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Abstract— A hyper-redundant robotic arm is a manipulator
with many degrees of freedom, capable of executing tasks in
cluttered environments where robotic arms with fewer degrees
of freedom are unable to operate. This paper introduces a
new method for modeling those manipulators in a completely
dynamic way. The proposed method enables online changes
of the kinematic structure with the use of a special function;
termed “meta-controlling function”. This function can be used
to develop policies to reduce drastically the computational cost
for a single task, and to robustly control the robotic arm, even in
the event of partial damage. The direct and inverse kinematics
are solved for a generic three-dimensional articulated hyper-
redundant arm, that can be used as a proof of concept for
more specific structures. To demonstrate the robustness of our
method, experimental simulation results, for a basic “meta-
controlling” function, are presented.

I. INTRODUCTION

Robotic arms are one of the most utilized products of
robotics, with both scientific and industrial applications
thanks to their efficiency, their accuracy, and their ability
to work non-stop in challenging environments. They consist
of sequential links that have the ability to move with respect
to the previous link, in a way that the structure could be
described by a kinematic chain. In literature, a kinematic
chain is often categorized according to the Degrees of
Freedom (DoFs). Arms with 3 DoFs are able to move in
the 3-dimensional space, while arms with 6 DoFs are able
to both move and rotate in the 3-dimensional space. Arms
with 7 DoFs mimic the human arm and when the degrees of
freedom are more than 6, they are termed hyper-redundant.
Hyper-redundant arms use the extra DoFs for maneuvers in
space when there are obstacles that block the motion for
ordinary arms. As such, arms with many or even infinite
degrees of freedom, hyper-redundant robotic arms, are ideal
for operating in complex environments where the free space
is limited [1]; such as cluttered environments.

Robotic arms (manipulators) have one end fixed and the
other end, usually carrying an instrument or a gripper,
moving through free space; the free moving end is called the
end effector. Inverse kinematics algorithms are responsible
for moving the end effector from the start pose (position
and orientation) to the goal pose. Moving the end effector
to the goal pose requires to move each link of the manip-
ulator through free space without any collisions. Finding
the required motions in an efficient manner can be cast
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as a minimization problem and there are optimal solutions
for non-redundant arms and near optimal for redundant
arms [2].

Direct kinematics is the analytical solution that calculates
the end-effector pose for a given arm configuration; inverse
kinematics is the calculation that defines the configuration of
the arm to achieve a desired end-effector pose. The standard
formulation for the direct kinematics can be explained by
considering the robotic arm as a sequence of links and
joints starting from its base and ending up to its end-
effector. Every link has the ability to move with respect
to the previous link, and such a kinematic structure is also
known as a kinematic chain. Each link’s pose is described
by a transformation matrix with respect to the previous
link. Given the transformation matrices of all the links of
the manipulator, the pose of the end-effector, namely the
direct kinematics, can be easily calculated by multiplying all
transformation matrices, starting from the first link until the
last one. The analytical solution is the same for both robotic
arms and hyper-redundant manipulators.

The formulation of the inverse kinematics problem is done
by the so called differential kinematics, when the robotic arm
has a complex kinematic structure. In such a formulation,
the relation between the motion of each link and of the end-
effector is described by a Jacobian matrix. Then, the inverse
of the Jacobian matrix is multiplied with the desired linear
and angular velocities of the end-effector to get the necessary
velocities of each joint. When the dynamic constraints of the
manipulator are not considered, the velocity space trivially
maps to the pose space. In most cases the Jacobian matrix
of redundant structures is not invertible, so a pseudo-inverse
matrix is used instead, produced by the damped least squares
method [3], [4].

