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TCP Congestion Control over HSDPA:
an Experimental Evaluation

Luca De Cicco and Saverio Mascolo

Abstract—In this paper, we focus on the experimental eval-
uation of TCP over the High Speed Downlink Packet Access
(HSDPA), an upgrade of UMTS that is getting worldwide
deployment. Today, this is particularly important in view of
the “liberalization” brought in by the Linux OS which offers
several variants of TCP congestion control. In particular, we
consider four TCP variants: 1) TCP NewReno, which is the only
congestion control standardized by the IETF; 2) TCP BIC, that
was, and 3) TCP Cubic that is the default algorithm in the Linux
OS; 4) Westwood+ TCP that has been shown to be particularly
effective over wireless links. Main results are that all theTCP
variants provide comparable goodputs but with significant larger
round trip times and number of retransmissions and timeoutsin
the case of TCP BIC/Cubic, which is a consequence of their more
aggressive probing phases. On the other hand, TCP Westwood+
provides the shortest round trip delays, which is an effect of its
unique way of setting control windows after congestion episode
based on bandwidth measurements.

Index Terms—TCP congestion control; HSDPA; performance
evaluation

I. I NTRODUCTION

Wireless high-speed Internet is spreading worldwide thanks
to the development of wireless technologies such as IEEE
802.11 for local access and 3G-4G for large area coverage. Ina
recent report published by Cisco it is stated that mobile traffic
is doubling for the fourth year in a row and it is projected that
more than 100 millions of smartphones will consume more
than one gigabyte of traffic per month [5].

High Speed Downlink Packet Access (HSDPA) is an up-
grade of UMTS that is getting worldwide deployment even
in countries where the CDMA-EVDO networks had the early
lead on performance. Today, HSDPA is present in 128 coun-
tries distributed over all the continents, with the most advanced
deployment in Europe301.

Current available HSDPA commercial cards provide down-
link peak rate of several Mbps, which is more than one order
of magnitude improvement with respect to the 100kbps offered
by GSM EDGE few years ago [20].

At the beginning of wireless access to the Internet, the
Transmission Control Protocol (TCP) experienced very low
throughput over wireless links due to the fact that losses
due to unreliable wireless links were interpreted as due to
congestion [2]. In [7] it has been shown that this problem
can be overcome by making the wireless link reliable through
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link layer retransmissions. This is today well-known and
implemented at link layer of different technologies such as
3G-4G systems through Automatic Repeat reQuest (ARQ)
protocols [7], which guarantee error-free segment delivery to
the transport layer. The use of ARQ mechanisms masks link
layer losses at the expenses of increased transmission delays.

Optimization of physical and MAC layers do not neces-
sarily translate into higher throughputs due to the fact that
the transport layer plays an important role in determining
the bandwidth seen at application layer. This has motivated
researchers to evaluate the performance of different transport
layers protocols that are designed for specific underlying
networks [14].

Regarding the issue of improving TCP performance over
wireless links, a large amount of literature has been published
which proposes to modify the link layer, the transport layeror
both using a cross-layer approach [2]. Variants that have been
proposed to improve the performance of the TCP over wireless
networks include TCP Westwood+ [10] and TCP Veno [9].

Thus, due to the importance of the issue, new TCP proposals
are currently under evaluation in the IRTF ICCRG working
group2.

Today, the Linux OS offers the choice of as many as twelve
TCP congestion control algorithms of which TCP Cubic is
selected by default. If this can be viewed as a “liberalization”
with respect to the “old” BSD TCP style that used to offer only
the TCP with the enhancements standardized by the IETF [1],
it poses questions on the stability and efficiency from both the
point of view of the users and the network.

If a large body of literature is available concerning the
performance evaluation of congestion control variants in high-
speed networks [11], the same cannot be said regarding the
performance evaluation over new cellular networks, in spite
of the fact that more than 300 million users are access-
ing the Internet using broadband cellular networks such as
WCDMA/UMTS [3],[20].

In this work we evaluate the TCP performance over HSDPA,
an optimization of the UMTS radio interface, which can
provide downlink throughputs up to 14 Mbps and round trip
times (RTT) in the order of 100 ms [20].

