ ∈ PC([a − d, a],S),

where d ≥ 0, the norm of ψ is defined by ‖ψ‖d =
supa−d≤s≤a ‖ψ(s)‖.

B. Impulsive Delayed Systems

In this paper, we consider impulsive delayed systems

Σ


χ(t+) = hχ(t, χ(t), χ(t− d)) t ∈ T
χ̇(t) = fχ(t, χ(t), χ(t− d), ω)

y = `χ(t, χ, ω)

}
otherwise ,

(1)

where χ is the state, ω is the input, y is the output and d ≥ 0
is the time delay. The functions fχ and hχ are regular enough
to guarantee forward completeness of solutions which, given
initial condition ψχ ∈ PC([t0 − d, t0],Rnχ) and initial time
t0, are given by right-continuous functions t 7→ χ(t) ∈
PC([t0−d,∞],Rnχ). Jumps of the state are denoted χ(t+)
and occur at each t ∈ T := {t1, t2, . . .}, where ti < ti+1,
i ∈ N0. The value of the state after a jump is given by χ(t+)
for each t ∈ T . For a comprehensive discussion regarding
the solutions to (1) considered herein, refer to [15, Chapter 2
& 3]. Even though the considered solutions to (1) allow for
jumps at t0, we exclude such jumps in favor of notational
convenience.

Definition 1 (Uniform Global Stability): For ω ≡ 0nω ,
the system Σ is said to be Uniformly Globally Stable (UGS)
if for any ε > 0 there exists δ(ε) > 0 such that, for each t0 ∈
R and each ψχ ∈ PC([t0 − d, t0],Rnχ) satisfying ‖ψχ‖d <
δ(ε), each solution t 7→ χ(t) ∈ PC([t0 − d,∞],Rnχ) to Σ
satisfies ‖χ(t)‖ < ε for all t ≥ t0 and δ(ε) can be chosen
such that limε→∞ δ(ε) =∞.

Definition 2 (Uniform Global Asymptotic Stability): For
ω ≡ 0nω , the system Σ is said to be Uniformly Globally

Asymptotically Stable (UGAS) if it is UGS and uniformly
globally attractive, i.e., for each η, c > 0 there exists
T (η, c) > 0 such that ‖χ(t)‖ < η for every t ≥ t0 + T (η, c)
and every ‖χ(t0)‖ < c.

Definition 3 (Uniform Global Exponential Stability):
For ω ≡ 0nω , the system Σ is said to be Uniformly
Globally Exponentially Stable (UGES) if there exist
positive constants λ and M such that, for each t0 ∈ R
and each ψχ ∈ PC([t0 − d, t0],Rnχ), each solution
t 7→ χ(t) ∈ PC([t0 − d,∞],Rnχ) to Σ satisfies
‖χ(t)‖ ≤M‖ψχ‖de−λ(t−t0) for each t ≥ t0.

Definition 4 (Lp-Stability with Bias b): Let p ∈ [1,∞].
The system Σ is Lp-stable with bias b(t) ≡ b ≥ 0 from
ω to y with gain γ ≥ 0 if there exists K ≥ 0 such that,
for each t0 ∈ R and each ψχ ∈ PC([t0 − d, t0],Rnχ),
each solution to Σ from ψχ at t = t0 satisfies ‖y[t0, t]‖p ≤
K‖ψχ‖d + γ‖ω[t0, t]‖p + ‖b[t0, t]‖p for each t ≥ t0.

Definition 5 (Lp-Detectability): Let p ∈ [1,∞]. The state
χ of Σ is Lp-detectable from (y, ω) with gain γ ≥ 0 if there
exists K ≥ 0 such that, for each t0 ∈ R and each ψχ ∈
PC([t0− d, t0],Rnχ), each solution to Σ from ψχ at t = t0
satisfies ‖χ[t0, t]‖p ≤ K‖ψχ‖d + γ‖y[t0, t]‖p + γ‖ω[t0, t]‖p
for each t ≥ t0.
Definitions 1, 2 and 3 are motivated by [16], while Definition
5 is inspired by [4]. Definition 4 is motivated by [4] and [17].
When b = 0, we say “Lp-stability” instead of “Lp-stability
with bias 0”.

