
On the Selection of Calculable Residual Generators for UAV Fault
Diagnosis

Georgios Zogopoulos Papaliakos and Kostas J. Kyriakopoulos

Abstract— Structural Analysis is an established method for
Fault Detection and Identification (FDI) in large-scale systems,
enabling the discovery of Analytical Redundancy Relations
(ARRs) which serve as residual generators. However, most
techniques used to enumerate ARRs do not specify the matching
used to calculate each of those ARRs. This can result in non-
implementable or unusable residual generators, in the presence
of non-invertibilities in the equations involved or in lack of
computational tools. In this paper, we propose a methodology
which combines a priori and a posteriori information in order to
reduce the time required to find implementable, usable residual
generators of minimum cost. The method is applied to a fixed-
wing Unmanned Aerial Vehicle (UAV) model.

I. INTRODUCTION
Even though there exist well-established algorithms for the

control of commercial Unmanned Aerial Vehicles (UAVs),
they are rarely designed to handle faults. Notably, faults
are most common in commercial UAVs, since such vehicles
are manufactured to lower quality standards, compared to
military and aerospace applications.

A fault is a deviation of the system parameters or the
system structure from the nominal condition. Most of the
times, if faults are allowed to go unchecked, they will
eventually result to failures, rendering the system inoperable.
Hence, it is important to detect faults as early as possible
and take counter-measures against them, in order to maintain
system health and ensure its operational status.

It is reasonable to expect from modern UAVs to exhibit
fault-tolerance to a certain degree and, to that goal, Fault
Detection is indispensable. Fault Detection involves setting
up mathematical and physical structures that are able to
detect when a fault occurs in a system. Afterwards, Fault
Isolation can be performed, in order to identify the system
component which is under fault. This is an important piece
of information, since it allows us to locate the source and
nature of a fault [1].

In consistency-based diagnosis for continuous-time sys-
tems, the difference r(t) = y(t)− ŷ(t) between a measured
quantity y(t) and a quantity estimate based on the nominal
system behaviour ŷ(t) is used to perceive faults. Under
no-fault conditions, r(t) = 0 should hold and vice versa.
Such difference functions are called residuals. Ultimately,
a residual can be formulated as r(t) = f(y(t)), i.e. as
a function of continuous-time measurements. f is called
a residual generator function. The required information to
perform FDI can be provided either by hardware redundancy
or analytical redundancy. The first approach places multiple,

The authors are with Control Systems Lab, School of Mechanical
Engineering, National Technical University of Athens, Greece {gzogop,
kkyria}@mail.ntua.gr

redundant sensory equipment on the aircraft which contribute
in validity checks. However, this is not a lucrative option
in small UAVs, where low weight, cost and power con-
sumption are desired features. Thus, the second approach,
where redundant information is introduced by mathematical
models, stands out as a prominent field of research. Finding
Analytical Redundancy Relations (ARRs) which can be used
as residual generators is a primary goal [1], [2], [3].

In order to perform model-based FDI at the component
level, it is necessary to enumerate and take into account
the equations which make up the mathematical model of
the UAV down to that level. However, such detailed rep-
resentations will yield hundreds of equations, rendering the
process of finding consistency checks very hard to do by
hand. Formal, scalable methods are required to achieve this.
Structural Analysis (SA) provides such methods [1], [4] and
has been used in linear systems [5]. Still, SA is not yet able
to extract consistency checks for generic, non-linear systems
automatically as well as in real-time, a prerequisite for UAS
with high autonomy and reconfigurable controllers.

In this paper, we propose a methodology reducing the time
needed to perform the residual selection task, by using a
weighted bipartite graph structure and combining informa-
tion available both a priori and a posteriori of the analysis.

In section II, SA is presented in the context of residual
generator extraction. In section III, limitations in current
SA techniques are mentioned. In section IV, we introduce
the concept of a weighted structural graph. In section V,
our proposed methodology is expanded upon. In section
VI, an application example on a fixed-wing UAV model is
presented. Finally, section VII concludes this work.