This paper proposes an analytical solution on the direct
and the inverse kinematics problems for hyper-redundant
manipulators, by modeling the problems in a dynamical way.
The proposed method provides the ability to not only control
the robotic arm but also its kinematic structure, to reduce the
complexity by reducing the unnecessary DoFs. In addition,
structure failures due to damaged links, are also handled
by the discussed algorithm. The remainder of this paper
is structured as follows, related work and the traditional
approach to these problems is discussed in section II. The
proposed solution with a simple application are presented
in section III. Section IV demonstrates the efficiency of
the proposed method with simulated experimental results.
Finally, the paper concludes with lessons learned and a
discussion of future work in section V.
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II. BACKGROUND

A. Related Work

Hyper-redundant robotic arms are useful, for operations
in extremely cluttered environments with only a small free
operational space as demonstrated by Ma et al. [5] who
developed a hyper-redundant arm to make real time, precise
operations inside nuclear reactors. Liljeback et al. [6] created
a snake fire-fighting hyper-redundant robot, and Ikuta et
al. [7] used a 9-DoF arm to operate during surgeries in deep
areas.

There are many technical difficulties arising from having
big open-chained kinematic structures because of the ex-
ponential increment of the splines forces at the joints to
all the body. This problem prohibited the application of
the first hyper-redundant manipulators in three-dimensional
space. For example studies such as the one by Chirikjian and
Burdick [8] used a 2 dimensional arms with 30 degrees of
freedom. There are some solutions that have been proposed
addressing some of those technical difficulties such as studies
that focus on building hyper-redundant robotic arms [9], [10],
[11], [12], [13], [14], and studies that deal with the design of
joints with many DoFs per joint, used for hyper-redundant
arms [15], [16], [17].

Leaving aside the technical limitations there are also
problems deriving from the complexity of the kinematic and
dynamic models of those arms. The complexity issues have
been extensively discussed by Chirikjian [1] where some
macroscopic curve fitting solutions have been imposed. The
complexity of dealing with hyper-redundant arms, according
to previous studies, is a problem that is treated as four sub-
problems: The dynamics that aim to control the robotic arm
more efficiently with respect to the forces the robotic arm
accepts and exerts. Improvements in the kinematics which
aim to compute more efficiently the kinematic chain and
control the actuators. Obstacle avoidance methods which aim
to move the hyper-redundant manipulator in environments
with obstacles in an optimal manner. Fourth fault tolerance
mechanisms which aim to control a hyper-redundant robotic
arm even when it is damaged.

For the dynamics problem a first continuum approximation
approach with the backbone curve and the ability to paral-
lelize the problem was introduced by Chirikjian [18]. Other
ways to solve the dynamics problem for a hyper-redundant
arm have been presented by Ma et al. [19]. In particular,
a dynamic control scheme is introduced in a constrained
operational space. In addition with a dynamic formulation
for the hyper-redundant robotic arm, the solution is provided
efficiently and the execution is accurate. Moreover, other
approaches as presented in the work of Oda et al. [20] aimed
to design manipulators by focusing on the desired force at the
end-effector to achieve a desired acceleration. Other studies
use biomimetic approaches to solve efficiently the problem
(Godage et al. [21], and Kang et al. [22]) that consider also
the hydrodynamic forces in underwater applications, and also
studies based on the screw theory can be seen in the work
of Gallardo et al. [23].

For the kinematics, which is the problem we are focusing,
the pioneering work by Chirikjian and Burdick [24] focused
on modeling and controlling efficiently hyper-redundant arms
and providing obstacle avoidance algorithms. They showed
that seeing the macroscopic geometrical features of those
arms and using the backbone curve technique, leads to
describing the structure with less variables and reduces the
computational needs. With this technique the effective paral-
lel computation for each backbone curve is introduced; then
some numerical improvements in the inverse kinematics [25]
and formulation followed [26] that led to near optimal
motion planners [27]. Other near optimal planners, that also
use some points of the structure to determine an optimal
shape of the hyper-redundant arm, have been presented from
Zanganeh and Angeles [28]. Another approach by Kobayashi
et al. [29] tries to solve the problem by defining first the
shape for the robotic arm and then each joint is evaluated to
satisfy the desired shape. Some other techniques for reducing
the computational cost, as the one proposed by Ebert-Uphoff
and Chirikjian [30], assume that every joint has discrete
and finite possible positions. So by using a tree structure
they reduced the computations for the results, since there is
no need for solving the inverse kinematics in the classical
analytical differential way. Some studies by Fahimi et al. [31]
combine the curve backbone concept with the discrete joints
assumption with some new mode shapes, to offer a velocity
solution for spatial hyper-redundant arms. Other geometrical
approaches by Yahya et al. [32], [33] offer near optimal
solutions, and show that setting the angles of the adjacent
joints equal leads to computationally efficient results, and
provides more stable behavior of the arm. Another solution
by Nearchou [34] has a higher level approach and uses
genetic algorithms to find fast solutions without the need
of computing the pseudo-inverse for the inverse kinematics.
Last but not least, dynamic models for the inverse kinematics
have been presented by Wang et al. [35] who show that the
solutions do not depend on the number of joints but depend
on some virtual segments. This finding allows to reduce the
variables of the problem and thus the computational needs.

