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Abstract— In this paper, the problem of permanent bounded
cyber-attacks on networked control systems is treated. After
a characterisation of malicious cyber attacks, the danger of
permanent bounded cyber-attacks of two types is proved, the
step attacks on system with invariant zero with zero real part
and the free attacks. Simulation examples demonstrate the
obtained results.

Index Terms— Cyber-Attack, Geometric Approach, Mali-
cious Attack, Permanent Attack, Invariant Zero, Networked
Contol System.

I. INTRODUCTION

Due to the increase of the use of the network in control
systems, a new element has to be taken into account in their
design: the security of your system w.r.t cyber attacks. You
have to analyse the weakness of the networked communica-
tion to know the possible input and output losses, additions
of deception signals. Networked Control Systems (NCSs)
vulnerabality to cyber-threats are regularly discovered [1].
Therefore, the security of NCSs become increasingly critical,
which motivates our interest in the analysis on effects of
the weakness of the networked communication, so as to be
conscious of the possible consequences of malicious cyber-
attacks.

Development of network, even more wireless technology,
enable controlled system to receive/send data, measurements
far from the controller. It may improve the performance
or the flexibility of the system, but if you consider that
hacking is possible, it increases the vulnerability to cyber
attacks. When you design a system, you cannot know which
networked sensor will be hacked, so you have to consider
that they are all unsecured.

Malicious attacks, i.e stealthy and critical (see [2], [3], [4])
can be related to invariant set [5], output nulling subspace
of linear system, invariant zero, controlled and condition
invariants [6], [7], [8], the geometric approach [8] will be
used in the cyber-attack context. The conditions enabling
hackers to launch steathy attacks on a real system are studied.
To avoid these conditions to happen, they have to be taken
into account during the design procedure.

Recently, cyber-attacks on NCSs have currently attracted
considerable attention. Some works were focused on per-
fectly attackable systems [2] and most of the cyber-attacks
mentioned in literracy are exponential attacks [3], [9]. These
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attack can quickly reach saturations on states, controls or get
far from a linearization point so that the system would stop
to fulfill its linearity conditions. Moreover, these attacks can
be detected since they are short term attacks which disrupt
the system or launch emergency stop. The originallity of this
work lies in its focus on permanent attacks with a limited
but permanent impact on a NCS, which can be especially
damaging, degrading product quality or energy consumption
and thus rentability of a plant for instance. An extended
malicious attacks formulation is proposed.

This paper is organized as follows. Problem statement,
definitions and important theorem of the field are given in
Section II. Then, the attack presention and possible protec-
tion, as a main contribution are described in Section III.
Section IV shows examplesillustrating the danger of some
permanent attacks. Finally, Section V concludes the paper.

Notation : X† denotes pseudoinverse of X, B =Im(B),
C = Ker(C), < X|Y >= Y +XY +X2Y + . . .+Xn−1Y ,
with X ∈ Rn×n and Y subspace of Rn.

II. PRELIMINARIES

A. System and problem statement

Let us consider linear systems of the following form{
ẋ(t) = Asx(t) +Bsu(t) +Baa(t)
y(t) = Csx(t) +Daa(t)

(1)

where x(t) ∈ Rn is the state vector, y(t)∈ Rps is the
output, u(t) ∈ Rms is the vector of control inputs and
a(t) ∈ Rds represents the attack on control inputs and/or
measurement signals so with rank([Bs Ba]) = rank(Bs),
rank([CTs DT

a ]) = rank(Cs) and Im(Ba) ∩ Im(Da) = 0.The
danger of a (Ba, Da)-attack will be studied, but before
system (1)will be simplified.

If Da = 0, i.e the attacker do not falsify measure-
ments to hide his attack. With Da 6= 0, the original
nullspace of Cs can be artificially augmented. To sim-
ply take into account Da from the attacker point of
view, we can settle C such that Im(C) = Im(Cs) ∩
Ker(Da). If each yi(t) represent a real measurement,

Da =
[

0 . . . 0 CTsk1
. . . CTskl

]T
, (k1, . . . , kl) ∈

[1, p]tl, so we can define C =
[
CTskl+1

. . . CTskp

]T
,

(kl+1, . . . , kp) ∈ ([1, p] \ {k1, . . . , kl})p−l. Other way to
study attacked system as a strictly proper system (D = 0)
can be found in Aling et al [8], [10]. In this paper, Bs
will be neglected, As and the unhackable control inputs are
considered giging a stable system, herein A = As + BsK
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is Hurwitz, this simplification is relevant as the effects on
the remaining control inputs with corrupted measurement
are treated in Mo [2] (attack on measurement only). For
simplification, the following attacked part of the NCS in the
sequel of the paper (with Ba = B) is studied:{