II. STRUCTURAL ANALYSIS

SA is a qualitative modeling methodology which, given
a mathematical model, captures only whether there exist
relations between equations (also referred to as constraints)
and variables. The resulting structure, although abstract, pro-
vides information on component interaction and facilitates
FDI methods. The structure can be represented as a bipartite
graph and graph-theoretic methods can be used to extract
results in a methodical manner [1],[4].

A. The Structural Model

We construct the set of model constraints C, with elements
ci, corresponding to each of the equations comprising the
mathematical model of our system. In this work, we choose
to expand C by adding the differentiation constraints sep-
arately for all differentiated variables, instead of inserting
differentiated versions of existing constraints; we treat a

ar
X

iv
:1

70
3.

07
61

1v
1

 [
cs

.S
Y

]
 2

2
M

ar
 2

01
7

variable and its derivative as structurally different [1]. Given
the set of available model constraints C, we construct the
structural model of the system in the form of an undirected
bipartite graph G=(C,X , E) [1], [4], [6]. X=XU

⋃
XK is

the set of involved variables, composed by the set of known
variables XK (such as inputs and measurements) and the set
of unknown variables XU . We can write that X=var(C),
XK=varK(C) and XU=varU (C) to denote all, known and
unknown variables in C. E is the set of edges connecting C
and X , E= {eij=(ci, xj) : xj ∈ var(ci)}.

A bipartite graph can also be represented as a biadjacency
matrix, whose rows correspond to constraints and columns
to variables. The biadjacency matrix A is defined as

aij =

{
1 iff (ci, xj) ∈ E , xj ∈ X
0 iff (ci, xj) /∈ E , xj ∈ X

(1)

Without loss of structural information we can use only XU

to populate the columns.

B. Solving the System Graph
While searching for ARRs, it is of interest to solve

as many equations for one of their variables as possible.
Structurally, this is equivalent to assigning each variable
vertex to one constraint vertex, respecting the edge set. The
notion of matching of a graph is very useful for that purpose.

Matching is a subset of E such thatM= {mi=(ci, xi) ∈ E
: mi 6=mj iff ci 6=cj ∧ xi 6=xj ,∀i, j} [7], i.e. given the set
of edges E , we select edges so that no two edges have
a common vertex. If the cardinality of M is the maxi-
mum possible for a given E , then the matching is called
maximal. If |M|= |XU | or |M|= |C|, then the matching is
called complete with respect to XU or to C respectively.
If |M|=XU=C then the matching is perfect. For a given
graph, the maximal matching may not be unique. Unless
the matching is complete on XU , then no variable in XU is
guaranteed to be calculable.

After a matching M has been found, we can create a
directed graph Gd= {C,X , Ed}, with its edges defined as
Ed={ei,j=(ci, xj):ei,j∈M}

⋃
{ei,j=(ci, xj):(xj , ci)/∈M},

ei,j∈E . The reverse of this graph is obtained by reversing
the directionality of its edges and is denoted as G′d.

Definition 1 (Reachability): Given an undirected (di-
rected) graph G= {C,X , E} and two vertices vi, vj ∈
V=X

⋃
C, vj is reachable from vi iff there is an undirected

(directed) path in G from vi to vj . A subset Vj ⊆ V is
reachable from vi iff there is an undirected (directed) path
from vi to vj ,∀vj∈Vj . A subset Vj is reachable from subset
Vi iff there is an undirected (directed) path from vi to vj ,
∀vi∈Vi, vj∈Vj .

