
ar
X

iv
:1

40
2.

39
28

v1
  [

cs
.S

Y
] 

 1
7 

Fe
b 

20
14

Parametrization of completeness in symbolic

abstraction of bounded input linear systems

Santosh Arvind Adimoolam

Abstract. A good state-time quantized symbolic abstraction of an al-
ready input quantized control system would satisfy three conditions:
proximity, soundness and completeness. Extant approaches for symbolic
abstraction of unstable systems limit to satisfying proximity and sound-
ness but not completeness. Instability of systems is an impediment to
constructing fully complete state-time quantized symbolic models for
bounded and quantized input unstable systems, even using supervisory
feedback. Therefore, in this paper we come up with a way of parametriza-
tion of completeness of the symbolic model through the quintessential no-
tion of “Trimmed-Input Approximate Bisimulation” which is introduced
in the paper. The amount of completeness is specified by a parameter
called “trimming” of the set of input trajectories. We subsequently dis-
cuss a procedure of constructing state-time quantized symbolic models
which are near-complete in addition to being sound and proximate with
respect to the time quantized models.

1 Introduction

Finite symbolic abstractions of control systems are used in algorithmic controller
synthesis [7,8,9]. Since digital implementations of continuous control systems [4]
have quantized and bounded input space, we consider the setting of bounded and
quantized-input control systems. For such systems, a state-time quantized ab-
straction restricted to a compact region gives a finite abstraction, because the set
of input trajectories is already finite (quantized and bounded) [11]. The problem
of constructing approximately similar state-time quantized symbolic abstrac-
tion of possibly unstable quantized-input control systems under stabilizability
assumptions has been solved previously [11]. On the other hand, the problem
of constructing approximately bisimilar symbolic abstractions of bounded input
unstable systems has not been tackled yet. The difference between an approxi-
mately bisimilar and an approximately similar abstraction is in the completeness
of the abstractions, as explained in the following. An ideal state-time quantized
symbolic abstraction of a control system would be exactly bisimilar to the time-
quantized system model, but such exactly bisimilar abstraction is almost impos-
sible to realize because of symbolic approximations resulting from quantization
of state space. An exact bisimulation relationship between a time quantized
system model and a state-time quantized symbolic model can be equivalently
factored into the conjunction of the following three conditions, which we call
zero deviation, soundness and completeness respectively.
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1. Zero deviation: The deviation between the output of a system state and the
related symbolic state would ideally be zero.

2. Soundness: Let s be a state of a time-quantized model, and sr be its related
symbolic state in the state-time quantized model. Soundness holds if when-
ever sr transitions to s′r by some input, then there is a corresponding input
by which s transitions to s′ which is symbolically related to s′r. The difference
between soundness and an exact simulation 1 relation is that soundness does
not require the outputs of related states to be the same, but for an exact
simulation relation to hold, it is necessary (not sufficient) that the outputs
of related states are same.

3. Completeness: Completeness is the converse of soundness and is defined as
follows. Let s be a state of a time-quantized model, and sr be its related
symbolic state in the state-time quantized model. Completeness holds if
whenever s transitions to s′ by some input, then sr transitions to s′r by
a corresponding input such that s′ is symbolically related s′r. Completeness
also does not require the outputs of related states to be same, unlike an

exact simulation1 relation.

Unlike bisimulation, an exact simulation1 of a state-time quantized model by the
time-quantized model only entails zero deviation plus soundness, but not com-
pleteness. On the other hand, an exact bisimulation relation between a state-time
quantized model and the time-quantized model entails completeness, soundness
and zero deviation. The soundness condition ensures that every control law syn-
thesized from the symbolic model has its corresponding control law in the time-
quantized system model. The completeness condition ensures that all control
laws present in the time-quantized system model have corresponding control
laws in the state-time quantized symbolic model; which means that we do not
miss out any control laws of the time-quantized system model from the symbolic
model while doing controller synthesis on symbolic model. The zero deviation
condition ensures that there is no error in the output of the synthesized control
law from symbolic model when compared with the actual output of the system
for the same control law.

The soundness condition is indispensable because without it the control laws
synthesized from the symbolic model would not be correct for the actual system
model. But unlike the soundness condition, the zero deviation and completeness
conditions are not very imperative. In fact, satisfying the zero deviation condition
is very difficult if not impossible because of state-quantization induced symbolic
approximations. So in approximately similar symbolic abstraction [9, 11, 12, 13],
the zero deviation condition is relaxed as:

Parametrized deviation: There is a parameter specifying an upper bound on
the deviation between the states of the system model and related states of the
symbolic model. We will call this parameter as proximity.

The extant methodology of approximately similar symbolic abstraction (dis-
cussed in [9, 11, 12, 13]) establishes soundness between symbolic model and sys-
tem model while also specifying the proximity parameter, which is the precision

1 Exact simulation and bisimulation are defined in Girard and Pappas [6].



bound of the approximate simulation relation [9, 11, 12, 13]. Parametrization of
the amount of deviation (proximity) between a system model and its symbolic
model in addition to demonstrating soundness of the model is the advantage of
approximately similar symbolic abstraction. Also, a good methodology of sym-
bolic abstraction allows for adjusting the proximity to a very small amount.
In this regard, the methodologies discussed in [9, 11, 12, 13] permit sound sym-
bolic abstraction with arbitrarily small proximity. However, a stronger method
of abstraction, discussed in [9], can construct an approximately bisimilar (not
just similar) finite symbolic model to a time-quantized system model of a glob-
ally asymptotically stable system, in which case the abstraction is complete in
addition to being sound and proximate.

Although proximity has been parametrized through the notion of approxi-
mate simulation [9,11,12,13], no attempt has been made until now to parametrize
completeness. Parametrization of completeness would be useful while abstracting
bounded input unstable systems that, in many cases, can not have fully complete
(plus sound) state-time quantized symbolic models. A parameter for complete-
ness quantifies how exhaustively we can search for control laws using the symbolic
model. Our paper is concerned about parametrization of completeness and find-
ing a way of near-complete, sound, and proximate state-time quantized abstrac-
tion of bounded and quantized input possibly unstable but locally asymptotically
stabilizable linear control systems. We formalize near completeness, soundness
and proximity by the notion of trimmed input approximate bisimulation, which
is introduced in our paper. We employ supervisory feedback in the process of
abstraction. Note that when the input space is bounded, then locally stabilizable
divergent linear systems are still not globally asymptotically stabilizable (refer
to Subsection 4.3 and Appendix). Therefore we make the distinction between
local asymptotic stabilizability and global asymptotic stabilizability of bounded
input linear systems. Before we explain our work, we would like to motivate it
by discussing some Related Work as follows.

Related Work

For globally asymptotically stable (GAS) continuous control systems, finite ap-
proximately bisimilar symbolic automata models with arbitrarily small approxi-
mation can be constructed by the procedure discussed in [9]. As such, soundness,
completeness and proximity conditions are met by the symbolic model of a GAS
system constructed by the procedure discussed in [9]. Regarding unstable sys-
tems and also those systems that meet a stabilizing condition [11, 12] but are
possibly unstable, there has been work on abstracting the systems into similar
symbolic models i.e. based on approximate simulation, but not on approximate
bisimulation [11, 12, 13]. In other words, these approaches [11, 12, 13] for ab-
stracting unstable systems meet the proximity and soundness conditions, but
not the completeness condition.

Since global asymptotic stability (GAS) seems crucial for complete symbolic
abstraction of control systems, it is tempting to use feedback to globally asymp-
totically stabilize the system. An idea of globally asymptotically stabilizing the



system for symbolic abstraction is discussed in [11]. But the approach in [11] has
the following discrepancies:

– The symbolic abstraction procedure in [11] is concerned about sound and
proximate abstraction, but not a complete abstraction, because the abstrac-
tion is based on approximate simulation but not on bisimulation. No explicit
attempt is made for complete symbolic abstraction.