ẋ(t) = Ax(t) +Ba(t)
y(t) = Cx(t)

(2)

where A is Hurwitz, x(t) ∈ Rn is the state vector, y(t)∈ Rp
is the output, and a(t) ∈ Rd represents the attack on control
inputs, p 6 ps and d 6 ds. A goal of a hacker can be to
find an attack a(t) maximizing state effects (maybe reaching
critical states or constant errors) and, ideally, such that y(t) =
0,∀t ≤ 0 or less than an ideal value as far as possible in
order to keep detection from attack/fault detectors. Thus the
following bounded permanent attack and the stealthy attack
[3] can be defined.

Definition 1: A system is permanently boundly attackable
if and only if ∀ T ∈ R+∗, ∀ α ∈ R+∗, it exists a
bounded attack signal a(t) and a positive real T1 such that
∀ t > T1, ||x||2,[t,t+T ] > α. a(t) is called a bounded
permanent attack.

Remark 1: The permanent bounded attack a(t) reachs an
effect : ||x||2 > α at least periodically, but for whatever
chosen period.

Definition 2: [3] An attack signal a(t), t > 0, is
ε−stealthy, if ‖y‖∞6 ε.

Undetectable attacks are studied, we recall one lemma
and one theorem from Pasqualetti [4] (Lemma 3.1) and the
fundamental lemma of geometric approach from Basile [8].

Lemma 1: For the system (1), the nonzero attack a(t) is
undetectable if and only if y(x1, a, t) = y(x2, 0, t) for some
initial state x1, x2 ∈ Rn and for all t > 0, or by linearity
y(x0, a, t) = 0 for x0 = x1 − x2. 5

Lemma 2: Any state trajectory x|[t0,t1] of (2) belongs to
a subspace L ⊆ Rn if and only if x(t0) ∈ L and ẋ(t) ∈ L
almost everywhere in [t0, t1]. 5

B. Review of some geometrical results

For a given system, different categories of zeros ex-
ists and are related, as transmission, input-(and/or)-output-
decoupling, blocking zeros. From a cyber attack point of
view, invariant zeros defined as follows only will be consid-
ered.

Definition 3: s0 ∈ C is an invariant zero of system (2):

rank
[
s0I −A −B

C 0

]
< n+ min(d, p). (see [7])

Remark 2: For other definitions, which can be equivalent
to definition 3 (for some conditions as minimality), you can
read references [8], [11].

Now definitions of the geometric spaces [8], [6] can be
given.

Definition 4: Consider a pair (A,B), a subspace V ⊆ Rn
is said to be an (A,B)-controlled invariant if AV ⊆ V +B.

Definition 5: Consider a pair (A,C), a subspace S ⊆ X
is said to be an (A,C)-conditioned invariant if A(S∩C) ⊆ S,
where C = KerC.

Lemma 3: [8] A subspace V ⊆ Rn is an (A,B)-
controlled invariant if and only if there exists at least one
matrix F such that (A+BF )V ⊂ V . 5
• V∗ = maxV(A,B, C) the maximal (A,B)-controlled

invariant contained in C and it is called the maximal
output nulling invariant.

• S∗ = minS(A, C, B) the minimal (A, C)-conditioned
invariant containing B.

• R∗ the maximal outputnulling controllability subspace
i.e R∗ =< A+BF |B ∩ V∗ > [6], F from lemma 3.

V∗ can be obtained with Algorithm 4.1.1 and 4.1.2 [8].
With an attack which is 0−stealthy, x(t) remains in the
maximal output nulling invariant. Theorem of Antsakilis et
al [7] on the dimV∗ is recalled.

Theorem 1: dimV∗ = q + dimR∗, with q the number of
invariant zeros of the system (2).

Existence of invariant zeros (or m < p) ensures the
existence of undetectable attack but not only as it will be
detailed in the next section.