For any given bipartite graph, a unique decomposition
on A is defined, called the Dulmage-Mendelsohn (DM)
decomposition. It identifies three (possibly empty) sub-
graph components: G−=(C−,X−, E−), G0=

(
C0,X 0, E0

)
and G+=(C+,X+, E+). The decomposition guarantees that
there exists a complete matching on C− in G−, a perfect
matching in G0 and a complete matching on X+ in G+.
Thus, G− is called the under-constrained part of G, G0

just-constrained and G+ over-constrained [8]. The decom-
position can take a block-triangular form (Figure 1). The

G−

G0
1

G0
2

G0
n

G+

G0

C+

C0

C−
X− X 0 X+

Fig. 1: A typical Dulmage-Mendelsohn decomposition

diagonal line represents the matchings between C and X .
Since fault detection uses analytical redundancy in the form
of unmatched constraints, which exist only in G+ it is
evident that the only faults that can be detected are those
which affect constraints belonging in G+.
C. Matching Algorithms

There are several matching algorithms for undirected
bipartite graphs, but two of them are the most common in
SA applications.

The first one is the Ranking algorithm, which was pre-
sented in [1] and propagates an ”information front” based
on known variables. It has the property that every constraint
it matches has exactly one variable unknown at that time,
which is then solved for. The complexity of this algorithm is
O(|C||XU |) [9]. It is fast and can easily produce an acyclic
calculation order, but cannot guarantee a complete matching
when applied on cyclic graphs.

Another, more classical algorithm is the Hungarian
method. The original algorithm [10] and its multiple im-
provements [11] have been a standard tool in graph theory
and specifically for calculating maximum matchings in undi-
rected bipartite graphs. They have low, polynomial compu-
tational cost, and are applicable for weighted undirectional
graphs as well. They can extract maximal matchings for
cyclic graphs but Gd may contain cycles.

D. MSOs
Each unmatched constraint ci in G can be used as residual

generator to detect faults in equations reachable from ci,
in G′d. In order to minimize the fault candidates for each
triggered residual, it is of interest to find residuals which are
sensitive to as few faults as possible.

The notion of Minimal Structurally Overdetermined sets
(MSOs) is useful for that purpose [6]. An MSO is a
set of equations C′ ⊆ C whose corresponding graph
G′= {C′,X ′, E ′} has the following properties:

1) X ′ = var(C′)
2) E ′ = {(ci, xk) ∈ E : ci ∈ C′, xk ∈ X ′}
3) G′ = G′+

4) |C′| = |X ′U |+ 1

With a slight abuse of notation, we will denote the
corresponding graph of an MSO, as MSO.

From each MSO we can extract |C′| different residual
generators, one for each ci ∈ C′. The rest of the equations
in C′ form a just-constrained system for which a perfect
matching can be found. This matching provides a calculation
method for all the variables used by that residual generator.
It should be noted that the number of possible MSOs grows
exponentially large with the number of redundant equations
in the initial system [6].

In order to reduce the number of candidate MSOs, it is
beneficial to consider only MSOs with at least one equation
which can fail. A residual generator which involves only
constraints which cannot fail is not useful and clutters the
residual selection procedure [12].

III. CAUSALITY AND CALULABILITY

The previously mentioned structural methods, regarding
the selection of residual generators in large scale systems,
provide only best-case results. During the creation of the
structural graph crucial information is lost and structural
analysis may yield residual generators which are unusable
or at least, non-optimal according to certain criteria.

Factors which can affect the feasibility and quality of the
extracted residual generators are presented in this section.
Namely, we will focus on the topics of causality, calculabil-
ity and calculation cost.

A. Causality

Given an analytical equation, we might deny the ability to
solve it for a specific variable. Such a decision might stem
from poor sensitivity, the existence of multiple solutions or
simply the absence of an inverse function.

The existence of dynamic equations raises another con-
cern, regarding the ability of the actual, automated FDI
system to perform either numerical differentiation or integra-
tion [13], [9]. If our FDI system has the ability to perform
numerical differentiation but not integration, then it is said
that it operates under differential causality. If the inverse is
true, e.g. due to unacceptable noise amplification, it is said
that it operates under integral causality. The combination of
the above, which allows for both differentiations and integra-
tions is called mixed causality [14]. Differential and integral
causalities pose restrictions in the admissible structural graph
edges which can be incorporated in a matching set.