– Any linear stabilizing supervisory2 input will move out of bounds of a bounded
input set for some values of the original input. In other words, a supervisory

input function2 like k(y, x, u) = u+C(y − x) will translate the input set by
C(y − x) which means that the supervisory input moves out of bounds for
many values of u. If there is a state quantization of η, then there would be a
translation of as much as ||C||η between the range of inputs enabled at a rep-
resentative point and a point symbolically approximated to a representative
point.

– Global asymptotic stabilization through feedback may be possible if the in-
put set is unbounded. But when an everywhere divergent linear system works
on a bounded input set, then the system can not be globally asymptotically
stabilized (proved in Appendix of our paper). So, the supervisory feedback
approach in [11] can not be directly applied for symbolic abstraction of
bounded input everywhere divergent linear systems.

Our approach

Just like the notion of parametrized deviation (or proximity), it would be ben-
eficial to have a notion of parametrized completeness since there is no extant
method of constructing fully complete models for bounded input unstable sys-
tems. Our paper is concerned about parametrization of completeness in symbolic
abstraction by what we call trimming of input set, where the amount of complete-
ness is reflected in the smallness of trimming. We achieve this by introducing the
quintessential idea of trimmed input approximate bisimulation. We subsequently
discuss a methodology, employing supervisory feedback, of symbolic abstraction
by which we can construct sound models with arbitrarily small proximity and
trimming. The nicety of the procedure of abstraction is that sound models with
arbitrarily small trimming and proximity can be built, where the trimming is
proportional to the precision bound but independent of the time and state quan-
tization parameters. Many bounded input unstable linear systems can be locally
asymptotically stabilized. Therefore our approach can have significant use. Al-
though the motivation for this approach is the idea discussed in [11], but we
overcome the drawbacks of [11] mentioned earlier in the Related work as follows.

– We parametrize the amount of completeness as smallness of trimming of
input set. In our paper, in addition to constructing sound and proximate
symbolic models, we can construct near-complete symbolic models (arbitrar-
ily small trimming) bounded and quantized input, possibly unstable, locally
stabilizable linear systems. But the completeness issue is ignored in [11].

2 Supervisory input is defined in the Appendix.



– Earlier we have stated that a linear stabilizing supervisory input can move
out of bounds of the input set for some values of the original input. Therefore,
we trim the input set by a small amount proportional to the precision bound
while abstracting the symbolic model, such that the supervisory input does
not go out of bounds of the input set. (Section 4.3).

– The approach in our paper can handle everywhere divergent linear systems
with bounded input, provided the system is locally asymptotically stabiliz-
able. On the other hand, the approach of [11] insists on global asymptotic
stabilizability. But everywhere divergent linear systems with bounded input
can not be globally asymptotically stabilized as proved in the Appendix of
our paper.

2 Analog approximation of quantized control systems

The motivation for our paper is similar to [11] in attempting to build state-time
quantized abstractions of input-quantized control systems under stabilizability
assumptions, but in the scope of quantized input linear control systems. In this
context, we note the following points about quantized approximation of inputs.
A quantized input set is generally an approximation obtained by rejecting noise
of the range of a set of analog input trajectories [1,10]. But if we were to include
the noise in inputs, then the range of input trajectories without quantization is
crudely an open subset of an euclidean space. Therefore in this paper, instead of
directly quantizing state space and time of the input-quantized control system,
we alternatively obtain a state-time quantized symbolic abstraction of the ana-
log (or open input set) approximation of the control system, and subsequently
restrict the open input set to the actual quantized input set after the state-
time quantization. The reason for doing this is because an open set, which is
dense, admits the notion of trimming introduced in our paper, which otherwise
can not be defined on discrete sets (this will be explained later in the paper).
The supervisory feedback employed in finite abstraction can also be quantized
(see [2, 3, 5] about feedback quantization). Also, a relevant example is worked
out in Section 9.

3 Notation

Important: In the paper, the word “open” refers to the topological notion of
open sets, in the sense that all points of an open set are interior points. The
word should not be confused otherwise. Also, by an open input control system,
we mean that the set of input trajectories of the control system is topologically
open, and this should not be confused with the extant terminology on supervisory
feedback where open input refers to non-supervisory input.

Apart from the general mathematical notations, we use the following no-
tations. R+ refers to the set of positive real numbers and R≥0 is the set of
non-negative real numbers. ]a, b[ denotes a left-right open interval between real



numbers a and b. Similarly, [a, b] is left-right closed, [a, b[ is left-closed right-
open interval and ]a, b] is right-closed left-open interval. We denote Z as the
set of integers and N as the set of natural numbers. If X is a set, then Xn =
X ×1 X ×2 ... ×n X . If x ∈ Xn, then for any i ∈ N, xi is the ith component
of x. If Rn is the n-dimensional euclidean space, then for a state quantization
parameter η > 0 we write [Rn]η = {x : ∃k ∈ Zn.x = η(k1, k2, ..., kn)}. We use
the L∞ norm everywhere in the paper denoted by ||.||. If X is a normed vector
space and I being a connected interval of real line, u : I → X and v : I → X
are two functions on the same domain I, then the distance norm between them
is ||u− v|| = supt∈I ||v(t)− u(t)||.

4 Locally asymptotically stabilizable linear control

systems and trimming of input trajectory set

A linear control system is a tuple Σ = 〈An×n, Bn×m, U,U〉 where An×n and
Bn×m have all real entries, U ⊆ Rm and U is a subset of all piecewise continuous
input trajectories of the form u : [0, τ ] → U , where τ > 0 can be any positive
real number. Additionally, we may also include piecewise continuous trajectories
until infinite time of the form u : [0,∞[→ U . We shall denote U [0,τ ] as the set
of all piecewise continuous input trajectories until time instant τ .

If x ∈ Rn, then we say that x is a point in the state space of the linear system
Σ as above. An absolutely continuous function x : [0, τ ] → Rn is said to be a
trajectory of the linear system if there exists u ∈ U ∩ U [0,τ ] such that at almost
all t ∈ [0, τ ], ẋ(t) = dx

dt
(t) = Ax(t)+Bu(t). Given the initial condition x(0) = x

and an input trajectory u ∈ U ∩U [0,τ ], the state trajectory (which is continuous)
x driven by u is uniquely determined. Then we write x(x, t,u) as the point in
state space reached at time instant t by the trajectory x driven by u.

4.1 Local asymptotic stabilizability

A linear systemΣ =
〈
An×n, Bn×m, U,

⋃
t∈R+ U [0,t]

〉
, where U is open and bounded

and
⋃

t∈R+ U [0,t] is the set of all possible piecewise continuous input trajectories
until any arbitrary time instant, is said to be locally asymptotically stabiliz-
able if ∀ (xeq , ueq) ∈ Rn × U satisfying Axeq + Bueq = 0, there exists an open
neighborhood Nghr = {y ∈ Rn : ||y − xeq || < r} and a matrix Cm×n such that
∀y ∈ Nghr we have (u + Cy) ∈ U and the linear system ẏ = (A + BC)y is
asymptotically stable in Nghr.

When the input set of a linear control system does not have boundaries, then
it is well known that global stabilizability of linear systems is equivalent to local
asymptotic stabilizability. But when the input set of an everywhere divergent
linear system is bounded, then the system can not be globally asymptotically
stabilized, as proved in the Appendix. It could still be locally asymptotically
stabilized and we discuss an example in this Section. Therefore we make the
distinction between local asymptotic stabilizability and global stabilizability of
bounded input linear systems.



Remark 4.11 Σ is locally asymptotically stabilizable if and only if there exists
a matrix C such that A+BC has all eigenvalues with negative real part. It is well
known fact that asymptotic stability of a system of linear differential equations
is equivalent to the prefix matrix of the system, in this case (A + BC), having
all negative eigenvalues. Then because U is open, the radius r of neighborhood
Nghr can be chosen very small so that ∀y ∈ Nghr. (u+ Cy) ∈ U .