III. PROBLEM STATEMENT

Consider a feedback control system consisting of an LTV
plant

ẋp = Ap(t)xp +Bp(t)u+ ωp,

y = Cp(t)xp, (2)

and an LTV controller

ẋc = Ac(t)xc +Bc(t)y + ωc,

u = Cc(t)xc, (3)

where xp ∈ Rnp and xc ∈ Rnc are the states, y ∈ Rny
and u ∈ Rnu are the outputs, and (u, ωp) ∈ Rnu × Rnωp
and (y, ωc) ∈ Rny × Rnωc are the inputs of the plant and
controller, respectively, where ωp and ωc are disturbances to
(and/or modeling uncertainties of) the plant and controller,
respectively. We assume that all time-varying matrices in
(2) - (3) are element-wise bounded right-continuous func-
tions. In addition, we require that the entries of Cp(t) and
Cc(t) are piecewise continuously differentiable with right-
continuous and bounded first derivatives. Along with the
absence of Zeno sampling (which is to be shown later on),
these properties of Ap(t), Bp(t), Cp(t), Ac(t), Bc(t) and
Cc(t) suffice to ensure forward completeness (as well as
uniqueness) of the solutions (consult [15, Chapter 3] and
[18] for more).

Next, we model the connections between the plant and the
controller as communication networks over which intermit-
tent exchange of information takes place. Figure 1 depicts



Fig. 1. A diagram of a control system with the plant and controller
interacting over a communication network with intermittent information
updates. The two switches indicate that the information between the plant
and controller are exchanged at discrete time instants belonging to a set T .

this setting, where the value of u computed by the controller
that arrives to the plant is denoted û. Similarly, the values
of y that the controller actually receives are denoted ŷ. In
this setting, the quantity û is the input fed to the plant (2)
while the quantity ŷ is the measurement of y received by the
controller (3).

To study the properties of the feedback control system in
Figure 1, we define

e =

[
ey(t)
eu(t)

]
:=

[
ŷ(t)− y(t− d)
û(t)− u(t− d)

]
, (4)

where d ≥ 0 represents the network-induced delay1. As
given by (4), we assume this network-induced delay d is
the same when transmitting u or y (primarily in order to
simplify the subsequent exposition). This assumption, which
is often found in the literature, can be accomplished via the
Controller Area Network (CAN) protocol, time-stamping of
data and introduction of buffers at receiver ends (refer to [2]
and the references therein). The above definition of the error
vector allows us to take into account large delays (cf. [7]).

To model intermittent transmission (or sampling) of the
values of y and u, the quantities ŷ and û are updated at time
instances t1, t2, . . . , ti, . . . ∈ T , i.e.,2

ŷ(t+i ) = y(ti − d) + hy(ti − d)

û(t+i ) = u(ti − d) + hu(ti − d)

}
ti ∈ T , (5)

where hy : R → Rny and hu : R → Rnu are L∞-
functions and model noise or channel disturbances. The
consideration of noisy/distorted data produces non-zero bias
b in Definition 4. In order to provide a better comparison with
the related works, this paper assumes that the received values
of y and u given by ŷ and û, respectively, remain constant
in between updates. In other words, for each t ∈ [t0,∞)\T

1In case of time-invariant static controllers with ωc ≡ 0nωc , the effect
of nontrivial execution times of the control law can readily be embedded
in d. In order to account for nontrivial execution times of other types of
controllers, slight modifications of the proposed modeling approach are
needed.

2The formulation of the update law in (5) implies that the jump times at
the controller and plant end coincide (the so-called one packet transmission
problem [9]). Hence, in general, the framework presented herein does
not incorporate scheduling protocols. Exceptions are scenarios in which
some subsets of e are decoupled from other subsets of e (e.g., ė(t) with
a block diagonal state matrix). In such scenarios, each subset of e can
experience jumps at time instants that are independent of other subsets’
jump instants (Section V provides such an example). Scheduling protocols
will be addressed in our upcoming publications.

we have

˙̂y = 0, ˙̂u = 0, (6)

which is known as the Zero-Order Hold (ZOH) strategy.
However, one can immediately employ model-based control
ideas in (6) in order to further extend transmission intervals
(consult [8] for more). Let us point out that the ZOH strategy
is an integral part of the small-delay approach in [7]; hence,
the ZOH strategy in [7] cannot be trivially relaxed.