Causality restrictions can be applied and visualized by
adding directionality in the related edges of the graph,
resulting in a partially-directed causal bipartite graph
GC= {C,X , EC}. Yet, this poses a serious limitation, since
most computationally cheap matching tools are applicable
only to undirected bipartite graphs.

B. Calculability

The available computational solution tools also pose a
constraint to the admissible matchings. Differentiators and
integrators have already been mentioned in the previous
subsection, but more types exist. The DM decomposition
of any just-constrained system may yield König-Hall com-
ponents of size larger than 1, as seen in Fig. 1, denoted by
G0

i . Any matching spanning those components will produce
a directed graph Gd with cycles, also known as Strongly

Fig. 2: A complete matching on variables in a cyclic graph, using the
Ranking algoritm

Connected Components (SCCs). Since equations belonging
in the same cycle have to be solved simultaneously, simulta-
neous equation solver tools must be available [14], [15]. If a
König-Hall component contains only linear equations, then
a Linear Algebraic Equation solver is required. If it contains
at least one non-linear algebraic equation, then a Nonlinear
Algebraic Equation solver is required. If it contains at least
one dynamic equation, then a Differential Equation solver is
required. Thus, depending on the available tool set T in our
FDI system, some matchings may be rejected.

C. Additional Issues

Even under differential (or mixed) causality, differential
edges which belong in a loop (i.e. cycle) cannot be part of a
calculable matching: Differential Equation solvers propagate
the state variables by integration, not differentiation [16].
Also, even under mixed causality, for practical applications,
it is not desirable to add integral edges in a matching when
they do not belong in a König-Hall component, i.e. they are
edges in a path of Gd; noise bias will quickly invalidate the
integration result. We propose the term calculation causality
to capture the above restrictions.

The final remark concerns the Ranking matching algo-
rithm, which is a lucrative algorithm thanks to its low
computational cost. As mentioned, the Ranking method is
not guaranteed to find a complete matching on XU in cyclic
graphs. However, it is worth considering since there are cases
where it can produce complete matchings, as seen in Fig. 2.

IV. A WEIGHTED GRAPH APPROACH

As was previously mentioned, matching a variable with a
constraint implies solving the constraint for that variable. It
may be easier, from a computational standpoint, to solve
one constraint for one of its variables than for another.
Encoding this kind of information in the structural model
in the form of weighted edges provides a compact and
easily manipulable data structure, which can then be used
to discourage matchings of high computational cost and
shorten the iteration time of a real-time FDI system. The
costing information can be encoded in the structural graph
in the form of edge weights. Let an edge ei=(ci, xj) ∈ E
be assigned with a weight wm(ei), via the weight function
wm(·), representing the cost of solving constraint ci for
variable xj .

Let there be a graph G= {C,X , E} with a perfect match-
ing M, a weight function wm(·) and a variable x ∈ X .

Definition 2 (Matching Cost): The cost of the matching is

J(M) =
∑

wm(mi),mi ∈M (2)
Definition 3 (Residual Generation Cost): Let there be a

residual generator ci, the matching-induced graph Gd and its

inverse G′d. Let the reachable variable set from ci in G′d be
Xr. Take the subset Mr ⊆ M :Mr= {(ck, xl) : xl ∈ Xr}.
The cost of the residual calculation is:

J(ci) =
∑

wm(mj) + wr(ci),mj ∈Mr (3)

where wr is the evaluation cost of a residual generator from
its variables.

In [2] a weight function was used to compare residual
generators, but by pricing the operators in the analytical
residual generator expression, not the structural graph edges.

A comparison among matching costs can be done in
several levels:

1) Each residual is assigned a residual generation cost,
which constitutes a selection criterion for the compo-
sition of the FDI scheme.