We say that Σ as above has a stabilization matrix Cm×n if (A + BC) has all
eigenvalues with negative real part. For example, a linear system

[
ẋ1

ẋ2

]
=

[
0 1
-1 2

] [
x1

x2

]
+

[
0
u

]
u ∈]− 5, 5[

where A =

[
0 1
-1 2

]
and B =

[
0
1

]
and u ∈]−5, 5[ is unstable because A =

[
0 1
-1 2

]

has both eigenvalues equal to +1. But the system has a stabilization matrix C =

[0 −4] because (A+BC) =

[
0 1
-1 2

]
+

[
0
1

]
.[0 −4] =

[
0 1
-1 −2

]
has both eigenvalues

equal to −1 which is negative. In fact, at the equilibrium (xeq , ueq) = (0, 0) for
constant input ueq = 0, take a neighborhood Ball1(0) of radius 1 around xeq = 0
and then we get that ∀y ∈ Ball1(0).||ueq + Cy|| = ||0 + Cy|| ≤ ||C||||y|| =
||[0,−4]||.||y|| < 4× 1. Hence the feedback input (ueq +Cy) for y ∈ Ball1(0) will
remain within the bounded input set ]− 5, 5[ for all y ∈ Ball1(0).

However, for other values of input u, the feedback u + Cy may move out of
the bounded space ]−5, 5[. The supervisory function k(y, u) = u+Cy translates
the bounded input set by Cy and therefore moves out of the original input set
for some values of u. In other words, we can not use linear stabilizing feedback
directly in symbolic abstraction when the input set is bounded, because the
stabilizing feedback is specific to a certain constant equilibrium input in a corre-
sponding state space neighborhood around the state equilibrium. Although the
example here is locally stabilizable as shown, but it is not globally stabilizable.
The proof is in the Appendix.

4.2 Trimming of open sets and corresponding trajectory space

If S is any normed vector space, then for any s ∈ S, we write an open ball
(square) of radius ρ > 0 around any point s as Ballρ(s) = {s′ ∈ S : ‖s′ − s‖ <
ρ}. Similarly, a closed ball (square) of radius ρ > 0 around any point s as
Ballρ(s) = {s′ ∈ S : ‖s′ − s‖ ≤ ρ}. Note that Ballρ(s) defines a closed square of
side length ρ because ||.|| is the L∞ norm. We define the notion of trimming of
any open subset of a metric space as follows.

Definition 4.21 Let S be a normed vector space. Then define, for any open set
A ⊂ S, A−ρ = {s ∈ A : Ballρ(s) ⊆ A}. Minus ′−′ in subscript of A−ρ means
trimming.

Note that we used a closed ball for trimming and not an open ball. We then
derive in Proposition 4.22 that the trimmed set of an open set is open. Before



that, we discuss an example and explain the reason why we defined trimming
on only open sets.

Example of trimmed set : Consider a two dimensional open rectangle rect =
]2, 4[×]9, 14[. Recall that Ball0.3(.) defines a closed square of side length 0.3 be-
cause we are considering L∞ norm. Therefore, after trimming the open rectangle
by an amount ρ = 0.3, we get an open rectangle rect−0.3 =]2.3, 3.7[×]9.3, 13.7[
because all closed squares of side length 0.3 attached to the boundary are re-
moved.

A−ρ is the set obtained by trimming A by a margin of ρ near the boundary,
since all points near the boundary within a margin of ρ have at least one point
among their ρ-distant neighbors outside A. Although the definition of trimming
can also extend to non-open sets, but in a practical sense, trimming is more
reasonable for open sets. To illustrate, consider a finite but large subset of a
normed vector space. Then trimming of the finite set by even an infinitesimally
small margin will result in an empty set, because all the points of the finite set
are boundary points. To avoid this oddity, we restrict the definition of trimming
to open sets only. The following proposition asserts that after trimming an open
set, we end up with an open set.

Proposition 4.22 If A is an open subset of a Banach space S, then for any
ρ > 0, A−ρ is open.

Note that the above Proposition 4.22 does not hold if in the Definition 4.21 of
trimmed set , the closed ball used for trimming is replaced by an open ball.

Proof. Take any point a ∈ A−ρ. This means Ballρ(a) ⊂ A by the definition
of trimming. For w > ρ, define X = Ballw(a) ∩ A. As w > a, so Ballρ(a) ⊂
Ballw(a). Also we have Ballρ(a) ⊂ A. Therefore, Ballρ(a) ⊂ X = Ballw(a)∩A.
Ballρ(a) is a strict subset of X because Ballρ(a) is closed while X is open.
Let ∂X be the boundary of X , which is compact because X is bounded and
S is Banach. As Ballρ(a) ⊂ X and X ∩ ∂X = {}- X being open, so ∂X ∩
Ballρ(a) ⊂ X ∩ ∂X = {}. Since ∂X ∩ Ballρ(a) = {}, so for every x ∈ ∂X ,
we have ||a − x|| > ρ and therefore we can choose rx : 0 < rx < (||a− x|| − ρ)
and δx : 0 < δx < (||a− x|| − ρ− rx). By reverse triangular inequality, if y ∈
Ballδx(x), then ||y − a|| > ||a − x|| − ||y − x|| > ||a − x|| − δx. Since δx is
chosen such that δx < (||a− x|| − ρ− rx), so by substituting we get ||y − a|| >
rx + ρ. Therefore all points y ∈ Ballδx are at a distance of greater than ρ
from a and so Ballδx ∩ Ballρ+rx(a) = {}. Consider the open cover of ∂X as
Cov = {Ballδx(x) : x ∈ ∂X}. Because ∂X is compact, so there exists a finite
sub-cover FinCov ⊂ Cov covering ∂X . Index sets in FinCov as FinCov =
{Ballδx1

(x1), Ballδx2
(x2), ..., Ballδxk

(xk)} for some k ∈ N. Let r = min1≤i≤k rxi
where rx is chosen for any x ∈ ∂X as described earlier. We earlier showed that
∀x ∈ ∂X.Ballδx ∩ Ballρ+rx(a) = {} which means Ballr+ρ(a) is disjoint from
each of the sets in FinCov which covers ∂X since r = min1≤i≤k rxi. Therefore
Ballr+ρ(a) is disjoint from ∂X .

We now show thatBallr+ρ(a) ⊆ X .X is open and also [complement(X)/∂X ]
is open by removing the boundary from complement(X). We have Ballr+ρ(a) =



(Ballr+ρ(a) ∩X) ∪ (Ballr+ρ(a) ∩ [complement(X)/∂X ]) ∪ (Ballr+ρ(a) ∩ ∂X).
But earlier we proved Ballr+ρ(a) ∩ ∂X = {} by which we get

Ballr+ρ(a) = (Ballr+ρ(a) ∩X) ∪ (Ballr+ρ(a) ∩ [complement(X)/∂X ])

(Ballr+ρ(a) ∩X) and (Ballr+ρ(a) ∩ [complement(X)/∂X ]) are both open. S
being a Banach space, all balls in the space are connected and so Ballr+ρ(a) is
connected and can not be written as the disjoint union of two open sets. There-
fore either (Ballr+ρ(a) ∩X) or (Ballr+ρ(a) ∩ [complement(X)/∂X ]) is empty.
Also earlier we proved Ballr+ρ(a) ∩ ∂X = {}. As Ballρ(a) ⊂ Ballρ+r(a) and
Ballρ(a) ⊂ X , so Ballρ+r(a) ∩ X is non-empty. This means the other open
set in disjoint union Ballr+ρ(a) ∩ [complement(X)/∂X ] = {} (empty). So,
(Ballr+ρ(a) ∩X) = Ballr+ρ(X) or equivalently Ballr+ρ(a) ⊆ X .