The purpose of this work is twofold: on one hand we aim
at evaluating how TCP performs on 3.5G mobile networks;
on the other hand, we provide a comparison of relevant con-
gestion control protocols over such networks. We have made
extensive experimental measurement over downlink channel
in static conditions of the User Equipment (UE). Cumulative
distribution functions, average values, and time evolutions of

2http://trac.tools.ietf.org/group/irtf/trac/wiki/ICCRG
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the most important end-to-end metrics which are goodputs,
retransmission ratios, number of timeouts, and RTTs have been
collected. We focus on a static scenario in order to be able to
provide and unbiased comparison among the considered TCP
variants.

We have considered four TCP variants: TCP NewReno,
which is the only TCP congestion control standardized by
IETF, TCP BIC and TCP Cubic, which have been selected
as default congestion control algorithms in the Linux OS, and
TCP Westwood+ that is known to be particularly efficient over
wireless networks [15].

The rest of the paper is organized as follows: in Section II
we briefly review the congestion control algorithms employed
by the considered TCP variants along with the state of the
art concerning TCP performance evaluation over HSDPA live
networks. Section III describes the employed experimental
testbed. Section IV reports the experimental results whereas,
a discussion is presented in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

In this Section we report a brief background on the TCP
congestion control variants we have considered and a brief
summary of related work on HSDPA performance evaluation.

A. TCP congestion control algorithms

1) TCP NewReno :The TCP congestion control [12] is
made of aprobing phaseand adecreasing phase, the well-
known Additive Increase and Multiplicative Decrease (AIMD)
phases introduced by Jain [4]. Congestion window (cwnd) and
slow-start threshold (ssthresh) are the two variables employed
by the TCP to implement the AIMD paradigm. In particular,
cwnd is the number of outstanding packets, whereasssthresh
is a threshold that determines two different laws for increasing
the cwnd: 1) an exponential growth, i.e. theslow-start phase,
in which the cwnd is increased by one packet every ACK
reception to quickly probe for extra available bandwidth and
which lasts untilcwnd reachesssthresh; 2) a linear growth
whencwnd ≥ ssthresh, i.e. thecongestion avoidancephase,
during whichcwnd is increased by1/cwnd packets on ACK
reception.

The probing phase lasts until a congestion episode is
detected by TCP in the form of 3 duplicate acknowledg-
ments (3DUPACK) or timeout events. Following a 3DUPACK
episode, TCP NewReno [8] triggers the multiplicative decrease
phase and thecwnd is halved, whereas when a timeout occurs
cwnd is set to one segment. The algorithm can be generalized
as follows:

1) On ACK: cwnd← cwnd+ a
2) On 3DUPACK:

cwnd ← b · cwnd (1)

ssthresh ← cwnd (2)

3) On timeout:cwnd← 1; ssthresh← b · cwnd

In the case of TCP NewRenoa is equal to1, when in slow-
start phase, or to1/cwnd when in congestion avoidance, and
b is equal to0.5.

2) TCP Westwood+ :TCP Westwood+ [10] is a sender-
side modification of TCP NewReno that employs an estimate
of the available bandwidthBWE obtained by counting and
averaging the stream of returning ACKs to properly reduce
the congestion window when congestion occurs. In particular,
when a 3DUPACK event occurs, TCP Westwood+ sets the
cwndequal to the available bandwidthBWE times the mini-
mum measured round trip timeRTTmin, which is equivalent
to set b = BWE · RTTmin/cwnd in (1). When a timeout
occurs,ssthresh is set toBWE · RTTmin and cwnd is set
equal to one segment.

The unique feature of TCP Westwood+ is that the setting
of cwnd in response to congestion is able to clear out the
bottleneck queue, thus increasing statistical multiplexing and
fairness [10],[16].