The following standing assumption summarizes the prop-
erties imposed upon the feedback control system in Figure
1 throughout this paper.

Assumption 1: The jump times at the controller and plant
end coincide. The set of sampling instants is given by T :=
{t1, t2, . . . , ti, . . .}, where τ = ti+1 − ti for each i ∈ N0. In
addition, the network-induced delay when transmitting u is
the same as the network-induced delay when transmitting y
and is denoted d.

As our intuition suggests, a typical closed-loop system (2) -
(3) might be robust (in the Lp-stability sense) only for some
values of d, i.e., ”small enough” values of d. We refer to
such delays as admissible delays. For a precise definition
of admissible delays, see the following section. Given some
admissible delay d, the maximal τ which renders stability (in
some appropriate sense) of the closed-loop system (2) - (3)
is called MATI and is denoted τ . We are now ready to state
the main problem studied in this paper.

Problem 1: Given an admissible delay d, determine the
MATI τ to update (ŷ,û) such that the control system (2)-
(3) is UGS, GAS or Lp-stable with bias and a prespecified
Lp-gain.

As opposed to [7], Problem 1 starts with an admissible delay
and then seeks out the corresponding MATI whilst [7] starts
with the MATI for the delay-free setting and than seeks out
the corresponding Maximally Allowable Delay (MAD).

IV. METHODOLOGY

A. Rewriting the Closed-Loop System

Inspired by the approach in [4], our solution to Problem 1
first rewrites the closed-loop system (2)-(3) as follows:

x(t+) = x(t)

e(t+) = h(t− d)

}
t ∈ T (7a)

ẋ = f(t, x, e, ω, d)

ė = g(t, x, e, ω, d)

}
otherwise, (7b)



Fig. 2. Interconnection of the nominal system Σn and the output error
system Σe. The block Dd denotes the time-delay operator.

where x := (xp, xc), ω := (ωp, ωc), and functions f , g and
h are given by

f(t, x, e, ω, d) :=

[
f1(t, x, e, ω, d)
f2(t, x, e, ω, d)

]
=

=
[
Ap(t)xp(t)+Bp(t)eu(t)+Bp(t)Cc(t−d)xc(t−d)+ωp
Ac(t)xc(t)+Bc(t)ey(t)+Bc(t)Cp(t−d)xp(t−d)+ωc

]
, (8a)

h(ti − d) =

[
hy(ti − d)
hu(ti − d)

]
, (8b)

g(t, x, e, ω, d) =

=

[
− ∂Cp(t−d)∂t xp(t−d)−Cp(t−d)f1(t−d,x,e,ω,d)
− ∂Cc(t−d)∂t xc(t−d)−Cc(t−d)f2(t−d,x,e,ω,d)

]
. (8c)

Let us rewrite (8c) as follows:

g(t, x, e, ω, d) = −
[ 0ny×nu CpBp(t−d)
CcBc(t−d) 0nu×ny

]
e(t−d)+ỹ(t−d,x,ω,d),

(9)

where

ỹ(t, x, ω, d) :=[
− ∂Cp(t)∂t xp(t)−Cp(t)

(
Ap(t)xp(t)+Bp(t)Cc(t−d)xc(t−d)+ωp(t)

)
− ∂Cc(t)∂t xc(t)−Cc(t)

(
Ac(t)xc(t)+Bc(t)Cp(t−d)xp(t−d)+ωc(t)

)] .
(10)

Now, the delayed dynamics

x(t+) = x(t)
}

t ∈ T (11a)
ẋ = f(t, x, e, ω, d)

}
otherwise, (11b)

with input (e, ω) and output ỹ are termed the nominal system
Σn, and the impulsive delayed dynamics

e(t+) = h(t− d)
}

t ∈ T (12a)
ė = g(t, x, e, ω, d)

}
otherwise, (12b)

with input ỹ and output e are termed the error system Σe. In
other words, the systems Σn and Σe are interconnected as
shown in Figure 2, where the time-delay operator Dd delays
the input ỹ(t, x, ω, d) for d time units, i.e.,

Dd
(
ỹ(t, x, ω, d)

)
:= ỹ(t− d, x, ω, d).