Several algorithms in addition to the ones discussed above
have been proposed for solving the obstacle avoidance prob-
lem [27], [28], [31], [33], [34]. Other techniques use the
idea of considering the free space as tunnels in the obstacle
filled workspace and use differential kinematics as done by
Chirikjian and Burdick [36], [37]; while other techniques, as
presented by Ma and Konno [38], separate the desired path
into close points and for each step the manipulator tries to
avoid the obstacles. Recent studies by da Graça et al. [39]
combine the closed-loop differential pseudo-inverse way of
the methods presented above, with genetic algorithms that
provide repeatability for closed path operations.

In contrast to regular robotic arms, a hyper-redundant
manipulator can be functional even if it has many damaged
joints, so it is essential to be able for a controller to
control the manipulator properly with or without damage.
An approach that explicitly deals with failures is that of
Kimura et al. [40], who presents decentralized autonomous



architecture for space hyper-redundant manipulators.
This paper, in contrast with the ones already presented,

introduces an algorithm that does not make any macroscopic
assumptions, other than the Jacobian matrix, and solves
the problem in an analytical way. The proposed method
is without the limitation of applying only one method for
reducing the DoFs, and the manipulator has the ability to
change its kinematic structure in the process. Moreover,
not only the computational cost is unrelated to the size of
the hyper-redundant arm, but also the ability of developing
many policies by combining different geometrical methods
is provided.

B. The Classic Method

Next the classical method is presented, since it is used
as a building block of our method. Furthermore we show
that our method does not have the limitations of the classic
formulation. As discussed in the previous section, in the
direct kinematics the aim is to describe the pose of the end-
effector as a homogeneous transformation with respect to
the base. The homogeneous transformation for every joint is
expressed with respect to the previous joint. For the ith joint
the homogeneous transformation with respect to the previous
i−1 joint can be given by the following matrix [2]:

Ai−1
i (qi) =

[
ni−1

i (qi) si−1
i (qi) ai−1

i (qi) pi−1
i (qi)

0 0 0 0

]
=⇒

Ai−1
i (qi) =

[
Ri−1

i (qi) pi−1
i (qi)

0 0

]
(1)

where Ri−1
i is the rotation matrix, ni−1

i , si−1
i , ai−1

i are the rows
of the Ri−1

i , pi−1
i the translation matrix, and qi the variable

related to the motion of the i joint. For simplicity’s sake, in
the following Ai−1

i is denoted as Ai. Using the multiplication
for an open chain manipulator of n joints the transformation
matrix for the pose of the end effector e with respect to the
base frame b is:

T b
e (q) =

[
nb

e(q) sb
e(q) ab

e(q) pb
e(q)

0 0 0 0

]
=

n

∏
i=1

Ai(qi) (2)

where q = [q1,q2, ...,qn]
T .