Consider any p ∈ Ballr(a). Then, ∀q ∈ Ballρ(p), we have by triangular
inequality ||q−a|| ≤ ||p−a||+ ||p−q|| < r+ρ substituting ||p−a|| < r while ||p−
q|| ≤ ρ. So, q ∈ Ballρ+r(a). But, Ballρ+r(a) ⊆ X ⊆ A implies q ∈ A. Therefore
there exists an open neighborhood as Ballr(a) around a such that ∀p ∈ Ballr(a),
Ballρ(p) ⊆ A or equivalently Ballr(a) ⊆ A−ρ by the definition of trimming.
Without loss of generality, for any a ∈ A−ρ, we can find a corresponding r > 0
such that Ballr(a) ⊆ A−ρ. Therefore A−ρ is open.

We can define trimming on an open set of all piecewise continuous input trajec-
tories in either of the following two ways 1) Trim the co-domain of the trajec-
tories and then define piecewise continuous input trajectories on the trimmed
co-domain. 2) Trim the actual set of input trajectories. The Proposition 4.23
asserts that both the above ways of trimming result in the same set. For exam-
ple, we know that (]0, 3[)−0.1 =]0.1, 2.9[. Then

(
(]0, 3[)[0,1]

)
−0.1

= (]0.1, 2.9[)[0,1]

where the exponent [0, 1] is the time interval for the trajectories and subscript
−0.1 is the amount of trimming (minus ’-’ denotes trimming).

Proposition 4.23 Let U be open subset of a normed vector space S. It is easy
to see that ∀τ > 0, U [0,τ ] is also open subset of S[0,τ ]. Then ∀ρ > 0 we have(
U [0,τ ]

)
−ρ

= (U−ρ)
[0,τ ]

.

Proof. Recall that we defined S[0,τ ] to be the set of all piecewise continuous
input trajectories of the form u : [0, τ ] → S. We leave it to the reader to verify
that given U is open in S, we have U [0,τ ] as also open in S[0,τ ]. We prove the
main part of the proposition as follows.

First we prove
(
U [0,τ ]

)
−ρ

⊆ (U−ρ)
[0,τ ]

. Let u ∈
(
U [0,τ ]

)
−ρ

. Then we have to

prove that ∀t ∈ [0, τ ].u(t) ∈ U−ρ. For any t
′ ∈ [0, τ ] and for any v : ||u(t′)−v|| < ρ

define v : [0, τ ] → U as ∣∣∣∣∣
v(t′) = v

v(t) = u(t) if t 6= t′

Since u and v differ at only one time point t′ so ||u− v|| = ||u(t′)− v(t′)|| < ρ.
This means v ∈ Ballρ(u, U

[0,τ ]). As u ∈
(
U [0,τ ]

)
−ρ

, so v ∈ U [0,τ ]. This means



v = v(t′) ∈ U . But v is any point inside Ballρ(u(t), U). So, ∀v ∈ Ballρ(u(t), U)
we get v ∈ U . So, u(t) ∈ U−ρ. This is true for all t ∈ [0, τ ]. Therefore u ∈
[U−ρ]

[0,τ ]. This proves (
U [0,τ ]

)
−ρ

⊆ (U−ρ)
[0,τ ]

. (1)

We shall now prove the converse (U−ρ)
[0,τ ]

⊆
(
U [0,τ ]

)
−ρ

. Let u ∈ (U−ρ)
[0,τ ]

.

Take any v : ||u− v|| < ρ. Then ∀t ∈ [0, τ ].v(t) ∈ Ballρ(u(t), U). u ∈ (U−ρ)
[0,τ ]

means ∀t ∈ [0, τ ]u(t) ∈ U−ρ. So, ∀t ∈ [0, τ ]u(t) ∈ U−ρ and ∀t ∈ [0, τ ].v(t) ∈
Ballρ(u(t), U) means ∀t ∈ [0, τ ].v(t) ∈ U or equivalently v ∈ U [0,τ ]. So, ∀v ∈
Ball−ρ(u, U

[0,τ ]).v ∈ U [0,τ ]. Therefore u ∈
(
U [0,τ ]

)
−ρ

. This means that

(U−ρ)
[0,τ ]

⊆
(
U [0,τ ]

)
−ρ

. (2)

From (1) and (2) we get that
(
U [0,τ ]

)
−ρ

= (U−ρ)
[0,τ ]

.

4.3 Enabling of asymptotically stabilizing supervisory inputs

If x : [0,∞[→ X is a trajectory of the linear system Σ and Cm×n is a real
matrix, then write yC,x : [0,∞[→ X satisfying yC,x(0) = y and

(
ẏC,x − ẋ

)
(t) = (A+BC)(yC,x(t)− x(t)). (3)

Notice that if x is driven by an input trajectory u, then yC,x is driven by a super-
visory input trajectory in (4) but only until any time τ such that uy,x([0, τ ]) ⊆ U
because U is bounded; in other words the image of [0, τ ] by the supervisory input
trajectory uy,x has to be inside U where uy,x is defined as follows.

uy,x = u+ C.
(
yC,x − x

)
(4)

For certain values of u(t), uy,x(t) may move out of the bounded input set, because
uy,x(t) is the translation of u(t) by an amount C.

(
yC,x − x

)
(t). We say that u

admits uy,x of (4) until time τ at point y with reference to x if uy,x|[0,τ ] ∈ U [0,τ ]

or equivalently uy,x([0, τ ]) ⊆ U . This is said because uy,x may move out of the
bounded input set U at some time instant greater than τ .

Definition 4.31 We denote InC(y, x, τ) = {u ∈ U [0,τ ] : uy,x([0, τ ]) ⊆ U}
which means that InC(y, x, τ) contains all input trajectories that admit corre-
sponding supervisory input trajectories of the form (4) until time τ at point y
taking x as the reference.

Theorem 4.32 Let Σ =
〈
An×n, Bn×m, U,

⋃
τ∈R+ U [0,τ ]

〉
be an open input (U

is open set) locally asymptotically stabilizable linear system with a stabilization
matrix Cm×n. Let two points y and x in state space be such that for some ǫ > 0,
||y − x|| ≤ ǫ. Then the following hold

1. ∀δ, τ > 0,
(
U−(||C||ǫ+δ)

)[0,τ ]
⊆ InC(y, x, τ).



2.
(
U−||C||ǫ

)[0,τ ]
⊆ InC(y, x, τ). Equivalently

(
U [0,τ ]

)
−||C||ǫ

⊆ InC(y, x, τ) be-

cause
(
U [0,τ ]

)
−||C||ǫ

=
(
U−|C||ǫ

)[0,τ ]
by Proposition 4.23.

Proof. 1. We prove the first part of the theorem by contradiction. Assume that

there are δ, τ > 0 such that
(
U−(||C||ǫ+δ)

)[0,τ ]
* InC(y, x, τ). This means that

there exists an input u ∈
(
U−(||C||ǫ+δ)

)[0,τ ]
such that the image of [0, τ ] by the

corresponding supervisory input trajectory uy,x is not contained inside U , i.e.
uy,x([0, τ ]) /∈ U . Define F = {t ≥ 0 : uy,x([0, t]) /∈ U}. The set F is non-empty
because τ ∈ F . Let ω = inf F . This means that at the precise time instant ω,
the supervisory input trajectory uy,x is at the boundary point of the set U , i.e.
uy,x(ω) is at the boundary point of U .

By (4) we get that uy,x(ω) = u(ω) + C.
(
yC,x(ω)− x(ω)

)
and from this

||uy,x(ω)− u(ω)|| ≤ ||C||||yC,x(ω)− x(ω)||. But from (3) we get that

(
yC,x(ω)− x(ω)

)
= exp((A +BC)ω)(y − x)

As (A+BC) has all eigenvalues with negative real part, so from previous equation
we get that ||yC,x(ω) − x(ω)|| ≤ ||y − x|| ≤ ǫ. Substituting this in what we got
earlier, we have

||uy,x(ω)− u(ω)|| ≤ ||C||ǫ (5)

Using this we proceed to prove that uy,x is an interior point of U which shall be
a contradiction to an earlier conclusion that uy,x is a boundary point of U .