We point out that the Lp-gain of Dd is unity [5].
Because the nominal system Σn is something that is given

in emulation-based approaches, we assume that the controller
(3) is designed to yield Lp-stability of Σn. Let γn denote the
corresponding Lp-gain. As expected, a different d typically
results in a different γn. In general, controllers yield Lp-
stability of Σn (i.e., γn is finite) only for some delays d.
This observation gives rise to the following definition:

Definition 6 (Admissible Delays): Delays d for which the
system Σn is Lp-stable from (e, ω) to ỹ are admissible
delays. The maximal such delay is labeled d.
On the other hand, Lp-stability with bias of the error system
Σe depends on T . In what follows, we design the set T such
that Σe is Lp-stable with bias and that the associated Lp-gain,
denoted γe, satisfies γnγe < 1. Afterwards, we invoke the
small-gain theorem [16, Chapter 5] to infer Lp-stability with
bias from ω to (ỹ, e). Provided that x is Lp-detectable from
(ỹ, e, ω), one obtains Lp-stability with bias from ω to (x, e).
Hence, the closed-loop system (2)-(3) is Lp-stable with bias.

B. Lp-Stability with Bias of Impulsive Delayed LTV Systems

Note that Σe, given by (12), is an impulsive delayed LTV
system. To the best of our knowledge, Lp-stability of such
systems is still an open problem. To that end, let us first
establish UGES of

e(t+) = 0ne
}
t ∈ T (13a)

ė(t) = −
[

0ny×nu CpBp(t−d)
CcBc(t−d) 0nu×ny

]
e(t− d)

}
otherwise,

(13b)

which is the homogeneous system associated with Σe. In
order to state the following theorem, we define

l :=

(
sup
t∈R

∥∥∥− [ 0ny×nu CpBp(t−d)
CcBc(t−d) 0nu×ny

] ∥∥∥)2

.

Theorem 1: Consider a symmetric and positive definite
matrix P ∈ Rne×ne with λ1 and λ2 being its smallest
and largest eigenvalues, respectively. Let λ3 be the largest
eigenvalue of lP−1. If there exist constants λ > 0, M > 1
and λ4 ∈ (0, 1) such that the conditions

(i) τ
(
λ+ λ2 + λ3Me−λτ

)
< lnM , and

(ii) τ
(
λ+ λ2 + λ3

λ4
eλd
)
< − lnλ4,

hold, then the system (13) is UGES and ‖e(t)‖ ≤√
λ2

λ1
M‖ψe‖de−

λ
2 (t−t0) for all t ≥ t0.

The previous result combined with the work presented in
[18] results in the following theorem.

Theorem 2: Suppose that (13) is UGES with constants
λ > 0 and M > 1. Then, the system Σe, given by (12),
is Lp-stable with bias from ỹ to e with gain γe = 2

λ

√
λ2

λ1
M

for each p ∈ [1,∞].
Remark 1 (No Zeno): The left-hand sides of conditions

(i) and (ii) from Theorem 1 are nonnegative continuous
functions of τ ≥ 0 that approach ∞ as τ → ∞. Also,
these left-hand sides equal zero when τ = 0. Note that both
sides of (i) and (ii) are continuous in λ, M , λ2, λ3, λ4
and d. Hence, for every λ, λ1, λ2 > 0, λ3 ≥ 0, M > 1,
λ4 ∈ (0, 1) and d ≥ 0 there exists τ > 0 such that (i) and
(ii) are satisfied. Finally, since γe is a continuous function of
λ1, λ2, λ and M , we infer that for every finite γn > 0
there exists τ > 0 such that γnγe ≤ κ, κ ∈ (0, 1). In
other words, the unwanted Zeno behavior is avoided and the
proposed methodology does not yield continuous feedback
that might be impossible to implement. Notice that the τ
yielding γnγe = κ is a candidate for τ . Depending on P ,



λ4, λ and M , the maximal such τ is in fact τ . Lastly, we
point out that intertransmission intervals ti+1 − ti, i ∈ N0,
do not have to be equal (i.e., periodic transmissions), but
merely upper bounded by τ .