2) Within MSOi, for residual generator cj , comparing
matching costs for all feasible matchingsMk can lead
to the selection of the cheapest calculation order. Let
that cost be J(MSOi, cj)min = min

k
(J(Mk)).

3) Within MSOi, comparing the cheapest matching cost
of each potential residual generator cj produces the
cheapest residual generator for MSOi. Let that cost
be J(MSOi)min=min

j
(J(MSOi, cj)min).

The actual costing information may be derived from com-
puter science resources, engineering expertise or symbolic
mathematics software.

Commonly in computing systems, addition and subtraction
are of equal computational cost, multiplication is less ten
times more expensive, division is about ten times more
expensive and trigonometric functions and powers are almost
100 times more expensive. Square root cost varies with
implementation but is generally expensive.

Regarding causality, edges which imply integration can be
assigned greater cost, since integration requires storage space
to hold the integrator state. Differentiation may be assigned
an even greater cost, since it has the undesired effect of noise
amplification.

Finally, information on sensor noise can be inserted in the
structural graph by weighting corresponding edges propor-
tionally to the noise variance of the corresponding sensor
discouraging the use of a high-noise sensor.

V. PROPOSED RESIDUAL GENERATION METHOD

Existing methods perform post-processing of results to
obtain maximal, calculable matchings of minimum cost
in cyclic graphs. That requires the whole set of possible
matchings be enumerated and then post-processed. This is
problematic, since the number of different possible match-
ings grows exponentially with the number of vertices. Even
by examining the over-constrained part only, the problem of
choosing |X+| out of |C+| constraints to match variables of
equal number can yield as many as |C+|!/(|C+| − |X+|)!
matchings [3]. MSOs help reduce the number of candidate
matchings, but the pool can still remain significantly large.

We propose a method for shortening the time required to
produce the set of candidate residual generators and select
the optimal ones, through a combination of a priori and a
posteriori graph processing.

A. Step 1: DM Decomposition
Conventionally, a DM decomposition is applied on the

undirected system graph to extract the over-constrainted part.
This provides the best-case detectability possibilities.

B. Step 2: A Priori Matching Propagation
Next, a maximal, calculable, loop-less matching of mini-

mum cost is sought. Weights are applied to graph edges, as
was discussed in the previous section. For this step, differ-
ential causality is enforced to avoid open-loop integrations.
The Weighted Elimination matching algorithm is introduced
to find a matching with the aforementioned properties. This
algorithm is similar to the Ranking algorithm, in that it
matches a variable to a constraint only if all the other
variables of that constraint are known.

Algorithm 1 The Weighted Elimination algorithm

1: procedure WEIGHTEDELIMINATION(G(C,X , E , wm))
2: M = ∅
3: M∗ = {(ci, xj) : |varU (ci)| = 1}
4: while M∗ 6= ∅ do
5: J(mi) = wm ((ci, xj)) ,∀mi = (ci, xj) ∈M∗
6: Pick mmin = arg min

mi

(J(mi))

7: M =M
⋃
mmin

8: XU = XU \ var(mmin)
9: M∗ =M∗\

{{mmin}
⋃
{(ci, xj) : xj = var(mmin)}}

10: M∗ =M∗
⋃
{(ci, xj) : |varU (ci)| = 1}

11: end while
12: return M
13: end procedure

M∗ is the pool of candidate matching extensions mi.
In line 3 M∗ is initialized. While there exist candidate
matching extensions (line 4), the cost contribution of each
new matching extension is calculated (line 5). The matching
extension with the smallest cost is selected (line 6) and added
to the matching. The selected matching extension is removed
from M∗, along with other candidate extensions that would
match the same variable (line 9). New, feasible matching
extensions are added to M∗ and the loop repeats.

After WEIGHTEDELIMINATION is completed, some un-
matched constraints with all of their variables matched may
exist. These constitute residual generators and are added to
the candidate residual generator pool.

