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Abstract— The production of biomass by micro-organisms is
of great interest in more and more industrial fields. Their cul-
ture in fedbatch bioreactors is largely used and the optimization
of the influent flow rate is a major challenge to set the micro-
organisms in the highest performance conditions.
Usually, sets of experiments are achieved to compute macro-
scopic models expressing the observed growth as a function
of the concentrations of glucose, cell density, and any kind
of external parameters (pH, temperature, etc. ). In contrast,
this paper relies on an intracellular model of a bacteria,
which is used to determine the optimal profile of influent flow
rate in a fedbatch bioreactor to produce as much biomass
as possible. Compared to macroscopic models, the additional
elements of this model better describe biological phenomena.
The intracellular part of the model also provides a clear
interpretation of the obtained optimal influent profile.

KEYWORDS: Bioprocess Optimization, Intracellular Pro-
cess, Cellular Model, Fedbatch

I. INTRODUCTION

Bacterial cultures are a central interest in the production
of biochemical products and a challenge is to make them
grow as fast as possible. Usually, bacteria are placed in a
medium containing all the needed nutrients for growth. The
objective is then to maintain the highest culture performance,
either for the bacterial growth or for other products of interest
production.
Usually, bioreactors containing bacteria are analyzed and
controlled using a growth rate model based on macroscopic
observations as for example in [1], [2] or [3]. In this kind of
model, the growth is linked to macroscopic variables such
as biomass, substrate and excreted product concentrations in
the bioreactor, density of cells or other physical variables.
Such models can be as simple as linear relations, Monod ki-
netics including saturations, Haldane-like formulations with
inhibitions taken into account, or combination of different
kinetics. The fact remains that the growth rate always has a
dominant role in the modelling of the process.
However, the growth rate strongly depends on biological
factors and intracellular activity. Accurate and general mod-
ellings of cellular activity exist in steady-state. [4] and
[5] present two of these models in steady state and [6]
presents a dynamical model for cellular inner concentrations
in metabolites and enzymes. These models are accurate and
are able to predict the behaviour of the cells according to

1Laboratoire des Signaux et Systèmes, CentraleSupélec - CNRS
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the external medium composition. Indeed, high numbers of
internal variables and parameters (greater than 1000) are
taken into account in these models, while considering some
general assumptions.
In a previous work [7], we proposed an accurate tractable
biological model for batch cultivation bioprocess, that com-
bines these two modelling approaches (macroscopic and
intracellular models). In the present paper, the model is
extended to the case of a fedbatch cultivation bioprocess. In
the latter operating mode, this model is further exploited to
determine the optimal feeding rate in order to maximize the
bacteria growth. The biological part of the model completes
the usual macroscopic description and brings the optimal
profile closer to biological considerations. This paper also
shows that the biological constraints described in the model
allow a clear interpretation of the limitations of the cells and
a fair characterization of the optimality.
This paper is organized as follows: in Section II, the
dynamics of the process is presented, further completed
in Section III by the description of the related biological
constraints in order to fully describe the cells growth. With
this model, the optimal feeding strategy that maximizes the
bacteria growth for a fedbatch bioreactor is derived, and
presented in Section IV with some computational details.
Then, in Section V, an analysis of the intracellular model
is considered to interpret the determined optimal feeding
strategy. Finally, some conclusions and perspectives are
drawn in Section VI.

II. DYNAMICS OF THE BIOPROCESS

A. Volume variations
Denoting Fin and Fout the influent and effluent flow rates

respectively (both in L.h−1), the variation of the bioreactor
medium volume, Vreact, is given by:

dVreact(t)

dt
= Fin(t)− Fout(t) (1)

The bioreactor is supposed to be perfectly stirred and namely
the population of bacteria, Npop, is supposed to be perfectly
homogeneous in the medium. So, the number of bacteria
leaving the reactor at each time instant equals the effluent
flow rate multiplied by the relative concentration of bacteria
in the bioreactor (Npop/Vreact). Hence, with µ(t) the specific
growth rate, characterizing the natural growth of the bacterial
culture, the evolution of bacteria population is given by (2).

