
ROBUST STABILIZATION OF LINEAR PLANTS UNDER UNCERTAINTIES 
AND HIGH-FREQUENCY MEASUREMENT NOISES1 

 
Igor B. Furtat*,**. Artem N. Nekhoroshikh, *,** 

 

*Institute for Problems of Mechanical Engineering Russian Academy of Sciences, 61 Bolshoy ave V.O., St.-Petersburg, 
199178, Russia (Tel: +7-812-321-47-66; e-mail: cainenash@mail.ru). 

**ITMO University, 49 Kronverkskiy ave, Saint Petersburg, 197101, Russia. 

Abstract: The paper describes the robust algorithm for linear time-invariant plants under parametric 
uncertainties, external disturbances and high-frequency noises in measurements. The proposed algorithm 
allows one to reduce the noise impact on the output variable of the plant and to compensate parametric 
uncertainties and external disturbances independently. The modeling results illustrate the effectiveness of 
the algorithm. 

Keywords: Robust control, linear plants, high-frequency noise, time delay, Lyapunov-Krasovskii 
functional. 

 

1 The results of Section 3 was developed under support of RSF (grant 14-29-00142) in IPME RAS. The results of Section 4 
wsa supported solely by the Russian Federation President Grant (No. 14.W01.16.6325-MD (MD-6325.2016.8)). The other 
research were partially supported by grants of Russian Foundation for Basic Research No. 16-08-00282, № 16-08-00686, 
Ministry of Education and Science of Russian Federation (Project 14.Z50.31.0031) and Government of Russian Federation, 
Grant 074-U01. 

1. INTRODUCTION 

Design of simple control systems under parametric 
uncertainties and external disturbances when only plant 
output is available for measurement is important problem of 
control theory and practice. To construct such control 
schemes many solutions have been proposed in this regard. 

One of the most effective tools is to synthesize control 
structure using high-gain observer. At first high-gain 
observer was proposed in (Esfandiary and Khalil, 1992; 
Gauthier et al., 1992) for minimum phase plants. Later other 
kind of high-gain observer were considered in (Gauthier et 
al., 1992; Teel and Praly, 1994; Bobtsov, 2002; Tsykunov, 
2008; Furtat, 2015). In (Esfandiary and Khalil, 1992; 
Gauthier et al., 1992; Teel and Praly, 1994; Bobtsov, 2002; 
Furtat, 2015) the dimension of the high-gain observer is equal 
to γ – 1, where γ is the relative degree of plant model. 

However, using high-gain observer can be unsatisfactory in 
case high frequency noise measurement application. The 
investigations of the high-gain observers under noises were 
considered in (Vasiljevic and Khalil, 2008; Boizot et al., 
2010; Sanfelice and Praly, 2011). The problem is that the 
value of estimate derivative could be sufficiently greater than 
the real one. Moreover, the error accumulates in further 
estimation. 

In (Ahrens and Khalil, 2009; Sanfelice and Praly, 2011; 
Prasov and Khalil, 2013) adaptive high-gain observer was 
proposed to partially overcome this problem. Thus, initially 

high-gain parameter of the observer has a large value, while 
in steady state mode high-gain parameter is decreased. 

In (Astolfi and Marconi, 2015; Wang et al., 2015) an 
extended high-gain observer was considered. The dimension 
of the modified observer is 2γ – 2. Doubling dimension is 
caused by the introduction of additional differential equations 
reducing the impact of high frequency measurement noises. 
The simulation results showed the effectiveness of the 
modified algorithm as compared with the standard high-gain 
observer. However, in (Astolfi and Marconi, 2015; Wang et 
al., 2015) quality of estimate derivatives and quality of 
filtering simultaneously depend on the solution of the 
observer equation. 

In the present paper we consider two independent algorithms: 
filtering and control ones. Differently from (Astolfi and 
Marconi, 2015; Wang et al., 2015), the proposed algorithm 
allows one 

1) to improve the quality of the estimation derivatives; 

2) to calculate independently the filter parameters and the 
parameters of the observer. 

The paper is organized as follows. The problem statement is 
presented in Section 2. In Section 3 we design the high- 
frequency filtering algorithm. In Section 4 we propose the 
control algorithm for linear plants. In Section 5 we consider 
simulation results and discuss an efficiency of the proposed 
control structure. Concluding remarks are given in Section 6. 

 

     

                                                 



 
 

 

2. PROBLEM STATEMENT 

Consider a plant model in the form  

),()()(),()()()()( twtztytftupkRtzpQ +=+=  (1) 

where y(t) ∈ R is an output, u(t) ∈ R is an input, f(t) ∈ R is a 
unmeasured bounded disturbance, w(t) ∈ R is a high 
frequency bounded noise, Q(p), R(p) are linear differential 
operators with unknown coefficients, deg Q(p) = n, 
deg R(p) = m, k > 0, p = d / dt. 

Assume that the coefficients of operators Q(p), R(p) and 
coefficient k > 0 belong to a known compact set Ξ. The 
polynomial R(λ) is Hurwitz, where λ is a complex variable. 

The problem is to design the control system such that the 
following condition holds 
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 (2) 

where δ1 > 0 is a required accuracy, hereinafter |⋅| is an 
Euclidean norm. 

3. HIGH FREQUENCY FILTERING ALGORITHM 

Reject signal w from signal y. To this end, introduce the 
following algorithm 

,0)0(),()(ˆ),()()( =ξξ=+ξ=ξµ tLtytBytGt  (3) 

where ξ = [ξ1, ξ2, ..., ξr]T, 
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, σi > 0, 

[ ] ,0...,,0, T1
1
−σ=B  µ > 0 is a sufficient small coefficient, 

L = [0, ..., 0, 1]. 