C. UGS and GAS from Lp-Stability

Proposition 1: Assume that the interconnection of sys-
tems Σn and Σe, given by (11) and (12), is Lp-stable from
ω to (x, e) for some p ∈ [1,∞). Then, this interconnection
is GAS.
At the moment, we are trying to verify whether UGAS holds
as well. For the case p = ∞, UGS of the interconnection
Σn and Σe is immediately obtained using the definition of
L∞-norm.

V. BATCH REACTOR CASE STUDY

According to [7], the batch reactor case study has become
a benchmark example in Networked Control Systems (NCS)
over the years. Hence, we apply our work to this example
and compare it with the approach presented in [7].

Consider the linearized model of an unstable batch reactor
given by

ẋp = Apxp +Bpu, y = Cpxp,

where

Ap =

[ 1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

]
, Bp =

[
0 0

5.679 0
1.136 −3.146
1.136 0

]
,

Cp =
[
1 0 1 −1
0 1 0 0

]
,

and a PI controller given by

ẋc = Acxc +Bcy, u = Ccxc +Dcy,

where

Ac =
[
0 0
0 0

]
, Bc =

[
0 1
1 0

]
, Cc =

[−2 0
0 8

]
, Dc =

[
0 −2
5 0

]
.

In addition, assume that only the plant outputs y are trans-
mitted via the network; hence, e = ey and eu ≡ 0nu .
Notice that the above controller, unlike (3), includes the
matrix Dc. Nevertheless, the same approach from Section
IV-A still applies. Following the development of Section IV-
A, we obtain

ẋ(t) =

[
ẋp(t)
ẋc(t)

]
=

[
Ap BpCc

02×4 Ac

]
x(t)+

+

[
BpDcCp 04×2
BcCp 02×2

]
x(t− d) +

[
BpDc

Bc

]
e(t)+

+

[
10 0 10 0 0 0
0 5 0 5 0 0

]>
ω(t),

where the last term including ω(t) is subsequently added by
the authors in [7], and

ė(t) =
[
−CpBpDc

]
e(t− d)+

+
[
−CpAp − CpBpCc

]
x(t− d)+

+
[
−CpBpDcCp 02×2

]
x(t− 2d).

We point out that

−CpBpDc =

[
15.73 0

0 11.3580

]
is a diagonal matrix, and this fact is exploited below. From
the previous expressions, we infer that

ỹ(t) =
[
−CpAp − CpBpCc

]
x(t)+

+
[
−CpBpDcCp 02×2

]
x(t− d). (14)

Since the example in [7] does not consider noisy information,
one can set h(t) ≡ 0ne . In other words, bias b(t) ≡ b = 0
and all L2-stability results are without bias.

In order to compute γn for p = 2, we use the software
HINFN [19]. However, HINFN is not able to handle delayed
states in the output (see (14)). In order to accommodate (14)
to HINFN, we first compute an estimate of the L2-gain,
say L1, from (e, ω) to y1 := [−CpAp − CpBpCc]x(t),
and than an estimate of the L2-gain, say L2, from (e, ω)
to y2 := [−CpBpDcCp 02×2]x(t). Afterwards, we simply
add together those two gains because

‖y1(t)[t0,∞)+y2(t− d)[t0,∞)‖p =

= ‖y1(t)[t0,∞) + y2(t)[t0 + d,∞)‖p
≤ ‖y1(t)[t0,∞)‖p + ‖y2(t)[t0,∞)‖p
≤ (L1 + L2)‖(e, ω)[t0,∞)‖p,

where we used the fact that the L2-gain of the time-delay
operator Dd is less than unity and that y2(t− d) = 0 when
t− d < t0. According to HINFN, the maximally admissible
delay d is 40 ms. In addition, we choose the controlled output
z given by z(t) = Cx(t) where

C =

[
1 0 1 −1 0 0
0 1 0 0 0 0

]
.

One goal of [7] is to determine pairs (d, τ) such that the
L2-gain, denoted γz , from ω to z is below a certain value.

When one is interested merely in asymptotic stability,
then the input to Σn is e instead of (e, ω) because, for this
particular example, the corresponding γn is smaller (i.e., τ
is greater). For UGAS, HINFN suggests that d is 2.34 s.
However, the corresponding τ is about 10−200 s (which has
no practical merit but rather confirms Remark 1). Notice that,
since the plant and controller in the batch reactor example
are Linear Time-Invariant (LTI) systems, GAS of Proposition
1 is in fact UGAS.