3) TCP BIC : TCP Binary Increase Congestion Control
(BIC) [21] consists of two phases: the binary search increase
and the additive increase. In the binary search phase the setting
of cwnd is performed as a binary search problem. After a
packet loss,cwnd is reduced by a constant multiplicative
factor b as in (1),cwndmax is set to thecwndsize before the
loss event andcwndmin is set to the value ofcwnd after the
multiplicative decrease phase (cwndmin = b·cwndmax). If the
difference between the value of congestion window after the
loss and the middle point(cwndmin + cwndmax)/2 is lower
than a thresholdSmax , the protocol starts a binary search
algorithm increasingcwnd to the middle point, otherwise the
protocol enters the linear increase phase. If BIC does not
get a loss indication at this window size, then the actual
window size becomes the new minimum window; otherwise,
if it gets a packet loss, the actual window size becomes
the new maximum. The process goes on until the window
increment becomes lower than the thresholdSmin and the
congestion window is set tocwndmax. Whencwnd is greater
than cwndmax the protocol enters into a new phase (max
probing) that is specular to the previous phase; that is, it uses
the inverse of the binary search phase first and then the additive
increase.

4) TCP Cubic :TCP Cubic [19] simplifies the dynamics of
the congestion window employed by TCP BIC and improves
its TCP-friendliness and RTT-fairness. When in the probing
phase, the congestion window is set according to the following
equation:

cwnd← C(t−K)3 +max win (3)

whereC is a scaling factor,t is the time elapsed since the last
cwnd reduction,max win is the cwnd reached before the
last window reduction, andK is equal to 3

√

max win · b/C,
whereb is the multiplicative factor employed in the decreasing
phase triggered by a loss event.

According to (3), after a reduction the congestion window
grows up very fast, but it slows down as it gets closer to
max win. At this point, the window increment is almost zero.
After that,cwnd again starts to grow fast until a new loss event
occurs.
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Figure 1: Experimental testbed

B. Live performance evaluations of HSDPA networks

In [13], authors report goodput and one-way delay mea-
surements obtained over both HSDPA and WCDMA networks
from the end-user perspective, focusing in particular on VoIP
and web applications. Regarding TCP, the paper reports that
HSDPA provides better results with respect to WCDMA. In
particular, the maximum value measured for the goodput is
close to the advertised downlink capacity that was 1Mbps,
whereas concerning the one-way delay, the reported measured
average value is around 50ms. In the case of the HSDPA
network, the number of spurious timeouts due to link layer
retransmission is also lower than in the case of WCDMA due
to the employment of the ARQ mechanism in the Node-B
rather than in the RNC.

In [14], authors perform measurements related to physical,
data-link and transport layer, in order to evaluate the inter-
actions between these levels when variations in the wireless
channel conditions occur. Regarding TCP performances, au-
thors report measurements of goodput, retransmission percent-
age and excess one-way delay by using TCP NewReno, TCP
Westwood+, TCP Vegas and TCP Cubic. Experiments were
conducted in both static and dynamic scenarios, in the case of
WCDMA2000 considering one flow or four flows sharing the
downlink channel.

In the single flow case, experiments in both static and
mobile scenarios provide similar results; authors have found
that TCP Vegas achieves a much lower goodput than the
other variants, with the lowest packet loss. The other variants
generally achieve higher goodput at the expense of higher
packet delays, with TCP Cubic exhibiting the largest latency.

In this paper we have not considered TCP Vegas because
of its known problems in the presence of reverse traffic [10],
[17].

In [6] we carried out an experimental evaluation of TCP
NewReno, TCP BIC, and TCP Westwood+ when accessing
UMTS downlink and uplink channels. We found that the three
considered TCP variants performed similarly on the downlink.
In particular we found: 1) a low channel utilization, less than
40%, in the case of a single flow accessing the downlink;
2) a high packet retransmission percentage that was in the
range [7, 11]%; 3) a high number of timeouts, quantified in
6 timeouts over a 100s connection, that was not dependent
on the number of flows accessing the downlink; 4) RTTs
in the range[1440, 2300]ms increasing with the number of
concurrent flows.

III. E XPERIMENTAL TESTBED

Figure 1 shows the employed testbed which is made of
two workstations equipped with the Linux Kernel 2.6.24

# NewReno Westwood+ BIC Cubic

1 383 (+1.6%) 377 (0%) 519 (+37%) 582 (+54%)
2 463 (+11%) 415 (0%) 537 (+39%) 571 (+37%)
3 550 (+5%) 521 (0%) 606 (+16%) 637 (+22%)
4 609 (+11%) 549 (0%) 665 (+22%) 647 (+18%)

Table I: Average values (in ms) of RTT over the HSDPA
downlink

patched with Web100 [18]. TCP flows have been generated
and received usingiperf3, which was instrumented to log
instantaneous values of internal kernel variables, such ascwnd,
RTT, ssthreshby usinglibweb100.