In inverse kinematics, to describe how every joint affects
the pose of the end-effector the Jacobian matrix is needed.
The Jacobian matrix for an articulated robotic arm with
revolute joints is give by the following equation:

J =

[
JP1 JP2 . . . JPn−1 JPn

JO1 JO2 . . . JOn−1 JOn

]
, (3)[

JPi

JOi

]
=

[
ai−1× (pe− pi−1)

ai−1

]
(4)

To solve the inverse kinematics problem the following
pseudo-inverse Jacobian can be used:

J∗ = JT (JJT + k2I)−1 (5)

where k is a damping factor from the implementation of
Damped Least Squares method to the following cost func-
tion:

g(q̇) =
1
2
(ue− Jq̇)T (ue− Jq̇)+

1
2

k2q̇T q̇ (6)

where ue is the vector that includes the desired linear and
angular velocity of the end-effector to go from the current
pose to the desired pose. Finally the solution to the inverse
kinematics problem is:

q(tk) = q(tk−1)+ q̇(tk−1)∗∆t (7)

where ∆t is the duration between the tk and tk−1 moments
and q̇(tk) is given by the following function: q̇ = J∗ue

III. DYNAMIC METHOD

A. Description of the method

The classic method of modeling efficiently a robotic arm
may seem robust for ordinary arms, but it encounters two
big problems when it comes to hyper-redundant structures:

First, to control a robotic arm of n DoFs, for every
step, the following operations are necessary: n 4×4 matrix
multiplications, construction of the Jacobian 6× n matrix
and the pseudo-inverse, and then solving Equation (7). The
complexity of a manipulator is quadratic on the number of
the degrees of freedom of its structure. This is not a real
problem for structures with few degrees of freedom (regular
robotic arms) but it is unmanageable for structures with many
DoFs, as the hyper-redundant manipulators.

Second, the classic method does not provide any tools for
controlling a broken robotic arm, since a robotic arm of 6
DoFs, with at least one broken joint, cannot operate in the
3D space, but a hyper-redundant arm is still functional if it
has more than or equal to 6 functional joints.

The proposed solution for the first problem is to reduce dy-
namically the total degrees of freedom of the structure. The
idea of the proposed algorithm could be summarized in the
following sentence: It is unlikely to need the hyper-redundant
arm to be fully operational and to need all of its kinematic
abilities in ordinary environments and tasks. The solution for
the second problem can be found by separating the kinematic
structure into a group of functional links and a group of links
that are damaged, and exclude the second group from the
Jacobian matrix see Equation (3). The proposed solution in
this paper provides a formulation that combines those two
ideas. A hyper-redundant arm is separated into consecutive
sectors, where every sector uses a subset of q. In every
sector the homogeneous transformation (with respect to the
previous sector) is produced by the sequential multiplications
of only the homogeneous transformations matrices that are
related to these DoFs and are member of that subset. Finally
the transformation matrix of the end-effector, with respect to
the base is achieved by the consecutive matrix multiplication
of the final products of every sector. More precisely, let q be
the vector of the n joint variables, qt=[qmt−1+1,qmt−1+2, ...qmt ]
be the subset of q corresponding to the t sector with mt links,



then for a structure of r sectors:

T b
e (q) =

r

∏
t=1

mt

∏
j=1

Amt−1+ j(qmt−1+ j) (8)

Note that m0 = 0.
The computational cost of the multiplication in Equation

(8) can be reduced by using only a subset Q of the available
DoFs of q and then applying an efficient method inside every
sector t, such as a geometric one, to find the homogeneous
transformations Ati between the joints that respond to the
lt variables in the subset Qt = [qt1 ,qt2 , ...,qtlt ]

T of qt . Then,
the result of this reduction would be the following double
product:

T b
e (Q) =

r

∏
t=1

lt

∏
i=1

Ati(qti) and (9)

Q =
[
QT

1 QT
2 . . . QT

r
]T (10)

Similarly the Jacobian matrix can be constructed by com-
puting the product of the homogeneous transformation of
the previous sectors and the homogeneous transformation
product inside the sector until the transformation matrix of
the current joint. So the Jacobian has the following form:

J =
[
J1 J2 . . . Jt . . . Jr

]
, (11)

Jt =

[
JPt1 JPt2 . . . JPtl
JOt1 JOt2 . . . JOtl

]
(12)

To achieve the above formulation it is necessary to use
some helpful data structures that would store the important
information of our structure, all need for calculating the
transformations in Equation (9). They would also provide the
relations between the real kinematic structure of the robotic
arm and the current kinematic structure based on the sectors
modeling. More specifically, we introduce three matrices (V ,
F , H) which store the necessary informations. The V matrix
contains a set of useful information for every sector (t1, . . . , tl ,
qt1 , . . . ,qtl , etc.). The F matrix that contains the damaged
links. The H matrix contains the kinematic correspondence
for every link of the structure. By simply using the values of
the H matrix, the V and the F matrices can be constructed
and the direct and inverse kinematics problem can be solved,
with the right correspondence between the configuration q
and the reduced configuration Q.