III. ATTACK AND PROTECTION

A. Malicious attack

Based on Basile and Marro work [8], (chapter 4, theorem
4.1.4 or 4.1.6), or Theorem 5.1 of Pasqualetti et al. [12],
malicious attacks will be defined. We give two expressions
for subspace R∗ which is also the reachable set on C, it can
be obtained by different ways, R∗ =V∗ ∩ S∗ but also R∗ is
the minimal (A + BF )-invariant containing V∗ ∩ B), with
F a Rm×n-matrix such that (A + BF )V∗ ⊆ V∗. So to be
able to write a generic expression of output nulling inputs,
the following lemma from Piziak[13] will be used,

Lemma 4: Let Γ and Λ be complex m2×m1 and m2×m3

matrices, respectively, with m1 < m2, m3 < m2. Then

2ΓΓ†[ΓΓ† + ΛΛ†]†ΛΛ† = Orthohgonal Projection on
Im(Γ) ∩ Im(Λ) 5

With V a basis of V∗:

BV∗ = B†[BB† + V V †]†V V † and BV∗R = BV∗ (3)

where R is the matrix of the rank(BV∗)-first columns of the
matrix of right singular vector. Whatever v ∈ Rrank(BV∗),
BV∗v is a free part of output nulling control input as
BBV∗v ⊆ V∗ ∩ B thanks to lemma 4.

A change of basis enhance the structure of a given system.
P =

[
P1 P2 P3

]
with Im(P1) = R∗, Im([P1 P2]) =

V∗ and P3 such that P is invertible. In the new basis, with a
control input/attack a(t) = FTx′(t) + a′(t) (F such that V∗
(A+BF )-invariant see lemma 3) system (2) becomes

A′=P−1AP =

 A′11 A′12 A′13
0 A′22 A′23
0 0 A′33

 , (4)

B′T =T−1B=

B′11 B′12
0 0
0 B′32

, C ′=CT =
[

0 0 C ′3
]
.

The two first subspaces are unobservable (thanks to state
feedback Fx(t) or originally. The first one is controllable
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but to be part of the state that can be freely driven, we
must have V∗∩ B 6= 0. a′(t)T =

[
v(t)T w(t)T

]
and

B′11 = T−1BV∗ . The second one is the subspaces linked
with invariant zero, A′22 is a squarre matrix of size q (see
Th.1).

Link with the kalman decomposition can be settled:

• Uncontrollable and Unobservable modes are invariant
zeros with F = 0.

• Controllable and Unobservable modes ”are” in R∗.
• Uncontrollable and observable modes ”are” neither in-

variant zeros, nor in R∗.
• Controllable and observable modes may be or not be

moved in a unobservable subspace via a state feedback.

Theorem 2: a(t) is a continuous 0-stealthy attack if and
only if it exists an (A+BF )-controlled invariant W ⊆ V∗,
a(t) = Fx(t) + BWv(t) where BW is a matrix of full
column rank such that Im(BBW) ⊆ W . 5

Proof: (if) As W ⊆ V∗ a similar proof to [12] is
straightforward and a similar structure to (4) can be obtained.
(only if) a is considered as a continuous 0-stealthy i.e
undetectable attack, so from lemma 1, ∃ x0 such that
y(x0, a, t) = 0. We note W = {x(x0, a, t), t > 0} and
W = span(W) and also note A = {a(t), t > 0} and
A = span(A). BA is the basis of A and thus ∃ λ function
from t to Rdim(A), a(t) = BAλ(t). W is defined as the
maximal (A, Im(BBA))-controlled invariant contained in C,
so ∃ matrix F1 such that (A + BBAF1)W ⊆ W . As
W ⊆ C, W ⊆ V∗. We can write a(t) = BAF1x(t) +
BAλ(t) − BAF1x(t) = Fx(t) + BAv(t), with BA full
column rank, F = BAF1 and v(t) = λ(t) − F1x(t). From
the fundamental lemma 2, as a is continuous, ẋ(t) ∈ Im(W),
as (A+BBAF1)x(t) ∈ Im(W), Im(BBA) ⊆ W .

In theorem 2, it is shown that the malicious attack of [12]
can have a more various presentation, using a subspace of
V∗. For instance, if with measurement takeover, a subspace
W is unobservable, BWv(t) are malicious attacks.