A laptop is connected via USB 2.0 to the User Equipment
(UE), which is a mobile phone equipped with a commercial
HSDPA card provided by a local mobile operator. The UE has
been tested in a static scenario so that handovers could not
occur during measurements. The other workstation, instead,
was connected to the Internet using an Ethernet card.

The considered TCP variants have been evaluated over the
downlink channel in the cases of single,2, 3 or 4 concurrent
connections.

For each experiment run, we have injected TCP flows by
rotating the four considered TCP variants, repeating this cycle
many times, resulting in 55 hours of active measurements
involving 2500 flows. The experiments have been executed
in different hours of the day and over many days. Two
different scenarios have been considered: 1) long lived flows:
the connections lasted 180 seconds each; 2) short lived flows:
short file transfers of size 50 KB, 100 KB, 500 KB, and 1 MB
have been considered.

For each flow we have logged the most relevant TCP
variables and we have computed a rich set of TCP metrics,
such as goodput, throughput, round trip time, number of
timeouts, packet loss ratio. In the case ofN concurrent flows,
the fairness has been evaluated using the Jain Fairness Index
[4] defined as:

JFI =
(
∑N

i=1
gi)

2

N
∑N

i=1
g2i

wheregi is the average goodput obtained by thei-th concurrent
flow.

IV. EXPERIMENTAL RESULTS

In this Section, we report the main measurements obtained
over the downlink channel. Cumulative distribution functions
(CDF), along with average values of each metrics are shown.
In the box-and-whisker diagrams shown in this Section the
bottom of each box represents the25-th percentile, the middle
line is the median value, whereas the top of each box repre-
sents the75-th percentile. The length of the whiskers is1.5
times the interquartile range. The average value is represented
with a cross and the outliers are not shown.

A. Round Trip Time measurements

Figure 2 shows the cumulative distribution functions (CDF)
of the average round trip time (RTT) experienced by a flow for

3http://dast.nlanr.net/Projects/Iperf/
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Figure 2: CDFs of the RTT in the case of one (a), two (b), three (c) and four (d) flows sharing the HSDPA downlink.RTT85

are shown in dashed lines

each considered TCP variant, and in the case of one, two, three
and four flows sharing the HSDPA downlink, respectively.

In all the cases, there is a remarkable difference between
the pair of algorithms formed by TCP NewReno and TCP
Westwood+, and the pair formed by TCP BIC and TCP Cubic,
with the latter producing higher delays.

It is worth noting that TCP Westwood+ provides the lower
round trip times in all considered scenarios. Figure 2 shows
that the 85th percentileRTT85 of TCP Westwood+ is around
530ms whereas theRTT85 of TCP Cubic is around 760ms,
in all the considered scenarios.

Table I summarizes the average RTTs for each considered
algorithm and scenario: in parenthesis we report the relative
RTT percentage increase with respect to the lowest average
value. In particular, in the case of the single flow, TCP Cubic
provides an average RTT that is 54% higher than that of TCP
Westwood+.

It is interesting to compare average values measured over
the HSDPA downlink with those obtained over UMTS access
links and reported in [6]. For the HSDPA network, measured
values were in the range [377,665]ms, whereas for the UMTS
network they were in the range [1102,1550]ms.
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Figure 3: Box-and-whisker plot of number of timeouts per
connection

B. Timeouts

Figure 3 shows a box-and-whisker plot of measured number
of timeouts per connection when one, two, three or four flows
shared the HSDPA downlink.