dNpop(t)

dt
= µ(t) Npop(t)︸ ︷︷ ︸

Growth

−Fout(t)
Npop(t)

Vreact(t)︸ ︷︷ ︸
Effluent

(2)



Also, assuming the volume of each bacteria, vb, constant with
time, the total volume of bacteria, Vpop(t) = vb Npop(t),
follows the same dynamics:

dVpop(t)

dt
=
(
µ(t)− Fout(t)

Vreact(t)

)
Vpop(t) (3)

B. Concentration variations in terms of fluxes

The mass balance of the compounds in presence is
derived from the exchange of material between species.
Like in [8], a part of the exchanges is material fluxes
per unit of bacterial volume. In addition, the influent and
effluent flow rates are responsible of material variation.
Hence, the variation of the quantities of each intracellular
and extracellular species ξ in presence, nξ, can be expressed
in terms of total bacterial volume, reactions fluxes per unit
of bacterial volume, νξproduced and νξconsumed, and influent
and effluent flow rates as in (4).

dnξ(t)
dt = (νξproduced(t)− ν

ξ
consumed(t)) Vpop(t)

+ξ0 Fin(t)− nξ(t)
Vreact(t)

Fout(t)
(4)

where ξ0 is the concentration of the species ξ in the influent
(null in case of intracellular specie).
Expressing the concentration of an internal compound ξint,
denoted [ξint], with respect to the volume of bacteria Vpop,
and the concentration of an external compound ξext, denoted
[ξext], with respect to the bioreactor volume Vreact, it comes:

d[ξint]

dt
=
d
nξint
Vpop

dt
=

1

Vpop

dnξint
dt︸ ︷︷ ︸

eq.(4)

− [ξint]

Vpop

dVpop
dt︸ ︷︷ ︸

eq.(3)

(5)

and for external concentrations:

d[ξext]

dt
=
d
nξext
Vreact

dt
=

1

Vreact

dnξext
dt︸ ︷︷ ︸

eq.(4)

− [ξext]

Vreact

dVreact
dt︸ ︷︷ ︸

eq.(1)

(6)

Merging the equation (5) with (4) and (3), and the equation
(6) with (4) and (1), leads to:{

d[ξint]
dt = ±νξint − µ[ξint]

d[ξext]
dt = ±νξext Vpop

Vreact
+ (ξ0 − [ξext])

Fin
Vreact

(7)

where ±νξ = νξproduced − ν
ξ
consumed.

Remark: There is a strong analogy with the dynamics
described in [1] for the growth of one population of micro-
organisms on a single limiting substrate, recalled:

dVreact
dt = Fin − Fout

dVpop
dt = µVpop − Fout VpopVreact
d[S]
dt = −YSµ Vpop

Vreact
+ (S0 − [S]) Fin

Vreact

(8)

with the same notations as previously and with YS the “yield
coefficient in substrate consumption by the biomass”, and S
the single external substrate. Hence, in this framework, the
following analogy can be made between the two models:

±νS = −YS µ (9)

Assuming there is no production of S and only its consump-
tion, YS = νSconsumed/µ is a rational definition for the notion
of yield: the ratio of the consumption over the growth.

C. Pool aggregation and fluxes

1) Pool definition: In the bioreactor medium, there are
• bacteria with a volume Vpop
• a single substrate Sext

As in [7], this work relies on the aggregation of the different
intracellular species into pools in order to deal with the trade-
off between simplicity and tractability. Almost all cellular
components can be categorized in one of these pools:
• Sin pool gathers all the intracellular metabolic precur-

sors including intracellular forms of substrate,
• eB are all the proteins involved in metabolic network

and the proteins complexes engaged in molecular ma-
chineries,

• eT are the membranous proteins, part of which is
involved in the substrate uptake,

• eR are the ribosomes,
• XB pool consists in all the metabolites and macro-

components of the cell.
2) Flux expression: The considered reactions in this

model are the same as in [7], that is to say:
• Sext

νimport−→ Sin, importing the substrate from the
external medium to the cells thanks to membranous
proteins eT ,

• Sin
νXB−→ αB .XB , producing metabolites and macro-

components from Sin under the action of enzymes and
molecular machineries eB ,

• Sin
νeB−→ αeB .eB , creating the metabolic enzymes by

ribosomes eR,
• Sin

νeT−→ αeT .eT , creating membranous proteins by
ribosomes eR,

• Sin
νeR−→ αeR .eR, producing ribosomes by themselves.