C. Step 3: A-Posteriori Matching Selection
Commonly, König-Hall blocks will exist and WEIGHT-

EDELIMINATION will not return a maximal matching. The
variables which are matched so far are considered known
and the remaining subgraph can now be searched for MSOs.

Each MSO is searched for the cheapest, calculable residual
generator evaluation. In order to find the minimum cost
matching efficiently, we implemented Murty’s algorithm [17]
to obtain all possible matchings in order of increasing cost.

The algorithm GETOPTIMALRESIDUAL finds the cheap-
est, calculable residual generator expression which respects
calculability constraints for a given MSOi= {C,X , E}.

Algorithm 2 Find the optimal residual of an MSO

1: procedure GETOPTIMALRESIDUAL(MSOi)
2: for cj ∈ C do
3: GR = {C \ {cj} ,X , E ′}
4: for Mk ∈ MURTY(GR) do
5: if ISCALCULABLE(GR,Mk, T) then
6: J(MSOi, cj)min = J(MSOi, cj ,Mk)
7: break
8: end if
9: end for

10: Mj =Mk

11: end for
12: J(MSOi)min = min

j
(J(MSOi, cj)min)

13: return {cj ,Mj} , j = arg min
j

(J(MSOi, cj)min)

14: end procedure

The function MURTY returns the set of all the perfect
matchings of the provided just-constrained graph, sorted by
increasing cost. ISCALCULABLE is given a just-constrained
graph, a matching and a set of solver tools and answers
whether this matching can be calculated based on those tools.

GETOPTIMALRESIDUAL is given an MSO set and for
every candidate residual generator (line 2) it uses MURTY
to obtain all perfect matchings in ascending cost. The first
calculable matching is selected (line 6). Once all residual
generators have been examined, the one with the smallest
cost is selected for the input MSO (line 13).

As matchings are examined in increasing cost order, if at
least one calculable matching exists for the residual generator
cj , it is found in at most |C|−1 iterations and the cheapest
residual will be available in at most |C| · (|C|−1) iterations,
where |C| is the number of constraints in said MSO.

Each MSO is examined and one residual generator is
extracted from it. Afterwards, residual generators are selected
in ascending cost order, until the specified detectability or
isolability criteria are met.

VI. APPLICATION EXAMPLE

A dedicated Matlab class for graph representation and
manipulation was created, preserving the partially directed
graph structure instead of the biadjacency matrix represen-
tation, which cannot hold directionality information.

A. The System Model

We applied the proposed method on the mathematical
model of a fixed-wing UAV, comprized of 122 equations
and 162 variables. The equations describe a multitude of
submodels, ranging from the standard rigid-body kinematics,
to aerodynamics, to propeller dynamics, to electric motor
dynamics, to sensor models. In total, there are 26 equations
denoted as k(·) for the rigid body kinematics, 48 equations
f(·) for the rigid body dynamics, 13 equations d(·) state
explicitly the differentiated states, 6 equations m(·) for the
atmosphere model and 29 equations s(·) for the measured
quantities. A full equation list wouldn’t fit in this paper.

Out of the complete equation set, we allowed only 58
equations to be subject to faults. Namely, k8− k11, f17−
f30, f34− f37, f39− f41, f43, f44, f46, f48, s1− s29.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Unknown Variables

E
q
u
a
ti
o
n
s

Fig. 3: The DM decomposition of the example system

We evaluated the addition and subtraction operations with
a weight of 1 cost unit, multiplication with 5, division with
10, roots, powers, and trigonometric functions with 100,
integration with 100 and differentiation with 200. The weight
assigned to each edge is equal to the total cost of the
corresponding mathematical expression.

We assumed that integrators, differentiators, linear, non-
linear and differential equations systems solvers were avail-
able.

B. Results

Initially, DM decomposition of the undirected system
graph was performed, as shown in Fig. 3.