Again, there is a remarkable difference between the
NewReno-Westwood+ TCP pair, and the BIC-Cubic TCP pair.
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# NewReno Westwood+ BIC Cubic

1 0.052(0%) 0.053 (+2%) 0.10 (+92%) 0.16 (+207%)
2 0.11 (0%) 0.12 (+9%) 0.21 (+90%) 0.33 (+200%)
3 0.17(+6%) 0.16 (0%) 0.31 (+93%) 0.56 (+250%)
4 0.29(+3%) 0.28 (0%) 0.46 (+64%) 0.80 (+185%)

Table II: Average values (in %) of packet retransmissions over
the HSDPA downlink
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Figure 5: Box-and-whisker plot of retransmission burst size

In fact, in all the cases the 50% of the connections that use
NewReno or Westwood+ experience around a single timeout
in 180s; on the other hand, BIC or Cubic flows experience
three timeouts during the same connection duration.

Finally, it is worth noting that the average number of
timeouts obtained over HSDPA is remarkably lower with
respect to the case of the UMTS downlink, where the average
was around 6 in 100s [6].

C. Packet Retransmissions

Figure 4 shows the cumulative distribution functions of
the packet retransmission percentage in the case of HSDPA
downlink, whereas Table II reports the average values. Also
in this case, TCP BIC and TCP Cubic provoke higher pack-
ets retransmission percentages than those of TCP NewReno
or Westwood+, with TCP Cubic generating retransmissions
percentages three times larger than TCP NewReno or TCP
Westwood+.

From Table II, the average packet retransmission percent-
ages belong to the range [0.052,0.80]%; these values are
negligible with respect to those found in the UMTS downlink
channel [6], where percentages in the range from 7% to 11%
were reported.

Another important aspect to consider is the burst size of
the loss events, which is the number of packets that have to
be retransmitted when a loss event occurs. Figure 5 shows
a box-and-whisker diagram of the retransmission burst size
for the considered protocols in all the considered scenarios.
It shows that the retransmission burst sizes decrease when

# NewReno Westwood+ BIC Cubic

1 1443(-1%) 1406 (-3%) 1456 (0%) 1439 (-1%)
2 790 (-2%) 777 (-4%) 809 (0%) 806 (˜0%)
3 500 (-1%) 488 (-3%) 505 (0%) 503 (˜0%)
4 366 (-4%) 374 (-3%) 374 (-3%) 386 (0%)

Table III: Average per-connection goodput (in Kbps) over the
HSDPA downlink

the number of concurrent flows increases and that TCP West-
wood+/NewReno pair tends to produce shorter retransmission
burts with respect to TCP BIC/Cubic pair in the case of a
single flow accessing the downlink.

D. Goodput, Aggregated Goodput and Fairness

Table III reports the average per-connection goodput mea-
sured over the HSDPA downlink. All the algorithms provide
a similar average goodput per-connection, which are around
1400Kbps in the single flow case. By increasing the number
of connectionsN , the goodput decreases roughly as1/N .

Figure 6 shows the aggregate goodput, which is the sum of
the goodput of each connection when more concurrent flows
share the downlink. In all the considered cases, each TCP
variant provide similar values for the aggregated goodput that
is around 1400 Kbps.

Also the measured Jain fairness indices, obtained when
many TCP flows share the HSDPA downlink channel, are all
close to 0.98, which is a high value.

E. Short file transfers

In this subsection we report the goodput obtained in the case
of short file transfers, i.e. when files of 50 KB, 100 KB, 500
KB, 1000 KB are downloaded over a HSDPA channel. Figure
7 shows a Box-and-Wisker plot of the goodput obtained for
each considered TCP variants in the case of one, two, three
or four flows sharing the downlink.

Let us consider the case of50 KB file size. When a single
50 KB file is downloaded (Figure 7(a)), all the considered
variants perform similarly obtaining an average goodput inthe
range[610, 690] kbps that is remarkably lower than1400 kbps
obtained in scenario of the long lived connections. In the case
of two files are downloaded simultaneously, the per-connection
goodput obtained is in the range[550, 590] kbps which is
less than800 kbps that is the average per-connection goodput
obtained in the case of long lived connections (see Table III).
When the number of simultaneous download increases to 3
or 4, the average per-connection goodput recovers the same
values obtained in the case of long lived connection.

When the file size increases to100 KB (Figure 7 (b)), in
the case of a single download the goodput obtained is in the
range[850, 950] kbps, which is still below1400 kbps that is
the goodput obtained in the long lived connection scenario.
Finally, the goodput obtained when two or more 100 KB files
are downloaded recover the same values obtained in the long
lived scenario.