In Tables I and II, a comparison between the methodology
presented herein and in [7] is provided. We consider the
case without ω, which leads to asymptotic stability, and
the case with ω, which leads to L2-stability from ω to z
with a prespecified gain γz . In addition, since e1 and e2
are decoupled (recall that −CpBpDc is a diagonal matrix),
we are able to apply Theorem 1 to each component of
e and obtain τ1 and τ2, respectively. Basically, one finds
M1,M2, λ1, λ2 > 0 such that

‖e1(t)‖ ≤
√
M1‖ψe1‖de−

λ1
2 (t−t0)

≤
√
M1‖ψe‖de−

λ1
2 (t−t0),



UGAS
d = 0 d = 6.3 d = 40

this paper
no scheduling τ = 11 τ = 8.2 τ = 1.4

our scheduling τ1 = 11 τ1 = 6.1 τ1 = 1.9
τ2 = 11 τ2 = 7.1 τ2 = 2.2

[7] RR scheduling τ [7] = 8.9 N/A N/A

TABLE I
COMPARISON BETWEEN OUR METHODOLOGY AND [7] FOR UGAS. ALL

DELAYS d AND MATIS τ ARE MEASURED IN MILLISECONDS.

L2-gain γz = 200
d = 10 d = 40

this paper
no scheduling τ = 1.7 τ = 0.6

our scheduling τ1 = 2 τ1 = 0.3
τ2 = 2 τ2 = 0.2

[7] RR scheduling N/A N/A

TABLE II
COMPARISON OF OUR METHODOLOGY AND [7] FOR L2-STABILITY.

DELAYS d AND MATIS τ ARE EXPRESSED IN MILLISECONDS.

and

‖e2(t)‖ ≤
√
M2‖ψe2‖de−

λ2
2 (t−t0)

≤
√
M2‖ψe‖de−

λ2
2 (t−t0),

for all t ≥ t0, where ψei ∈ PC([t0 − d, t0],R), i ∈ {1, 2},
is the initial condition of the ith component of e. From
the definition of the Euclidean norm, one deduces UGES
as follows

‖e(t)‖ ≤
√
M1e−λ1(t−t0) +M2e−λ2(t−t0)‖ψ0‖d

≤Me−λ(t−t0)‖ψ0‖d,

for all t ≥ t0, where M :=
√

2 max{M1,M2} and λ :=
min{λ1,λ2}

2 , so that Theorem 2 is applicable. By selecting
the intersampling interval equal to min{τ1,τ2}

2 , one easily
reconstructs the Round-Robin (RR) scheduling, designed on
the premise of bus communication, found in [7].

Notice that the maximal possible τ [7] for RR scheduling,
obtained with d = 0 ms and when interested in UGAS,
is 8.9 ms. Hence, the maximal theoretical delay that can be
considered in [7] for RR scheduling is d = 8.9 ms, i.e.,
the small delay case. We point out that our methodology
is able to consider delays that are significantly greater than
8.9 ms even for Lp-stability (refer to Tables I and II). In fact,
provided that Σn is Lp-stable for some d ≥ 0 (each such d
is an admissible delay), there exists a stabilizing τ > 0 (see
Remark 1). As can be concluded from Tables I and II, our
MATIs are slightly more conservative than MATIs in [7].

VI. CONCLUSION

In this paper we propose a framework for computing
MATIs of LTV control systems even for the large delay
case. Our approach is based on Lyapunov-Razumikhin type
of arguments while establishing UGES of impulsive delayed
LTV systems. Subsequently, UGES is exploited towards
establishing Lp-stability with bias of the closed-loop system.
The benchmark example of batch reactor illustrates our

methodology in detail and suggests that the obtained MATIs
for the small-delay case are slightly more conservative in
comparison with the related work.

In the future, we plan to integrate scheduling protocols
and nonlinear dynamics into our framework. In an effort to
extend the obtained MATIs, we plan to consider Lyapunov-
Krasovskii functionals. In addition, communication channels
with different and time-varying delays are of interest. Finally,
in addition to Lp-stability, we plan to address Input-to-State
Stability under intermittent transmissions and delays.
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