26 equations and 45 unknown variables belong to the
under-constrained part, 23 equations and unknown variables
belong to the just-constrained part and 73 equations and
60 unknown variables belong to the over-constrained part.
Thus, out of the possible 58 faults, only the 34 ones which
correspond to C+ can be detected in the best case.

By applying the WEIGHTEDELIMINATION algorithm to
the resulting over-constrained part, we were able to match
42 variables and 50 equations. The 8 extra equations were
assigned as candidate residual generators. The remaining
graph is of much smaller size, and hence, lower complexity.

Then, we extracted all the MSO sets from the remaining
graph. The analysis showed that out of 350 MSOs, 349 in-
volved equations with potential faults. The cheapest, feasible
residual generators of each MSO were stored, along with
their corresponding cost.

The residual selection criterion was maximum detectabil-
ity, but maximum isolability would be valid as well. In
increasing cost order, the residual generators which extended
fault detectability of the FID system were chosen. Table I
shows the resulting fault signatures matrix.

In total, 13 residual generators were needed to achieve full
fault detectability. Their costs are presented in Table II.

TABLE I: The achieved detectability matrix

1 11 21 31 41 51 61 71

1

6

11

Fault Index

R
es

id
ua

l
G

en
er

at
or

TABLE II: The selected residuals and their cost

Generator s26 d1 d2 k4 m2 k6 k5
Cost 2 3 3 4 6 205 206

Generator k7 k2 k1 k3 f12 f12
Cost 206 1356 1356 1556 2206 2218

Two selected residuals are presented in detail. Residual
generator d1 uses only 2 matching edges to evaluate the
residual. The reachable subgraph from d1, involving equa-
tions s13 and s16 does not form any loops, hence no
simultaneous equation solving tools are required to calculate
the residual. This expected, since this residual generator was
found during the application of WEIGHTEDELIMINATION.

The affecting equations, involving part of a GPS sensor
measurements are:

d1 : ṅ = (d/dt)n (4)
s13 : nm = n (5)
s16 : ṅm = ṅ (6)

where n is the Northwards position. This residual generator
can be used to monitor the GPS sensor health.

rd1 = (d/dt)n− ṅ = (d/dt)nm − ṅm (7)

Another residual generator is k1. It was found during
the MSO search phase and spans both the initial match-
ing produced by WEIGHTEDELIMINATION as well as the
matching selected for its MSO. 28 equations are involved in
its calculation: 8 as part of the MSO (k12, k13, k14, d10,
d11, s1, s2, s3) and the rest as part of the initial matching
(s17, s10, s11, s12, k17, k19, s24, k20, s25, m5, s23, s21,
m4, s22, k18, s4, s6, d12, s5).

The constraints which where matched during WEIGHT-
EDELIMINATION can be calculated by substitution. The
remaining 8 equations need to be solved simultaneously.

k12 : u̇ = rv − qw + Fbx/m (8)
k13 : v̇ = −ru+ pw + Fby/m (9)
k14 : m = Fbz (ẇ − qu− pv) (10)
d10 : u =

∫
u̇dt (11)

d11 : v =
∫
v̇dt (12)

s1 : Fx = m (amx − g sin θ) (13)
s2 : Fy = m (amy + sinφ cos θ) (14)
s3 : Fz = m (amz + cosφ cos θ) (15)

k12-k14,d10 and d11 are part of the standard rigid-body
kinematics equation set. s1-s3 are measurements from a 3-
axis accelerometer, solved for the force component. This is
a dynamic system which can be solved by a differential
equations solver.

VII. CONCLUSIONS

In this paper, SA methods were employed to perform
fault diagnosis in large-scale systems. Previous similar works
were presented, which employed graph-theoretical methods
to investigate the existence of analytical redundancy relations
used as residual generators for fault diagnosis. Yet, those ap-
proaches did not take into account the implementation issues
stemming from either causality restrictions, or calculability
problems, or the existence of sets of simultaneous equations.