The H matrix contains an identification number that de-
scribes the kinematics for a single link that may contains
several joints; each different value corresponds to a different
homogeneous transformation for this link. The value for
every link is determined by the meta-control function, or
meta-controller, h. So, for a robotic arm of n links and
f different abilities of movement or combinations of those
abilities for a link, h is defined as:

h : {1,2,3, ...n}→ {−1,0,1.... f −1} (13)

where {-1} corresponds to a broken link. By definition the
meta-controller can change at any time the current kinematic
structure and it is the key function to the new fully dynamical
approach introduced in this paper. Every manipulator, to

(a) (b)

Fig. 1. (a) The structure of the generic hyper-redundant arm of N links
with length d. (b) The two DoFs link between two links.

operate in the most difficult environments and tasks, should
be able to use all the available DoFs if needed.

In the next subsection an example is presented to show
how our method can be applied to a generic hyper-redundant
manipulator and how under certain assumptions the complex-
ity of the problem can be decreased significantly.

B. Implementation example

In this section the process of construction of the V , F ,
and H matrices, the solution of both the direct and inverse
kinematics, and finally a simple meta-controller.

A generic hyper-redundant arm is composed of N cylin-
drical links, for simplicity sake, of the same length d,
where every link has 2 DoFs; see Fig.1(a). It can bend
with respect to the previous link by θ and rotate with
respect to its cylindrical axis by φ ; see Fig. 1(b). So q =
[φ1,θ1,φ2,θ2, ...,φN ,θN ]

T , by applying the classic method,
the transformation of the end-effector is:

T b
e (q) =

N

∏
i=1

A1i(φi)A2i(θi), (14)

A1i(φi) =


cos(φi) sin(φi) 0 0
−sin(φi) cos(φi) 0 0

0 0 1 0
0 0 0 1

 (15)

A2i(θi) =


1 0 0 0
0 cos(θi) sin(θi) d sin(θi)
0 −sin(θi) cos(θi) d cos(θi)
0 0 0 1

 (16)

and

J =
[
J1 J2 . . . Ji . . . JN

]
, (17)

Ji =

[
JP1i

JP2i
JO1i

JO2i

]
(18)

Back to the proposed method, the definition of the properties
of the structure of a sector should be described. A sector
consists of a head and, optionally, a body. The head is the
first link of the sector which fully exploits both DoFs and
the body with the rest of the links, while each one has φi = 0
and the same θi (Fig 2). For example a sector t can be fully
described by the vector:

St =
[
it ut φht θht θbt

]
(19)

where it is the first i link of the sector, ut the number of the
links of the body, φht , θht correspond to the head and θbt

corresponds to the body. Since every link has 2 abilities of



Fig. 2. A sector of 6 links and its geometrical structure. The head (i) is
shown with red color, the links of the body (i+1:i+5) with blue, and with
black the other links.

Fig. 3. A random kinematic state of a hyper-redundant arm of 16 links. In
this state (H={1,-1,-1,1,0,0,0,0,-1,1,1,0,0,0,-1,1}) there are 4 damaged links
but not only the arm is functional, but also the DoFs are reduced from 32
to 17, leading to shorter response time.

movement (head, body) the meta-controlling function is:

h : {1,2,3, ...,N}→ {−1,0,1} (20)

where

h(i) =


0 is a link of the body of a sector,
1 is the head of a sector,
−1 is a damaged immobile link with

constant Φi, Θi.