Consider a closed ball (square) Ballδ(uy,x(ω)) of radius δ around uy,x(ω).
Consider any point p ∈ Ballδ(uy,x(ω)). Then

||p− u(ω)|| ≤ ||p− uy,x(ω)||+ ||uy,x(ω)− u(ω)||.

By substituting from (5) we get that

||p− u(ω)|| ≤ ||p− uy,x(ω)||+ ||C||ǫ < δ + ||C||ǫ (6)

because p ∈ Ballδ(uy,x(ω)).

But u ∈
(
U−(||C||ǫ+δ)

)[0,τ ]
implies u(ω) ∈ U−(||C||ǫ+δ), and then from (6) we

get that p ∈ U . This is true for all p ∈ Ballδ(uy,x(ω)) which means that uy,x(ω)
is an interior point of U . This is contrary to an earlier conclusion that uy,x(ω)
is the boundary point of U .

This means that the assumption we started with at the beginning is false.

Hence, ∀δ, τ > 0.
(
U−(||C||ǫ+δ)

)[0,τ ]
⊆ InC(y, x, τ).

2. The proof of second part of the Proposition is as follows. We shall first
prove

⋃
δ>0 U−(||C||ǫ+δ) = U−||C||ǫ. Let u ∈ U−||C||ǫ. Since U−||C||ǫ is open by

Proposition 4.22, so ∃δu > 0.Ballδu(u) ⊆ U−||C||ǫ. By simple geometry, given

u is inside the ||C||ǫ-trimmed set U−||C||ǫ, we get that Ballδu+||C||ǫ(u) ⊆ U .
Equivalently u ∈ U−(||C||ǫ+δu). So, for every u ∈ U−||C||ǫ, there exists δu >
0 such that u ∈ U−(||C||ǫ+δu). Therefore U−||C||ǫ ⊆

⋃
δ>0 U−(||C||ǫ+δ). Also,



⋃
δ>0 U−(||C||ǫ+δ) ⊆ U−||C||ǫ because ∀δ > 0, U−(||C||ǫ+δ) ⊆ U−||C||ǫ. Therefore

by sandwitching we get,
⋃

δ>0 U−(||C||ǫ+δ) = U−||C||ǫ.

From the theorem statement, ∀δ, τ > 0,
(
U−(||C||ǫ+δ)

)[0,τ ]
⊆ InC(y, x, τ).

As the theorem holds for all δ > 0 independently of τ , therefore we get that⋃
δ>0

(
U−(||C||ǫ+δ)

)[0,τ ]
⊆ InC(y, x, τ). Earlier we proved

⋃
δ>0 U−(||C||ǫ+δ) =

U−||C||ǫ. Therefore,
⋃

δ>0

(
U−||C||ǫ

)[0,τ ]
⊆ InC(y, x, τ). Equivalently by Proposi-

tion 4.23,
(
U [0,τ ]

)
−||C||ǫ

⊆ In(y, x, τ) .

5 Trimmed input approximate bisimulation

We define a metric transition system (MTS) as follows.

Definition 5.03 (Metric transition system)
A Metric Transition System (MTS) is T = 〈X,V,→, Y,H〉 where X is a state
space, V is the superset of all possible inputs at any point, [→] ⊆ X × V ×X is
the transition relation, Y is a metric space and H : X → Y is the output map.

Since trimming is only defined on open sets (Definition 4.21), therefore we iden-
tify an Open Input Metric Transition System (OIMTS) as follows, from which
a trimmed open input metric transition system may be derived after trimming
the input set.

Definition 5.04 (Open Input Metric Transition System)
An Open Input Metric Transition System (OIMTS) is an MTS T = 〈X,V,→, Y,H〉
with the additional condition that V is an open subset of a normed vector space.

Related to control systems, the set V in an OIMTS consists of any open set of
input trajectories.

5.1 Approximate bisimulation without trimming

We first define one version of ǫ-approximate simulation according to [11] which

is useful when supervisory feedback3 is used in symbolic abstraction. A different
and more common version of approximate simulation is defined in [6] but the

definition in [6] is not suitable when supervisory feedback3 is introduced in
symbolic abstraction, as will be explained in Remark 5.12.

The author of [11] actually defines a stronger ǫ− δ approximate simulation,
having a δ-reflexivity condition. But we restrict to the general ǫ-approximate
simulation leaving δ-reflexivity.

Definition 5.11 Let T = 〈X,V,→1, Y,H〉 and T ′ = 〈X ′, V ′,→2, Y,H
′〉 be two

MTS. Let Y be equipped by the metric d : Y × Y → R≥0. Note that the output
range Y is same for both the MTS but the input sets V and V ′ may be different.
We say that a non-empty relation R ⊂ X ×X ′ is an ǫ-approximate simulation
relation of T by T ′, iff ∀(x, x′) ∈ R all the following hold



1. d (H(x), H ′(x′)) ≤ ǫ.

2. ∀y ∈ X ∧ u ∈ V , if x
u
→1 y then there exist y′ ∈ X ′ and u

′ ∈ V ′ such that

x′ u
′

→2 y′ and (y, y′) ∈ R. Note that u and u
′ may be different.

Approximate bisimulation:Consequently, we say that T and T ′ are ǫ-bisimilar
to each other iff ∃ a non-empty relation R such that R ǫ-approximately simulates
T by T ′ and R−1 ǫ-approximately simulates T ′ by T .

Remark 5.12 The more common definition of ǫ-approximate simulation in [6]
requires that one transition may simulate another only if both the transitions
are driven by the same input. But when supervisory feedback 3 is used, then
it may happen that one transition simulated by another transition is such that

the driving input of former transition is a feedback supervisory function3 of the
input of latter transition and may not be equal to the input of latter transition.
As such the definition in [6] is restrictive in the sense that it can not be used to
analyze symbolic abstraction involving supervisory feedback. On the other hand,
the Definition 5.11 of our paper, which is also previously stated in [11], allows
us to interpret symbolic abstraction involving supervisory feedback.

5.2 Trimmed-input approximate bisimulation for OIMTS

Definition 5.21 (Trimmed open input metric transition system)
Let T = 〈X,V,→, Y,H〉 be a open input metric transition system (OIMTS).
Then we define the ρ trimmed transition system T−ρ =

〈
X,V−ρ,−→ |V−ρ

, Y,H
〉

where V−ρ is the obtained after trimming the open set V by ρ near the boundary
and −→ |V−ρ

is the restriction of the original transition relation to V−ρ.

Definition 5.22 (Trimmed input approximate simulation)
Let T = 〈X,V,→1, Y,H〉 and T = 〈X ′, V ′,→2, Y,H〉 be two OIMTS. For any
ρ, ǫ > 0, we say that a relation R ⊂ X ×X ′ is a ρ-trimmed ǫ-approximate sim-
ulation of the OIMTS T by T ′ iff the relation R is an ǫ-approximate simulation
of T−ρ by T ′, where T−ρ is the ρ-trimmed OIMTS obtained from T .

Definition 5.23 (Trimmed-input approximate bisimulation)
Consequently, R is a ρ-trimmed ǫ-approximate bisimulation between T and T ′

iff R ǫ-approximately simulates T−ρ by T ′ and R−1 ǫ-approximately simulates
T ′
−ρ by T .

6 Near completeness and interpretation of trimmed

input approximate bisimulation

We define near completeness as follows.

3 The general definition of supervisory feedback function is given in the Appendix, but
in the paper we shall only discuss locally asymptotically stabilizing linear supervisory
feedback.



Definition 6.04 For any γ > 0, we say that an OIMTS T̂ is γ-near complete
with respect to an OIMTS T iff there exist α, β > 0 and an OIMTS T ′ such that
all the following hold (i) α + β = γ (ii) T ′

−β = T̂ (iii) T−α is (approximately)
simulated by T ′.

Let T and T ′ be two OIMTS such that they are ρ-trimmed input ǫ-approximately
bisimilar. Then we make the following interpretations about the ρ trimmed tran-
sition system T ′

−ρ.