B. Permanent attacks

If only Fx(t) part of the malicious attack is considered,
the attacker has to proceed with state feedback so he has
to be able to design a functional observer to reconstruct
Fx(t). Nevertheless seeing this attack with the invariant zero
(s0) point of view, the control input can be built with no
knowledge on the state thank to the structural knowledge of
the system; it can be seen as an open loop attack. A invariant
zero based attack has to have some specific initialisation
conditions. (which are automatically satisfied with a state
feedback). Knowing the invariant zero s0, the attacker could

search for the null space K of
[
s0I −A −B

C D

]
and

obtain K = span
{[
xT0 aT0

]}
, x0 is the state-zero direction

and a0 is the input-zero direction, then the input a(t) =

λa0Re(es0t) couls be settled, so

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Ba(τ)dτ

= eAt(x(0)− λx0) + eAtλx0 +

∫ t

0

eA(t−τ)Ba(τ)dτ (5)

xf (t) = eAtx(0) is the attack-free system behavior, xa(t) =

eAtλx0 +
∫ t
0
eA(t−τ)Ba(τ)dτ is the zero based attack be-

havior, so Cxa(t) = 0, thus the anomaly due to the fact
that the attack does not fulfilled the initialisation condition
is −CeAtλx0. If we consider that x(0) = 0, with the
attack a(t), the output can be written : y = −CeAtλx0. As
whatever vector in

{
λ
[
xT0 aT0

]
, λ ∈ R

}
can be choosen to

settle the attack, so with a λ small enough detection become
impossible.

Theorem 3: If system (2) has at least one invariant zero
with zero real part, ∀ ε > 0, the system is permanently
boundly attackable with a ε-stealthy attack.

With x0 the state-zero direction, λ = ε/(2||Cx0||γ) and

δ =
ln(

ε+2||Cλx0γ||
ε )

ζ where γ and ζ such that ||eAt|| 6 γe−ζt,
we define a(t) =

∑l
i=0 atk(t) consisting in a finite sum of

attacks of the form ati(t) =

{
0 t < ti

λa0Re(es0(t−ti)) t > ti
,

with ti = iδ, a(t) is called a step attack. 5
Proof: First if the system has an invariant

zero s0 with zero real part, ∃ (x0, a0) with[
s0I −A −B

C D

] [
x0
u0

]
=

[
0
0

]
. λ, for a given ε is

defined as follows : λ = ε/(2||Cx0||γ). Moreover as A is a
Hurwitz, ∃ (γ, ζ) ∈ R2∗+, ||eAt|| 6 γe−ζt. For a given ε,

we define δ =
ln(

ε+2||Cλx0γ||
ε )

ζ ⇒ ||Cλx0||γ e−ζδ

1−e−ζδ 6 ε
2 .

We consider the attack a(t) =
∑l
i=0 atk(t)

consisting in a finite sum of attacks of the form

ati(t) =

{
0 t < ti

λa0Re(es0(t−ti)) t > ti
, with ti = iδ.

If s0 = 0, a(t) is a step function, if s0 = ib, a(t) is a
sinus where its amplitude is a step function. For t ∈ [t0, t1],
||y(t)|| 6 ||Cλx0||γe−ζt 6 ε/2 6 ε. For t ∈ [ti, ti+1],
recurrently,

||y(t)|| 6 ||Cλx0||γ(e−ζt +

i∑
k=1

e−kζδ)

6 ||Cλx0||γ(e−ζt +
e−ζδ

1− e−kζδ
) 6 ε/2 + ε/2 6 ε

So the attack is ε-stealthy. The attack a(t) is contructivly
bounded, and, for a given α, it exists a real T1 such that
∀t > T1, ||x||2,[t,t+T ] > α with well chosen l i.e well chosen
number of steps.

Theorem 4: If system (2) has no invariant zero with
positive real part and BV∗ 6= 0 with BV∗ defined in (3), the
system is permanently boundly attackable with a ε-stealthy
attack. a(t) = Fx(t) +BVv(t) is called a free attack. 5

Proof: Straightforward from define of BV∗ with con-
stant v, y(t)=0 and ||x∞|| is proportional to ||v|| as A stable.
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C. Security Measure

The system designer has to be careful with the data com-
municated via the network, (for supervision for instance).
Decreasing transmitted data or at least real time transmitted
data increases security on the system. Data transmission
interception enable hacker to identify more accuratly the
system which could help him to launch stealthy attacks
as they can need a good knowledge of the aimed system.
Multiplying sensors, even with low accuracy, i.e cheap,
enable to increase the hacking difficulties.

The design of the system is critic from a security perspec-
tive. Some hardware particularities will impact the invariant
zeros sets, sets defined with respect to the considered hacked
signals. The communication choices for control inputs and
measurement outputs will affect the ability for an attacker to
create some unobservable attacks. Avoiding zeros and even
more with zero real part seem to be the first step of the
protection against permanently bounded attacks.