(21)

It is easy now to build the V and the F matrices:

V =
[
S1 S2 . . . St . . . Sr

]T
, (22)

F =
[

f1 f2 . . . fi . . . fc
]
, if h( fi) =−1 (23)

From the above formulation notice that the method not
only takes care of the damaged links but also reduces the q
vector into Q= [φh1 ,θh1 ,θb1 ,φh2 ,θh2 , . . . ,θbr−1 ,φhr ,θhr ,θbr ]

T .
Recall that r is the total number of the sectors in the case
that every sector has a body, else, the θbt for every sector
t without body is missing. So for every body of a sector t,
regardless the ut there is only one single variable describing
its movement and an entire sector of many links can be
described by only 3 joint variables. See Fig. 3 for an example.

To solve the direct and inverse kinematic we produce the
homogeneous transformation for each sector separately. First,
the homogeneous transformation for the head is:

Aht (φht ,θht ) = A1it
(φht )A2it

(θht ) (24)

and for the body, since φi = 0 is:

Abt (θbt ) =
ut

∏
j=1

A1it+ j(0)A2it+ j(θit+ j) =

ut

∏
j=1

IA2it+ j(θit+ j) =
ut

∏
j=1

A2it+ j(θit+ j)

(25)

It is obvious that the number of matrix multiplications is
reduced. Moreover, it can be proved, by implementing the
law of cosines iteratively for every link of the body, that if
(ut−1)θbt < 2π the above iteration is not necessary and that
product can be replaced with a single matrix:

A3t (θbt ) =
1 0 0 0
0 cos(R′b)cos(RDb )− cos(R′b)sin(RDb )+ Dbt sin(RDb )

sin(R′b)sin(RDb ) sin(R′b)cos(RDb )
0 −cos(R′b)sin(RDb )− cos(R′b)cos(RDb ) Dbt cos(RDb )

cos(R′b)sin(RDb ) −sin(R′b)sin(RDb )
0 0 0 1

 (26)

where:

RDb = θbt +(ut −1) θbt
2 (27)

R′b = utθbt −RDb (28)

Dbt =

{
d ut = 1
xut ut ≥ 2

(29)

where the xut is given by the following recursive function:

xz =

{
2
√

2d2(1+ cosθbt ) z = 2
2
√

x2
z−1 +d2 +2xz−1d cos((ut +1) θbt

2 ) z > 2
(30)

So, the entire homogeneous transformation for a sector is:

ASt (φht ,θht ,θbt ) = Aht (φht ,θht )Abt (θbt )

= A1(φht )A2(θht )A3(θbt )
(31)

if it has body, or:

ASt (φht ,θht ) = Aht (φht ,θht ) = A1(φht )A2(θht ) (32)

without body.
The homogeneous transformation for the i damaged link

with constant values Φi, Θi is:
Bi(Φi,Θi) = A1i(Φi)A2i(Θi) = cos(Φi) sin(Φi)cos(Θi) sin(Φi)sin(Θi) d sin(Φi)sin(Θi)

−sin(Φi) cos(Φi)cos(Θi) cos(Φi)sin(Θi) d cos(Φi)sin(Θi)
0 −sin(Θi) cos(Θi) d cos(Θi)
0 0 0 1


(33)

The transformation of the end effector can be easily produced
by the following formula:

T 0
N (Q) =

i1−1

∏
l=1

Bl(Θl ,Φl)
r

∏
t=1
{ASt (φht ,θht ,θ

∗
bt
)

it+1−1

∏
k=it+ut

Bk(Θk,Φk)}

l=n

∏
l=ir+ur

Bl(Θl ,Φl)

(34)

Note that the θbt variable is not defined for sectors without
body. The Jacobian matrix is constructed as:

J =
[
J1 J2 . . . Jt . . . Jr

]
(35)

where if we define ir+1 = N +1 then:

Jt =



[
JP1it

JP2it
JPit+1−1

JO1it
JO2it

JOit+1−1

]
if t has a body[

JP1it
JPit+1−1

JO1it
JOit+1−1

]
otherwise

(36)



and without considering damaged links:

T 0
N (Q) =

r

∏
t=1
{ASt (φht ,θht ,θ

∗
bt
) (37)

Jt =



[
JP1t

JP2t
JP3t

JO1t
JO2t

JO3t

]
if t has a body[

JP1t
JP2t

JO1t
JO2t

]
otherwise

(38)

Given the V vector and the h meta-controlling function it
is trivial to make the correspondence between the Q vector
of the joint variables of our kinematic structure and the q
vector of the joint variables of the real structure.