A reaction catalysed by an enzyme has a flux equal to:

ν = efficiency [enzyme concentration] (10)

The efficiencies are determined as in [7]:

νimport =
rimpvT [Sext]

[Sext] +KT (1 + [Sin]/KS)
[eT ]

νXB = kB [Sin] [eB ]
νeB = ueB [Sin] [eR]
νeT = ueT [Sin] [eR]
νeR = ueR [Sin] [eR]

(11)

where vT is the maximal import efficiency of transporters,
rimp is the proportion of active transporters in the membrane,
KT is a constant representing the affinity between eT and the
substrate Sext, KS is a constant representing the inhibition of
the import flux relative to [Sin], kB is the relative efficiency
of metabolism with respect to [Sin], ueB (resp. ueT , ueR ) is
level of expression of eB (resp. eT , eR).
Concerning the import flux νimport, the efficiency is sup-
posed to be saturated by the concentrations in external
substrate as it is observed on experiments. The transfer is



also supposed to be inhibited by the internal concentration
in substrate in order to avoid too high intracellular concentra-
tions. The other efficiencies are linear with respect to internal
substrate concentration meaning that the absence of substrate
turns these fluxes off.

D. Concentration dynamics

Considering the fluxes expressions given in (11) and the
general formulation of the concentration dynamics (7) and
with (1) and (3), the description of the bioprocess dynamics
is derived in (12).

˙[Sin] =
rimpvT [Sext][eT ]

[Sext] +KT (1 + [Sin]/KS)

− kB [eB ][Sin]−
∑

i∈{B,T,R}

uei [eR][Sin]− µ[Sin]

˙[eB ] = αeBueB [eR][Sin]− µ[eB ]
˙[eT ] = αeT ueT [eR][Sin]− µ[eT ]
˙[eR] = αeRueR [eR][Sin]− µ[eR]
˙[XB ] = αBkB [eB ][Sin]− µ[XB ]

˙[Sext] = −
rimpvT [Sext][eT ]

[Sext] +KT (1 + [Sin]/KS)

Vpop
Vreact

+ (S0
ext − [Sext])

Fin
Vreact

V̇pop = µ Vpop − Fout
Vpop
Vreact

V̇react = Fin − Fout

(12)

The expression of the specific growth rate is detailed here-
after. The values of the parameters can be found in literature
([9]) and are gathered in table I.

TABLE I
PARAMETERS VALUES. ALL FROM [9], EXCEPT FOR THOSE MARKED

WITH [*] FROM [7]. “aa” STANDS FOR AMINO ACIDS

Param. Value (Unit)
vT 1.33 106 (Lh−1mmol−1)
rimp 0.01
KT 0.8 (mmol L−1)
KS 1 (mmol L−1)
kB 4.32 104 (Lh−1mmol−1)
aaeB 360 (aa)
aaeT 360 (aa)
aaeR 10100 (aa)
aaSin 0.8 (aa)
aaXB 5.97 (aa)
D 16.5 (mol aaL−1)
vkT 9.72 104 (aa)
KkT 0.5 (h−1)
ueB 1.86 105 [*] (Lh−1mmol−1)
ueT 3.39 104 [*] (Lh−1mmol−1)
ueR 9.94 104[*] (Lh−1mmol−1)
αeB 2.2 10−3

αeT 2.2 10−3

αeR 9.5 10−5

αB 1.67 10−4

III. BIOLOGICAL LIMITATIONS

The above state variables and dynamics have to respect
some biological constraints to reproduce reliably the biolog-
ical behaviour of the cells. Namely, the growth rate and the
limiting ribosome capacity have to be taken into account.