– ǫ-Proximity: The distance between two related states of T and T ′
−ρ is less

than ǫ since T and T ′ are ρ-trimmed input ǫ-approximately bisimilar.

– Soundness: T ′
−ρ is ǫ-approximately simulated by T since T and T ′ are ρ-

trimmed input ǫ-approximately bisimilar. This means that T ′
−ρ is sound with

respect to T .
Disambiguation. It is to be noted that T ′ may not be sound with respect to
T . Instead we demonstrated that T ′

−ρ is sound with respect to T .

– 2.ρ-Near completeness: Since T and T ′ are ρ-trimmed input ǫ-approximately
bisimilar, so T−ρ is ǫ-approximately simulated by T ′. On the other hand, T ′

−ρ

is obtained after further trimming the input set of T ′ by ρ. Therefore, by
the Definition 6.04, we get that T ′

−ρ is 2ρ-near complete with respect to T
by substituting α = β = ρ where α and β are the parameters stated in
Definition 6.04.

In a vague sense, when ρ and ǫ are very small, then something like T ′
−ρ tran-

spires as a reasonably good abstraction of T after establishing ρ-trimmed input
ǫ-approximate bisimulation between T and T ′.

7 State and time quantization

Definition 7.05 (Time quantized transition relation of control system)
For a linear control system Σ and two points x and y in state space and

u ∈ U [0,τ ], we write x
u
−→ y iff x(x, τ,u) = y. For any x in state space and

u ∈ U [0,τ ], define Reach(x,
u
−→) = {y ∈ Rn : x

u
−→ y}

Let an open input linear control system Σ =
〈
An×n, Bn×m, U,

⋃
t∈R+ U [0,t]

〉

where U is open. Then for any τ > 0, the time quantized open input metric
transition system (OIMTS) T τ (Σ,X) is defined as

T τ(Σ) =
〈
Rn, U [0,τ ],−→,Rn, id

〉

where id is the identity output map and −→ is the transition relation according
to Definition 7.05. We leave it to the reader to verify that since U is open, so
U [0,τ ] is also open and hence the MTS T τ(Σ) is also an OIMTS. Therefore,
T τ (Σ) shall admit the notion of trimming.



For any η > 0 and u ∈ U [0,τ ], we define a transition relation
u

−→
η
⊂ [Rn]η×[Rn]η

as follows. x
u

−→
η

y if and only if ∃y′ ∈ Reach(x,
u

−→).||y − y′|| ≤ η/2. Then the

state-time quantized OIMTS T τ,η(Σ) is defined as

T τ,η(Σ) =

〈
[Rn]η, U

[0,τ ],−→
η
,Rn, id

〉
.

Corollary 7.06 Let Σ =
〈
An×n, Bn×m, U,

⋃
t∈R+ U [0,t]

〉
be a locally asymptot-

ically stabilizable linear control system with open and bounded input set U and
a stabilization matrix C. Then ∀ǫ > 0 and η : 0 < η < ǫ, there exists τ > 0
such that ||ǫ exp((A + BC)τ)|| < η/2. For such τ , if y, x : ||y − x|| ≤ ǫ and

u ∈ (U−||C||ǫ)
[0,τ ] and x

u
−→ x′, then ∃y′.y

uy,x

−−−→ y′ satisfying ||y′ − x′|| < η/2.

Proof. Firstly, we have to show that for any chosen τ, ǫ > 0, if u ∈ (U−||C||ǫ)
[0,τ ]

and ||y−x|| ≤ ǫ, then uy,x is enabled until the chosen τ > 0. If u ∈ (U−||C||ǫ)
[0,τ ]

and ||y−x|| ≤ ǫ, then by Theorem 4.32 we get that u ∈ In(y, x, τ) or equivalently
uy,x([0, τ ]) ⊆ U . Therefore, ux,y is enabled until time τ . This means there exists

a y′.y
uy,x

−−−→ y′.
From (3),(4) and that ||y−x|| ≤ ǫ, we get (x′−y′) = (x−y) exp((A+BC)τ) ≤

||ǫ exp((A+BC)τ)||. Since (A+BC) has all eigenvalues with negative real part,
so ||ǫ exp((A+BC)τ)|| tends exponentially to zero as τ → ∞. Therefore, we can
choose sufficiently large τ such that ||x′ − y′|| < η/2.

Result 7.07 Let Σ =
〈
An×n, Bn×m, U,

⋃
t∈R+ U [0,t]

〉
be a locally asymptotically

stabilizable linear control system with open and bounded input set U and a stabi-
lization matrix C. Then for all ǫ > 0 and η : 0 ≤ η < ǫ/2, we can choose τ > 0
such that ||ǫ exp((A+ BC)τ)|| < η/2 and consequently T τ(Σ) is ||C||ǫ-trimmed
ǫ-approximately bisimilar to T τ,η(Σ).

Proof. On the basis of Corollary 7.06, we choose a τ > 0 such that ||ǫ exp((A+
BC)τ)|| < η/2 and from that we derived, ∀y, x : ||y−x|| ≤ ǫ, if u ∈ (U−||C||ǫ)

[0,τ ]

and x
u

−→ x′, then ∃y′.y
uy,x

−−−→ y′ and ||y′ − x′|| < η/2.
Choose a relation R ⊂ Rn × [Rn]η as (x, y) ∈ R if and only if ||x − y|| ≤ ǫ.

We shall prove that R is the required (||C||ǫ+ δ)-trimmed ǫ-approximate bisim-
ulation relation. For this we have to prove, by the Definition of trimmed-input
approximate bisimulation, both the following (i) R ǫ-approximately simulates
T τ
−||C||ǫ(Σ,X) by T τ,η(Σ) by R. (ii) R−1 ǫ-approximately simulates T τ,η

−||C||ǫ(Σ)

by T τ (Σ).
The proof of (i) is as follows. Let (y, x) ∈ R. The transitions in T τ

−||C||ǫ(Σ,X)

are driven by inputs in (U [0,τ ])−||C||ǫ = (U−||C||ǫ)
[0,τ ] (refer to definition of

trimmed OIMTS and Proposition 4.23). Let (x, y) ∈ R and x
u

−→ x′ be a tran-
sition in T τ

−||C||ǫ(Σ). (x, y) ∈ R implies ||y − x|| ≤ ǫ and hence by the choice

of τ as stated in at the beginning of this proof, we have that there exists y′

such that y
uy,x

−−−→ y′ and ||y′ − x′|| < η/2. Choose any y′′ ∈ [Rn]η such that



||y′ − y′′|| ≤ η/2. It is easy to see that such a point y′′ exists on the grid [Rn]η.
Then by the way the state-quantized transition relation −→

η
is defined, we get that

y
uy,x

−−−→
η

y′′ because y
uy,x

−−−→ y′, ||y′ − y′′|| ≤ η/2 and y′′ ∈ [Rn]η. By triangular

inequality, ||y′′ − x′|| ≤ ||y′ − x′||+ ||y′ − y′′|| ≤ η/2 + η/2 = η ≤ ǫ which means
that (x, y′′) ∈ R. Also, by the way R was chosen earlier, it is an ǫ proximate
relation. This completes the proof of (i).

We prove (ii) as follows. Let (y, x) ∈ R−1. The transitions in T τ,η

−||C||ǫ are

driven by input trajectories in (U [0,τ ])−||C||ǫ = (U−||C||ǫ)
[0,τ ] by the definition of

the trimmed OIMTS. If for any u ∈ (U−||C||ǫ)
[0,τ ] we have y

u

−→
η

y′, then there

exists y′′ ∈ Rn such that ||y′′ − y′|| < η/2 and y
u

−→ y′′, by the definition of
the state-quantized transition relation −→

η
. Since u ∈ (U−||C||ǫ)

[0,τ ], so by the

choice of τ at the beginning of this proof, we have an x′ such that x
ux,y

−−−→ x′

and ||x′ − y′′|| < η/2. So, by triangular inequality we get that ||x′ − y′|| ≤
||x′ − y′′||+ ||y′ − y′′|| ≤ η/2 + η/2 = η ≤ ǫ. Therefore, (y′, x′) ∈ R−1. Also, by
the way R was chosen earlier, R−1 is an ǫ proximate relation. This completes
the proof of (ii).