Finally, regarding the cases of500 KB and 1000 KB files
the average per-connection goodput obtained are similar to
those obtained in the long lived scenario.
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Figure 4: CDFs of the packet retransmission percentage in the case of one (a), two (b), three (c) and four (d) flows sharing
the HSDPA downlink

Thus, we conclude that even in this scenario the goodput
obtained by each of the considered TCP variants does not
differ significantly, even though it can be remarkably lower
with respect to the long lived scenario if the file size is less
than500 KB.

V. D ISCUSSION OF RESULTS

In this Section we focus only on the case of the single
flow. For any of the considered TCP algorithms, we select the
“most representative” flow dynamics among all theN runs
we have repeated as follows: we define the vectorx̄ whose
components are the values of goodput, RTT and number of
timeouts, averaged over all the measured runsri, with i ∈
{1, . . . , N}; then, we evaluate for each runri the vectorxi

whose components are the values of the correspondent goodput
and RTT, averaged over the connection length duration, and
the number of timeouts. The index̂i that corresponds to the
most representative flow is then selected as follows:

î = arg min
i∈{1,...,N}

‖ xi − x̄ ‖

where ‖·‖ is the euclidean norm. In other words the “most
representative” flow is the single experiment realization that
is closer to the average measured values.

Figure 8 shows thecwnd, RTT and goodput dynamics of
the representative flows.

Figure 8 (c) and 8 (d) shows that TCP BIC and TCP Cubic
employ a more aggressive probing phase that tends to generate
more congestion episodes with respect to TCP Westwood+ and
TCP NewReno. This aggressiveness provokes a higher number
of timeouts, larger retransmission percentages and delaysas
reported in Section IV. On the other hand, the linear probing
used by TCP NewReno and TCP Westwood+ keeps low the
number of retransmissions and timeouts. Moreover, in the case
of TCP Westwood+, the settingcwnd = BWE ·RTTmin after
congestion clears out the buffers along the path connection
[16], thus providing the smallest queueing delays among the
considered TCP variants.

From results in Section IV, it is possible to assert that the
considered TCP variants provide roughly the same average
goodput over HSDPA downlinks. However, Figure 8 shows
that the goodput dynamics of TCP Cubic and TCP BIC are re-
markably burstier with respect to those of TCP NewReno and
TCP Westwood+. Moreover, Cubic and BIC RTT dynamics
exhibit large oscillations around the average value due to the
aggressive probing phases, whereas NewReno and Westwood+
show a much more regular RTT dynamics.

Finally, the experimental results show that TCP BIC and
TCP Cubic provide the worst outcomes in terms of queuing
delay, number of timeouts and retransmission percentage.
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Figure 6: CDFs of the aggregated goodput in the case of one (a), two (b), three (c) and four (d) flows sharing the HSDPA
downlink

VI. CONCLUSIONS

In this paper we have tested four relevant TCP congestion
control algorithms over a commercial HSDPA network. Key
performance variables such as goodputs, retransmissions per-
centage, number of timeouts and round trip times have been
measured.

All the TCP variants provide comparable goodputs but
with a larger number of retransmissions and timeouts in the
case of BIC/Cubic TCP, which is a consequence of their
more aggressive probing phases. On the other hand, TCP
Westwood+ provides the shorter round trip delays.

The experiments have shown that the HSDPA downlink
channel does not exhibit any remarkable issues, achieving
good goodput, low number of timeouts and retransmission
percentages when using classic TCP NewReno or TCP West-
wood+, both implementing standard congestion avoidance
phase. The more aggressive probing phase of BIC/Cubic TCP
does not improve the goodput and it increases the number of
timeouts and retransmissions, which is bad for the network.Fi-
nally, RTT is also higher with respect to NewReno/Westwood+
due to higher queuing time. This may be an important result
to be considered since TCP Cubic is currently the default
congestion control algorithm in the Linux OS. Moreover, TCP
Westwood+ provides the shorter round trip times due to the
cwnd setting after congestion that clears out the queue backlog

along the connection path [16].
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Figure 8: cwnd, RTTand goodput dynamics of the “most representative flow” in thesingle flow scenario
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