A. Intracellular density regulation

In this model, the specific growth rate µ is assumed to be
linked to the mass accumulation in the form of proteins and
ribosomes. The intracellular density in joined amino acids,
denoted D, is known to be constant over time [10].
Typically, it means that the pools Sin and XB do not account
in the intracellular density, as in [11].
The density is expressed as:

D =
∑

i∈{B,T,R}

aaei [ei] (13)

and thus, its derivative is null, leading to:

Ḋ = 0 =
∑

B,T,R

aaei
˙[ei]

0 =
∑

B,T,R

aaei

(
αeiuei [eR][Sin]− µ[ei]

)
0 =

∑
B,T,R

(
aaeiαeiuei [eR][Sin]

)
− µ

∑
B,T,R

aaei [ei]

0 =
∑

B,T,R

(
aaeiαeiuei [eR][Sin]

)
− µD

(14)
Consequently,

µ =
1

D

∑
B,T,R

(
aaeiαeiuei

)
[eR][Sin] (15)

The specific growth rate is thus determined from the
concentrations in ribosomes and in internal substrate.

Computational remark: In order to avoid numerical chat-
tering, a first-order filter with very fast time constant com-
pared to 1/µ can be added either to µ or to D defined as
(15) and (13), respectively.
Biological remark: the density regulation mechanisms state-
ment notably stands for rod-shaped bacteria like Escherichia
coli and Bacillus subtilis.

B. Translation limitation

The ribosomes capacity represents the number of amino
acids one ribosome can join together to form peptide chains.
As observed in [12], this capacity, kT , is limited by the
growth rate as follows:

kT =
vkT µ

KkT + µ
(16)

where vkT is the maximal translation capacity and KkT is a
constant representing the growth rate for which the capacity
is half its maximal value. This leads to a constraint on the
enzyme and ribosome creation fluxes:∑

i∈{B,T,R}

νei︸ ︷︷ ︸
Total enzymes production

≤ vkT µ

KkT + µ︸ ︷︷ ︸
Ribosomes capacity

[eR] (17)



Hence, from (11):

[Sin]
∑

i∈{B,T,R}

uei ≤
vkT µ

KkT + µ
(18)

This constraint must be satisfied at any time.

IV. OPTIMAL FEEDING STRATEGY FOR A FEDBATCH
BIOREACTOR

In the following, the study will focus on a fedbatch
bioreactor, i.e. a culture without any effluent flow:

Fout = 0 (19)

The problem considered below consists in maximizing
the bacteria growth within a fixed cultivation duration, using
the modelling and the constraints developed in Section II
and III, and parameters from table I, acting only on the
influent flow rate, Fin. The derived optimization problem is
then expressed as:

max
Fin(t)

Vpop(t = tf )

subject to,



concentrations dynamics (12)
growth rate (15)
translation constraint (18)
fixed initial conditions
0 ≤ Fin(t) ≤ FMAX

0 ≤ Vreact(t) ≤ VMAX

fixed tf

(20)

FMAX (resp. VMAX ) is the upper bound on Fin (resp.
Vreact). Considered initial values, bounds, final time and
influent flow characteristics are gathered in table II.

TABLE II
SIMULATION CONDITIONS.

Variable Value (Unit) Var. Value (Unit)
[eB ]0 26 (mmol L−1) Vpop0 0.015 (L)
[eT ]0 14 (mmol L−1) Vreact0 3 (L)
[eR]0 0.21 (mmol L−1) tf 10 (h)
[Sin]0 0.43 (mmol L−1) FMAX 0.7 (Lh−1)
[XB ]0 0.06 (mmol L−1) VMAX 10 (L)
[Sext]0 5 (mmol L−1) S0

ext 60 (mmol L−1)

The solution of problem (20) can be determined by a
sequential approach as in [13] and [3]. It means that only
the control variable, Fin, is described by piecewise poly-
nomials and the optimization is made with respect to these
polynomial coefficients. The problem is then formulated as
a nonlinear programming problem.
Here, the command Fin is discretized with a zero-order hold
with a 7min time step, and equations (12), (15), (18) are
also discretized with an explicit Euler method of sampling
time 0.06min. The optimization problem is solved using a
Sequential Quadratic Programming algorithm presented in
[14].

The obtained optimal influent flow rate profile is depicted
in Fig. 1.