Invariant zeros are very sensitive toward uncertain pa-
rameters. If these parameters can be modulated on our
system, invariant zeros variations could enable to detect
attacker unaware of these variations. Nevertheless attacker
can develop robust attack when he is able to get enough
information.

IV. EXAMPLES BASED ON THE FOUR TANKS SYSTEM

First the nonlinear form of the four tanks system [14] is
given


ḣ1 = − s1

S1

√
2gh1 + s3

S1

√
2gh3 + γ1k1

S1
u1

ḣ2 = − s2
S2

√
2gh2 + s4

S2

√
2gh4 + γ2k2

S2
u2

ḣ3 = − s3
S3

√
2gh3 + (1−γ2)k2

S3
u2

ḣ4 = − s4
S4

√
2gh4 + (1−γ1)k1

S4
u1

(6)

with y = [h1;h2], hi are water levels, Si and si are sections
(tanks and pipes), g is the standard gravity, ki are the
gains of pump, ui are pump voltages and γi are dispatching
parameters. Second a linearized version of this system [14]
around the point (h01, h

0
2, h

0
3, h

0
4) is obtained.

ẋ =


−f1 0 S3f3/S1 0

0 −f2 0 S4f4/S2

0 0 −f3 0
0 0 0 −f4

x

+


γ1k1/S1 0

0 γ2k2/S2

0 (1− γ2)k2/S3

(1− γ1)k1/S4 0

 a
y =

[
1 0 0 0
0 1 0 0

]
x

(7)

with xi = hi − h0i , ai = ui − u0i where fi = si
Si

√
g

2h0
i

The location of the zeros of this system depends on the
parameters γ1 and γ2, S1 = S3 = 28, S2 = S4 = 32,
s1 = s3 = 0.071, s2 = s4 = 0.057, g = 981.

A. A by-step Attack

By setting γ1 = γ2 = 0.5, h01 = 13.039, h02 = 20.23,
h03 = 3.279, h04 = 5.027, u01 = u02 = 3.4, k1 = 3.33
and k2 = 3.35, we obtain a zero located at the origin. As
explained in section III-B, the by-step attack can be effective,
with this zero, as it has no imaginary part, the step attack
represented in figure is used. The effects of this input on
the water levels of the four tanks linearised system can be
visualize in Fig.1b for the linearized model and in Fig.1c.
The divergence of states 3 and 4 can be seen whereas states
1 and 2, the measured ones, remain at a very low level. This
level can be arbitrarly low by choosing the step amplitude
of the control input. Obviously, the smaller the step is, the
slower the divergence is, but with stealthiness time is not a
constraint for the attack.

B. Free attack

Now parameters of the four tanks system are settled as
follows: h01 = 12.262, h02 = 12.7825, h03 = 1.634, h04 =
1.409, u01 = u02 = 3, k1 = 3.33, k2 = 3.35.

An additional attack is added on sensors: Da =[
0 0 0 0
0 1 0 0

]
(see system (1)), which lead to study the

system (7) with the single output y(t) = x1(t) (y2(t)
corrupted is ignored, see section II-A). Malicious attacks are
of the form :

a(t)=

[
a1(t)
a2(t)

]
=

[
0 0 −A3f3/(γ1k1) 0
0 0 0 0

]
x(t)+

[
0
1

]
af (t).

Applying a stepped attack af (t) i.e a step a2(t) as in
Fig2a as permanently bounded attack, the consequences on
the water level are as presented in Fig.3b which could be
detected with redundant sensor on state x2, x3 or x4. The
same attack signal a(t) on the real nonlinear system (6)
gives the water level showed in Fig.2c, as the attack is low
||u(t)|| < 0.11, the linearization condition are still rather
respected and so |h1(t) − h01| remains low. With a higher
attack (see Fig.3a), the undetectability on the linearized
model remain perfect whereas with a nonlinear model, effects
on h1 cannot be neglected as it can be seen in Fig.3c.

V. CONCLUSION

This paper enhanced the possibility hopefully with rel-
atively strict assumptions and the danger of permanently
bounded attacks. Sufficient conditions have been provided
for the existence of two different kinds of these attacks, the
step attack and the free attack. Taking into account these
conditions enables system designer to avoid these attacks.
The danger of each attack (step and free) are shown to be
real via two numerical examples. Futher works lead us to
analyse the danger of zero with a ”little” real part.
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