With Equation (34), this hyper-redundant arm can be con-
trolled fully dynamically with respect to the simple definition
of a sector. Now, an example of a simple meta-controller, is
presented, that aims to control efficiently the arm assuming
that there is no need to take care of damaged links. The
main idea is to begin with the minimum number of sectors
and in case of failure (when the method is not able to find a
solution) split in half every sector until every link is a head
of a sector. For this purpose a sequence k is used, which
returns the maximum number of link in a body, defined as
ka+1 = [ ka

2 ] and k0 = N until ka = 1, where a is the number
of the failures. Then the definition of the h is:

ha(i) =


1 i = 1 or Ha−1(i) = 1
1 Ha−1(i−1) = Ha−1(i+1) = 0 and i 6= N
1 (i−1)mod ka = 0
0 otherwise

(39)
By this definition it is ensured that every sector has a body
until the last state and that when a link becomes head, it
stays in that state. Otherwise, since the assumption that every
body has φi = 0 is violated, q2i should be set to 0 in the end
and align them with respect to the other links of the body, so
that states are consistent. Also, it is important to mention that
this meta-controller can produce [log2 N] different kinematic
structures (states) of the robotic arm.

We are going to use the assumptions made in this example,
with the optimized calculations in Equation 26 and the meta-
controlling function in Equation 39, to compare experimen-
tally the proposed algorithm to the classic approach in the
next section.

IV. EXPERIMENTAL RESULTS

The experimental setup was developed in MATLAB and
tested on an Intel® CoreTM2 Duo Processor (2.13 GHz) with
4 GB RAM. The hyper-redundant robotic arm in Section III-
B was implemented, with the definitions of the sectors and
the meta-controlling function. The aim of the experiments
was to show the advantage of our algorithm, compared to
the classic one, in terms of efficiency and processing time
for a task. The computational time needed for solving the
direct and inverse kinematics problem for a single move
was measured using kinematic states from 1 to log2 N of
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Fig. 4. Comparison of the processing time needed for a single move
between the dynamic and the classic method. Each state represents a
different kinematic state of the manipulator according to the meta-controller
described in Equation 39.

the proposed method and using the classic method. We ran
experiments considering hyper-redundant arms with different
number of links, ranged from 16 to 200,000 DoFs.

Fig. 4 shows the results for the proposed method and
the classic method for a robotic arm of 100,000 links and
200,000 DoFs—similar results were obtained with a different
number of links and DoFs. The experiments showed clearly
that in the worst case, the manipulator was as efficient as in
the classic method. Moreover, not only the benefits were
growing with more complex and bigger hyper-redundant
arms, but also, in the medial case the time needed for an
operation was exponentially less than the classic method. For
example in the 8th state shown in Fig. 4 our method process
time was less than 0.13 sec while for the classic method it
was more than 2,000 sec.

When using the proposed method, it is important to
carefully consider the tradeoff between the computational
efficiency and the reduction of the DoFs of the hyper-
redundant arm. It should be noted that computational needs
grow quadratically to the number of the DoFs and that with
the use of an optimal meta-controller (a meta-controller that
uses the least DoFs needed for an operation) our method
always has a performance equal to or significantly better
than the classic method. It is worth noticing that in the
medial case of the robotic arm with the 100,000 links the
manipulator uses approximately 750 DoFs that are almost
evenly distributed in its body.

V. CONCLUSIONS

This paper introduced a novel way of modeling the kine-
matics to control hyper-redundant arms in a fully dynamic
way. We show that the complexity of both the direct and
inverse kinematic problem is unaffected by the number of
links and the degrees of freedom. The proposed method does
not require any approximations of a macroscopic perspective
as done by previous studies.