The strategy appears to be split in 3 stages:
(i) Fin(t) = FMAX ,

Time (h)
0 1 2 3 4 5 6 7 8 9 10

F
in

 (
L/

h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(i) (ii) (iii)

Fig. 1. Time evolution of the optimal influent flow rate

(ii) a sort of exponential curve,
(iii) the “exponential” seems to saturate at Fin = FMAX .
Next Section will analyse and interpret this obtained profile.

V. INTERPRETATION

The intra-cellular concentrations have a fast dynamics
compared to the extracellular variables ([Sext], Vpop and
Vreact) which have slower dynamics. Therefore, a model
reduction can be applied, based on the assumption that
˙[ξint] = 0. Thus, the objective is to determine [ξint] as a

function of the slow external variables.

A. Model reduction

In the following, the equilibrium of the internal concen-
tration is assumed to be reached and [ξint] denotes the
concentration of internal compound ξint at equilibrium.

From the ribosomes equilibrium in (12):

µ = αeRueR [Sin] (21)

From the enzymes eB and eT equilibrium in (12) and from
(21), it can be shown that: [eB ] =

αeBueB [eR] [Sin]

µ =
αeBueB
αeRueR

[eR]

[eT ] =
αeT ueT [eR] [Sin]

µ =
αeT ueT
αeRueR

[eR]
(22)

The constant density in proteins and ribosomes and (22)
gives the relation:

[eR] =
αeRueR∑

i∈{B,T,R}
aaeiαeiuei

D (23)

And once again (22):

[ej ] =
αejuej∑

i∈{B,T,R}
aaeiαeiuei

D, j ∈ {B, T,R} (24)

This means that the enzyme and ribosome concentrations
in steady-state depend on the density D.



Besides, the concentration of intracellular metabolites and
macrocomponents is deduced from its equilibrium:

[XB ] =
αBkB
αeRueR

[eB ] =
αBkB
αeRueR

αeBueB∑
i∈{B,T,R}

aaeiαeiuei
D

(25)
Moreover, (21) can be included in the equation of the

equilibrium of Sin as in (26).

0 = − [eT ]vT rimp[Sext]

+ (kB [eB ] +
∑

B,T,R

uei [eR]) ([Sext] +KT ) [Sin]

+
(
(kB [eB ] +

∑
B,T,R

uei [eR]) KT /KS

+αeRueR ([Sext] +KT )
)
[Sin]

2

+ αeRueRKT /KS [Sin]
3

(26)
Assuming D independent from [Sin], (26) can be seen

as a third degree polynomial in [Sin] with coefficients
depending on [Sext]. The roots of this polynomial in [Sin]
can be computed with the numerical values of table I and
several values of [Sext]. For every value of [Sext], the
polynomial has two conjugate complex roots and a real
positive one. Plotting the latter root as a function of [Sext]

is similar to a Michaelis-Menten shape: [Sin] ≈ α[Sext]
β+[Sext]

.

Consequently, from (21), this model reduction shows that
the behaviour is similar to the one obtained through a
macroscopic approach considering a Monod kinetics law.

B. Focus on the growth rate
As the internal steady state growth rate follows a Monod-

like kinetics, the optimal strategy to maximize the growth
appears to be to maximize the external substrate concen-
tration. This is the classical strategy when not considering
inhibition of the substrate, when the growth strictly increases
with the substrate concentration.
The asymptotic specific growth rate, µsup, is given by (27)
(from (26) when [Sext] tends to infinity).

0 = −[eT ]vT rimp + E
µsup

αeRueR
+ αeRueR

µ2
sup

α2
eR
u2
eR

µsup =
−E+

√
E

2
+4αeRueRvT rimp[eT ]

2
(27)

with E = kB [eB ] +
∑

B,T,R

uei [eR].

Nonetheless, in this context, the translation constraint (18)
becomes a limitation on µ as in (28).

[Sin]
∑

i∈{B,T,R}
uei ≤ vkT µ

KkT +µ

µ
αeRueR

∑
i∈{B,T,R}

uei ≤ vkT µ

KkT +µ

µ ≤ vkT αeRueR∑
i∈{B,T,R}

uei
−KkT

∆
= µtrans

(28)
This threshold µtrans has to be compared to µsup.