8 The final symbolic model

Let a quantized linear control system be Σ̃ =
〈
An×n, Bn×m, Ũ , Ũ

〉
where Ũ is

a finite subset of an open set and bounded set U and Ũ is a finite set containing
piecewise constant input trajectories with co-domain Ũ . Consider that its analog
approximation is Σ =

〈
An×n, Bn×m, U,

⋃
t∈R+ U [0,t]

〉
which is locally asymptot-

ically stabilizable with open and bounded input space U and a stabilization
matrix C.

Then for any desired precision ǫ > 0, we can choose any state-quantization
parameter η : 0 < η < ǫ, such that for any time quantization τ > 0 satisfying
||ǫ exp((A+BC)τ)|| < η/2, we get that T τ (Σ) is ||C||ǫ-trimmed ǫ-approximately
bisimilar to T τ,η(Σ) by Result 7.07.

With τ, η chosen as above for a given ǫ, the ||C||ǫ-trimmed τ, η state-time
quantized OIMTS T τ,η

−||C||ǫ(Σ) will be employed in controller synthesis after re-

stricting to quantized inputs. Note that the trimming of ||C||ǫ is necessary for
the symbolic model to be sound with respect to T τ(Σ).

Soundness, proximity and near-completeness: Recall the interpreta-
tion of near completeness in Section 6. The final symbolic model T τ,η

−||C||ǫ(Σ)

is sound, ǫ-proximate and 2||C||ǫ-near complete with respect to T τ(Σ) since
T τ,η(Σ) is ||C||ǫ-trimmed ǫ approximately bisimilar to T τ(Σ). Note that the
symbolic model taken for controller synthesis is T τ,η

−||C||ǫ(Σ) but not T τ,η(Σ)

because the latter may not be sound with respect to T τ (Σ).
Restricting the trimmed open input symbolic model to the quan-

tized input set of actual control system: The open and ||C||ǫ-trimmed



input η, tau state-time quantized transition system T τ,η

−||C||ǫ is T τ,η

−||C||ǫ(Σ) =〈
[Rn]η, (U−ρ)

[0,τ ],−→
η
,Rn, id

〉
. Then the final symbolic model restricted to the

actual input-quantized control system Σ̃ which may be used in controller synthe-

sis will be the transition system T̃ τ,η

−||C||ǫ(Σ̃) =

〈
[Rn]η, (Ũ ∩ (U−ρ)

[0,τ ]),−→
η
,Rn, id

〉
.

Reducing the number of edges of the symbolic model: If n is the
number of representative points in the quantized state space restricted to a
desired compact set, then the number of labeled edges emanating from any
representative point may far exceed n, because at each of the representative state

points, the number of input labels is equal to the cardinality of Ũ∩
(
U−||C||ǫ)

)[0,1]
,

which could be very large. Instead we may select, by heuristic computations at
each representative point, only a subset of the input trajectories whose reach
set, by the transition relation −→

η
, covers at least all the reachable points in the

finite state-quantized space. This would eliminate many labeled edges whose
reach points are the same as that of the former selected labeled edges, while the

sub-graph so obtained is as complete as T̃ τ,η

−||C||ǫ(Σ̃). Similar constructions have

been discussed in [8, 9].

9 Example

We take a quantized input linear system Σ̃ =
〈
An×n, Bn×m, Ũ , Ũ

〉
with A =

[
0 1
-1 2

]
, B =

[
0
1

]
, Ũ = {−0.49,−0.48,−0.47, ...,−0.1, 0, 0.1, ..., 0.47, 0.48, 0.49}

and Ũ = {u : ∀t ∈ R≥0.u(t) ∈ Ũ∧u(t) = u (0.01 ∗ floor(t/0.01))} where floor(.)
denotes the greatest integer smaller than the argument. Then the analog input
approximation of Σ̃ could be Σ = 〈An×n, Bn×m, U,U〉 with U =]−0.5, 0.5[ which
is an open set and U as the set of all piecewise continuous input trajectories with
co-domain U .

A has both eigenvalues equal to +1 and so Σ is unstable. But the system has

a stabilization matrix C = [0 − 4] because (A+BC) =

[
0 1
-1 2

]
+

[
0
1

]
.[0 − 4] =

[
0 1
-1 −2

]
has both eigenvalues equal to −1, which is negative.

We are given a desired precision ǫ = 0.12. We have to determine the state-
time quantization parameters η, τ and the trimming parameter ρ. We may take
η to be anything less than ǫ = 0.12. Let η = 0.1. Then the required amount of
trimming is ρ = ||C||ǫ = 4 × 0.14 = 0.48 from Result 7.07. In fact, ρ could be
anything greater than or equal to 0.48 but should be at least 0.48. Note that the
derivation of ρ is independent of τ which we have not yet determined. We take
τ = 1 and demonstrate that this particular choice of τ is valid. For this we have
to prove that ǫ|| exp((A+BC)τ)|| < η/2. We get || exp((A+BC)τ)|| ≤ exp(−1.τ)
because (A+BC) has both eigenvalues equal to −1. Then ǫ|| exp((A+BC)τ)|| <



0.12 exp(−1 × 1) = 0.044 < 0.05 = η/2. So, τ = 1 is a valid time quantization
parameter.

Consequently, the trimmed input trajectory set of the symbolic model, taking

ρ = 0.48 and τ = 1, is (U−ρ)
[0,τ ] = ((]− 5, 5[)−0.48)

[0,1] = (]− 4.52, 4.52[)[0,1].
Then the the state-time quantized symbolic abstraction of Σ is

T 1,0.1
−0.48(Σ) =

〈
[R2]0.1, (]− 4.52, 4.52[)

[0,1]
,−−→
0.1

,R2, id
〉
.

This symbolic model is sound and 0.12-proximate as proved in Section 6. Also,
T 1,0.1
−0.48(Σ) is 2 × 0.48 = 0.96-near complete with respect to T 1(Σ) in the sense

that T 1
0.96(Σ) is approximately simulated by T 1,0.1

−0.48(Σ) as proved in Section 6.
Finally, a finite symbolic model can be obtained for any compact region

of state space and the actual quantized input trajectory set Ũ by restricting
T 1,0.1
−0.48(Σ) to the compact region and Ũ . The restriction to Ũ is defined in Sec-

tion 8. Furthermore, we select only a subset of the total number of edges at each
representative point to obtain a sub-graph whose number of edges emanating
from each representative point is less than the total number of representative
points in the finite model, while the sub-graph so obtained is as complete as

T̃ τ,η

−||C||ǫ(Σ̃). This is explained in Section 8. Since similar constructions have been

discussed in [8, 9], we do not construct the actual model in our paper for this
example. However, we shall work out an illustration of the relationship between
the input at a representative point in the quantized state space, and the cor-
responding supervisory feedback at a point in the original state space which is
symbolically related to the representative point. We shall also obtain a quantized
supervisory feedback which lies within Ũ , corresponding to the analog supervi-
sory feedback.