We introduced a method for finding causal, calculable
residual generators of minimum cost, based on a novel,
weighted bipartite graph representation. The combination of
a priori and a posteriori information allows us to produce
results in reduced time.

We applied the proposed method onto an example, large-
scale model of a fixed-wing UAV and showed that different
types of residual generators can be obtained, depending on
the specified search criteria.

REFERENCES

[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis
and fault-tolerant control, 2nd ed. Springer Berlin Heidelberg, 2006.

[2] M. Fravolini, V. Brunori, G. Campa, M. Napolitano, and M. La
Cava, “Structural Analysis Approach for the Generation of Structured
Residuals for Aircraft FDI,” IEEE Transactions on Aerospace and
Electronic Systems, 2009.

[3] M. Krysander and J. e. a. Aslund, “An Efficient Algorithm for Finding
Minimal Overconstrained Subsystems for Model-Based Diagnosis,”
IEEE Transactions on Systems, Man, and Cybernetics, 2008.

[4] R. Izadi-Zamanabadi, “Structural analysis approach to fault diagnosis
with application to fixed-wing aircraft motion,” in Proceedings of the
2002 American Control Conference, 2002.

[5] T. Boukhobza, F. Hamelin, and C. Simon, “A graph theoretical ap-
proach to the parameters identifiability characterisation,” International
Journal of Control, 2013.

[6] M. Krysander and J. Aslund, “An Efficient Algorithm for Finding
Over-constrained Sub-systems for Construction of Diagnostic Tests,”
in 16th International Workshop on Principles of Diagnosis), 2005.

[7] K. Murota, Matrices and matroids for systems analysis. Springer,
2000.

[8] a. L. Dulmage and N. S. Mendelsohn, “Coverings of bipartite graphs,”
Canadian Journal of Mathematics, 1958.

[9] M. Blanke and T. Lorentzen, “SaToolA software tool for structural
analysis of complex automation systems,” in 6th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes, 2006.

[10] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, 1955.

[11] C. E. Leiserson, T. H. Cormen, C. Stein, and R. Rivest, Introduction
to Algorithms. The MIT Press, 2009.

[12] M. Krysander, J. Aslund, and E. Frisk, “A Structural Algorithm for
Finding Testable Sub-models and Multiple Fault Isolability Analysis,”
21st International Workshop on the Principles of Diagnosis, 2010.

[13] V. Flaugergues, V. Cocquempot, M. Bayart, and M. Pengov, “Struc-
tural Analysis for FDI: a modified, invertibility-based canonical de-
composition,” in Proceedings of the 20th International Workshop on
Principles of Diagnosis, 2009.

[14] C. Svard and M. Nyberg, “Residual Generators for Fault Diagno-
sis Using Computation Sequences With Mixed Causality Applied
to Automotive Systems,” IEEE Transactions on Systems, Man, and
Cybernetics, 2010.

[15] G. Katsillis and M. Chantler, “Can dependency-based diagnosis cope
with simultaneous equations?” in 8th International Workshop on
Principles of Diagnosis, 1997.

[16] V. D. Flaugergues, V. Cocquempot, M. Bayart, and M. Pengov,
“On non-invertibilities for Structural Analysis,” 21st International
Workshop on Principles of Diagnosis, 2010.

[17] K. G. Murty, “An Algorithm for Ranking all the Assignments in Order
of Increasing Cost,” Operations Research, 1968.

	I INTRODUCTION
	II sa
	II-A The Structural Model
	II-B Solving the System Graph
	II-C Matching Algorithms
	II-D MSOs

	III cc
	III-A Causality
	III-B Calculability
	III-C Additional Issues

	IV A Weighted Graph Approach
	V pr
	V-A Step 1: DM Decomposition
	V-B Step 2: A Priori Matching Propagation
	V-C Step 3: A-Posteriori Matching Selection

	VI ex
	VI-A The System Model
	VI-B Results

	VII Conclusions
	References