With the numerical values of table I, it comes:{
µsup = 0.50h−1

µtrans = 0.48h−1 (29)

Thus, the translation constraint can limit the growth. In
fact, under the assumption of intracellular steady state, a
too important concentration of external substrate burdens the
cells and the translation constraint is saturated.
The translation constraint and the steady-state growth rate
are both represented in terms of [Sext] on Fig. 2.

[S
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7
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 h
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0.05
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0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[S
ext

]
trans

7
sup
7

trans

Fig. 2. Growth rate as a function of external substrate concentration,
assuming internal steady-state is reached. In grey, the evolution of µ
in steady state, without translation constraint. In black, the equivalent
translation constraint in terms of saturation on growth rate, implicitly
limiting [Sext] (dotted black line). mM stands for mmol L−1.

It can be seen that the constraint indirectly prevents the
substrate from being too concentrated. Hence, the optimal
feeding strategy is not to fill the bioreactor at a maximum
to increase the substrate concentration as in a Monod-like
macroscopic model (see [15]) but to keep the system around
the point µ = µtrans and so, [Sext] = [Sext]trans.

C. Time evolutions

Simulation is run with computational details from Sec-
tion IV and the influent profile Fin(t) depicted in Fig. 1.
Fig. 3 gathers the time evolutions of the growth rate and
the external substrate concentration, and the representation
of the real µ versus [Sext] to complete Fig. 2.
The same three stages as in Fig. 1 can be observed:
(i) both of the substrate concentration and the growth rate

increase,
(ii) the substrate concentration and the growth rate are

maintained constant. The specific growth rate value
equals µtrans,

(iii) both of the substrate concentration and the growth rate
decrease, corresponding to Fin = FMAX .

As depicted in Fig. 3.c, obtained growth rate µ is very close
to the theoretical one, µ. The difference comes from: (1) the
control law discretization, (2) optimization algorithm con-
vergence, and (3) numerical approximation while performing
model reduction. Finally, the optimal operating point of the
system corresponds to µ ≈ µtrans and [Sext] ≈ [Sext]trans.
The optimal feeding strategy thus consists in driving the
system to this point and maintaining it there until Fin reaches
its upper bound. The optimal strategy can be split into three
stages:
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Fig. 3. (a) the growth rate µ. (b) [Sext] as a function of time. (c) in grey,
µ evolution versus [Sext] and in dashed black, recalling µ from Fig.2. mM
stands for mmol L−1.

(i) as long as [Sext] < [Sext]
∗, increase [Sext]: Fin(t) =

FMAX ,
(ii) as long as Fopt(t) < FMAX , keep µ = µtrans, i.e. the

translation constraint saturated: Fin(t) = Fopt(t),
(iii) as long as Vreact < VMAX , Fin(t) = FMAX .

VI. CONCLUSIONS AND PERSPECTIVES

The biological constraints and the information they
provide on the cell behaviour are complementary to the
evolution of every compound in the cells and the reactor.
They have to be exploited in the design of control laws as
the dynamics of extracellular compounds already are. It is
essential to understand what is important for the cells and
so how bacteria can be at best in a bioreactor to grow.
In this paper, we have shown that an optimal control law
profile is perfectly described if we consider the internal
limitation in terms of proteins translation limitation. The
optimal feeding flow is the one which maintains the internal
state of the cells in such a way that resources are present
in the maximal quantity with respect to this translation
constraint.
This optimal feed-rate was determined by means of an
intracellular model. A current drawback of this kind of
intracellular models is that they have to be assessed by
experiments to be fully trustworthy. For instance, some
model parameters must be determined. The uncertainty
on their values and its impact on the model accuracy and
control law optimality will be further investigated in a future
work.
The optimal flow rate can be moved into a control
problem: the optimal operating of the bioreactor can then
be expressed as the regulation of the specific growth rate
to a given value that corresponds to the maximal capacity
of the ribosomes, or equivalently, to regulate the external
substrate concentration to the corresponding objective value.
Moreover, the control of inner parameters as gene level
expressions should be also optimized to improve further the

performance of the bioprocess operation. This is investigated
in an ongoing work.
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