Two points are said to be symbolically related if the norm of the difference
between them is less than ǫ. z = (0.23,−0.24) is symbolically related to x =
(0.2,−0.2) because ||z − x|| = max{0.23 − 0.2, 0.24 − 0.2} = 0.04 < ǫ = 0.12.
Notice that x is a point in the quantized state space with η = 0.1. We give a
constant input u(t) = 1.1 ∀t ∈ [0, 1] driving from x = (0.2,−0.2). Notice that

u ∈ Ũ ∩ (]− 4.52, 4.52[)
[0,1]

. By computation, we get that x(1, (0.2,−0.2),u) =

(0.56, 1.36). By the definition of the transition relation
u

−−→
0.1

defined on the state-

time quantized symbolic model, we get that x = (0.2,−0.2)
u

−−→
0.1

(0.6, 1.4) = x′

where (0.56, 1.36) is rounded off to (0.6, 1.4). Then the corresponding analog
supervisory input driving from z is given as uz,x = 1.1+C(z(t)−x(t)) according
to Equation 4. The graph of the analog supervisory input is displayed in Figure 1.
By inducing uz,x at z, we reach the point z′ = (0.56, 1.35) at time t = 1. Since
||z′ − x′|| = max{0.6 − 0.56, 1.4 − 1.35} = 0.05 < ǫ = 0.12, therefore z′ is
symbolically related to x′. Thus our assertion that the symbolic model is 0.12-
proximate is validated in this specific example.

Next, we heuristically quantized the supervisory input uz,x to lie in the quan-

tized input trajectory space Ũ , and obtained the quantized supervisory feedback
input displayed in Figure 1. There are also formal approaches to feedback quanti-



Fig. 1. Corresponding analog and quantized supervisory feedback inputs at z =
(0.23,−0.24) for constant input u = 1.1 at symbolic point x = (0.2,−0.2).

zation [2,3,5]. Driving with the quantized input starting from z = (0.23,−0.24),
we reached the point z′′ = (0.58, 1.38) at 1 second. Since ||z′′−x′|| = max{0.6−
0.58, 1.4− 1.38} = 0.02 < ǫ = 0.12, therefore z′′ is also symbolically related to
x′. This means that, for this specific illustration, the proximity of 0.12 is valid
even after quantizing the supervisory input.

From Figure 1, the difference between uz,x and u is less that 0.48 = ||C||ǫ =
ρ. Therefore, our assertion in Theorem 4.32 is valid for this example. Also the
difference between the quantized supervisory feedback input and u is less than
0.48.

10 Conclusion

While allowing supervisory feedback to relate inputs between two transition
systems, we have found a formal way of parametrization of completeness of a
state-time quantized symbolic model with respect to the time quantized system
model. We demonstrated how sound state-time quantized symbolic models of
possibly unstable but stabilizable, bounded input and already input-quantized
linear systems can be built with arbitrarily small proximity and trimming (near-
completeness), with respect to the time-quantized model. In future, we would like
to extend this work to construct sound, near-complete, and proximate symbolic
models for non-linear systems.

Appendix

Definition 10.08 Let U ⊆ Rm for some m ∈ N. Then for n ∈ N, a function
k : Rn × Rn × U is called a supervisory function iff all the following hold.

1. k is continuously differentiable on R2n\∆ where ∆ = {(x, x) : x ∈ Rn};
2. k(y, x, u) = u ∀ (y, x) ∈ ∆;

We say that a supervisory function is linear if it is of the form k(y, x, u) =
u + C(y − x) for some matrix C. It is easy to see that (u+ C(y − x)) moves



out of any bounded input set because the supervisory function translates the
original input set by an amount C(y − x). Therefore, there can not be a linear
supervisory function on a bounded input set.

We now state the general global asymptotic stabilizability assumption and
prove that everywhere divergent linear systems with bounded input set can not
be globally asymptotically stabilized by any kind of supervisory function.

Notation: A function β : R≥0 × R≥0 → R≥0 is called a KL∞ function if
β(r, .) is increasing function in r such that β(0, .) = 0; and β(., t) asymptotically
tends to zero as t → ∞.

The following stabilizability assumption, which we call the global asymptotic
stabilizability assumption, was discussed in [11].

Definition 10.09 A control system with input set U and state space Rn is said
to be globally asymptotically stabilizable if there exists a supervisory function
k : Rn × Rn × U → U enforcing the following estimate for all x, y ∈ Rn, u ∈ U
and t ∈ R+

0

||x(t, x,u)− y(t, y, k(y, x,u))|| ≤ β(||x− y||, t). (7)

where β is a KL∞ function.

A linear system Σ = 〈An×n, Bn×m, U,U〉 is everywhere divergent if all the
eigenvalues of A have positive real part. Consider λmin as the eigenvalue of A
with minimum real part. Consider Σ as everywhere divergent and so Re(λmin)
is positive. We proceed to demonstrate that for the everywhere divergent linear
system Σ, if the input set U is bounded such that ||u|| < M ∀u ∈ U , then

any two state trajectories starting at a distance greater than 4||B||M
Re(λmin)

can never

come arbitrarily close, irrespective of what pair of input trajectories drives the
two state trajectories. This would mean that the system can not be globally
asymptotically stabilized. The proof is as follows.

We know for a linear system

x(x, τ,u)− y(y, τ,v) = exp(Aτ)(x − y) +

∫ τ

0

exp(A(τ − t))B(u − v)(t)dt (8)

By using reverse triangular inequality on (8) we get

||x(x, τ,u)− y(y, τ,v)||

≥ ||exp(Aτ)(x − y)|| −

∣∣∣∣
∣∣∣∣
∫ τ

0

exp(A(τ − t)B(u − v)(t)

∣∣∣∣
∣∣∣∣

(9)

For all possible pairs of trajectories u and v, we have that ||u− v|| ≤ 2M
since the norm of inputs is bounded by M .

Then choose x, y such that ||x− y|| > 4M||B||
Re(λmin)

. Putting these bounds in (9)
we get

||x(x, τ,u)− y(y, τ,v)||

≥ 2M ||B||

∣∣∣∣
∣∣∣∣exp(Aτ)

(
2

Re(λmin)
−

∫ τ

0

exp(−At)dt

)∣∣∣∣
∣∣∣∣

(10)



Again using reverse triangular inequality we get

||x(x, τ,u)− y(y, τ,v)||

≥ 2M ||B|||| exp(Aτ)||

(
2

Re(λmin)
−

∣∣∣∣
∣∣∣∣
∫ τ

0

exp(−At)dt

∣∣∣∣
∣∣∣∣
)

(11)

Since
∣∣∣∣∫ τ

0 exp(−At)dt
∣∣∣∣ ≤

∫ τ

0 || exp(−At)||dt So

(
2

Re(λmin)
−

∣∣∣∣
∣∣∣∣
∫ τ

0

exp(−At)dt

∣∣∣∣
∣∣∣∣
)

≥

(
2

Re(λmin)
−

∫ τ

0

|| exp(−At)||dt

)
.

Furthermore, we have that || exp(−At)|| ≤ exp(−Re(λmin)t) since λmin is
the eigenvalue with minimum real part. Substituting we get

(
2

Re(λmin)
−

∣∣∣∣
∣∣∣∣
∫ τ

0

exp(−At)dt

∣∣∣∣
∣∣∣∣
)

≥

(
2

Re(λmin)
−

∫ τ

0

exp(−Re(λmin)t)dt

)

≥

(
2

Re(λmin)
−

1

Re(λmin)

)
since

∫ ∞

0

exp(−Re(λmin)t)dt = 1/Re(λmin).

Substituting in (11) we get

||x(x, t,u)− y(y, t,v)|| ≥
2M ||B|||| exp(Aτ)||

Re(λmin)
(12)

2M||B|||| exp(Aτ)||
Re(λmin) keeps increasing in τ because A has all eigenvalues with

positive real part.
This means that, the linear system being everywhere divergent with norm

of inputs upper bounded by M > 0, if the starting points x and y are such

that ||x − y|| > 4M||B||
Re(λmin) where Re(λmin) is the eigenvalue with minimum real

part (which is positive), then x and y can not come arbitrarily close for any
possible input trajectories u and v inside the bounded input set driving x and
y respectively. This completes the proof.

Hence an everywhere divergent linear system whose input set is bounded can
not be globally asymptotically stabilized. But such a system may still be locally
asymptotically stabilizable and an example was shown in Section 4. However
if the input space has no boundaries, then global asymptotic stabilizability of
linear systems is equivalent to local asymptotic stabilizability.
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