The proposed method divides the manipulator into sectors
and finds an analytical solution, without discretizing the
solution. Due to the meta-controller a general way was
introduced, to have the ability to combine different effi-
cient geometric approaches for every sector. Also different
methods at a macroscopic perspective can be applied with
different approximations and approaches, if the transforma-
tion of the sectors are known and these sectors are treated
as damaged. Additionally, the kinematic structure can be



changed at any time, and the process for solving the direct
kinematics and the construction of the Jacobian matrix, can
be parallelized for every sector. Moreover, the method is fault
tolerant to broken links (immobile links) without the need of
implementing extra fault tolerant methods, since the damaged
links are considered as sectors that cannot move.

We are currently examine the development of more effi-
cient meta-controller functions that take into account efficient
obstacle and knot avoidance policies. Furthermore, we study
the relation between the efficiency of the proposed method,
with respect to the structure size. Investigating more tech-
nical issues such as how the efficiency of our method is
affected by the response delays and the bounded angular
velocity of each joint, on a real hyper-redundant robotic arm
is also part of our future plans.

REFERENCES

[1] G. S. Chirikjian, “Theory and applications of hyper-redundant robotic
manipulators,” Ph.D. dissertation, California Ins. of Technology, 1992.

[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Springer Science, 2009.

[3] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” Jour. of Dynamic
Systems, Measurement, & Control, vol. 108, no. 3, pp. 163–171, 1986.

[4] C. W. Wampler, “Manipulator inverse kinematic solutions based on
vector formulations and damped least-squares methods,” IEEE Trans.
on Systems, Man and Cybernetics, vol. 16, no. 1, pp. 93–101, 1986.

[5] S. Ma, S. Hirose, and H. Yoshinada, “Development of a hyper-
redundant multijoint manipulator for maintenance of nuclear reactors,”
Advanced Robotics, vol. 9, no. 3, pp. 281–300, 1994.

[6] P. Liljeback, O. Stavdahl, and A. Beitnes, “Snakefighter-development
of a water hydraulic fire fighting snake robot,” in Int. Conf. on Control,
Automation, Robotics and Vision, 2006, pp. 1–6.

[7] K. Ikuta, T. Hasegawa, and S. Daifu, “Hyper redundant miniature
manipulator “hyper finger” for remote minimally invasive surgery in
deep area,” in Int. Conf. on Robotics & Automation, 2003, pp. 1098–
1102.

[8] G. S. Chirikjian and J. W. Burdick, “Design and experiments with
a 30 dof robot,” in Int. Conf. on Robotics & Automation, 1993, pp.
113–119.

[9] Z. Qiang and G. Fang, “Design and analysis of a new cable-driven
hyper redundant manipulator,” in Int. Conf. on Intelligent Computation
Technology and Automation, 2010, pp. 1111–1114.

[10] S. Hirose and R. Chu, “Development of a light weight torque limiting
m-drive actuator for hyper-redundant manipulator float arm,” in Int.
Conf. on Robotics & Automation, 1999, pp. 2831–2836.

[11] H. B. Brown, M. Schwerin, E. Shammas, and H. Choset, “Design and
control of a second-generation hyper-redundant mechanism,” in Int.
Conf. on Intelligent Robots and Systems, 2007, pp. 2603–2608.

[12] V. Sujan, M. D. Lichter, and S. Dubowsky, “Lightweight hyper-
redundant binary elements for planetary exploration robots,” in Int.
Conf. on Advanced Intelligent Mechatronics, 2001, pp. 1273–1278.

[13] K. Ning and F. Worgotter, “A novel concept for building a hyper-
redundant chain robot,” IEEE Trans. on Robotics, vol. 25, no. 6, pp.
1237–1248, 2009.

[14] A. Chibani, C. Mahfoudi, T. Chettibi, and R. Merzouki, “Conceptual
study of a class of hybrid hyper-redundant robot,” in Int. Conf. on
Robotics and Biomimetics, 2012, pp. 2000–2005.
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