Theorem 1.  Let signal z be bounded and the following 
condition holds 
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where δ2 > 0 is a sufficiently small coefficient. Then there 
exists a coefficient µ0 > 0 such that for any µ ≤ µ0 the 
following condition holds 
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Here δ3 > 0 is a sufficiently small coefficient. 

Proof of  Theorem 1.  Consider plant (3) with input signal 
z: 

.0)0(~),(~)(~),()(~)(~
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For analysis of plant (6) let us use Lemma (Furtat, 2014; 
Furtat et al., 2014; Furtat et al., 2015). 

Lemma.  Consider a plant model 

( ),)(),()( tutxftxh =  (7) 

where x ∈ Rs, f(x, u, h) is  Lipschitz function in x and u, u is a 
bounded function, h > 0 is a small coefficient. Let system (7) 
be asymptotically stable when u = 0. Consider the set 

{ }0),(: ==Ω uxfx . Then there exists h0 > 0 for any ε > 0 
such that for any h < h0 the following condition holds 

( ) ε<Ω
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. 

Let us verify conditions of Lemma for system (6). System (6) 
is asymptotically stable for z = 0, because the matrix G is 
Hurwitz. Substituting µ = 0 into (6), we get Gξ = –Bz or 
ξ1 = z and ξi = ξi + 1, 1,2 −= ri . Thus, zy =~ . According to 
Lemma, there exists µ > 0 such that for any µ ≤ µ0 the 
following condition holds 
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where δ4 > 0 is a sufficiently small coefficient.  

Consider the signal y consisting of the signal z and the noise 
w. Find a condition such that (5) will be hold. 

Taking into account (3) and (6), rewrite the error ξ−ξ=ζ
~

 in 
the following form 
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The solution of the first equation of (9) is 
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If condition (4) holds, then we have from (10) that 
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Consider the following relations 
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Obviously, the upper bounds of (12) will be satisfied 
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Let δ2 + δ4 ≤ δ3. Taking into account (8) and (11), we get 
estimate (5) from (13). Theorem 1 is proved. 

Let noise w be sinusoidal signals 
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where Ai, ωi and ϕi are the amplitude, the frequency and the 
phase accordingly. 

     



 
 

 

Theorem 2.  Let z be bounded function and noise w be 
signal (14). Then there exists µ0 > 0 such that for any µ ≤ µ0 
the following condition holds 
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Proof of Theorem 2. It follows from the proof of Theorem 1, 
that there exists µ > 0 for system (6) such that for any µ ≤ µ0 
the condition (8) holds. Taking into account (3) and (6), write 
the error ξ−ξ=ζ

~
 in the form (9). Rewrite system (9) as 

( )

.,2),()()(

,sin)()(

1
1111

1

1
1

1
1

1
1

1
1

rjttt

tAtt

jjjjj

v

i
iii

=ζσµ+ζσµ−=ζ

ϕ+ωσµ+ζσµ−=ζ

−
−−−−

=

−−−− ∑





 (16) 

The solution of the first equation in (16) is 
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Substituting (17) into the second equation of (16), we get 
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Therefore, the solution of the rth equation of (16) is 
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Takin into account (8), (13) and (19), we get estimate (15). 
Theorem 2 is proved. 

4. SYNTHESIS OF CONTROL SYSTEM 

Let us use the algorithm (Furtat, 2015) to synthesize the 
control system. According to Problem Statement, only the 
output signal y(t) is available for measurement. Therefore, 
introduce the control law as follows 
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where α > 0 and d0, d1, …, 1−γd  are chosen such that the 

polynomial 01
2

2
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−γ

−γ
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Hurwitz, γ = n – m is a relative degree of (1), )()( ty i  is an 
estimate of the ith derivative signal )(ˆ ty , i = 0, 1, ..., γ – 1. 

Substituting (20) into (1), we get 
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where F(p) = Q(p) + αkR(p)D(p), 
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g(t) depends on estimation quality of the signal )(ˆ ty  and its 
derivatives, the value of ψ(t) depends on quality of (3). Since 
the set Ξ is known, then there exist the number α and the 
polynomial D(λ) such that the polynomial F(λ) is Hurwitz. 

To implement the control law (20) we use the following 
observer 

.1,1,)()()(

),(ˆ)(
)1()1(

)( −γ=
−−

=

=
−−

j
h

htytyty

tyty
jj

j  (22) 

Substituting (22) into (20), rewrite the control law (20) in the 
form 
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Theorem 3.  Let w be a bounded signal. Additionally let (γ –
 r – 1)th derivatives of w be bounded, if r ≤ γ . Then there 
exist coefficients α > 0 and h > 0 such that the control system 
consisting of filtering algorithm (3) and control law (23) 
ensures goal (2). 

Proof of Theorem 3. Transform  system (21) to the form 
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where ε = [ε1, ε2, ..., εn]T, z(i) = εi + 1, 1,0 −= ni , matrixes A, 
B1, B2, B3 and J = [1, 0, …, 0] are obtained at the transition 
from (21) to (24). Rewrite system (3) as the following 
differential equation 
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Transform (25) to the state space form 

     



 
 

 

),()(ˆ),()()( tJtytNytMt θ=+θ=θ  (26) 

where θ = [θ1, θ2, ..., θr]T, 1
)(ˆ +θ= i

iy , 1,0 −= ri , matrix M 
and vector N are obtained at the transition from (25) to (26). 

Consider two cases. 

1) Let r < γ. Rewrite the operator D(p) in the following form 
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where ρ1 and ρ2 are vectors with corresponding coefficients 
of the operator D(p). Taking into account (27), rewrite 
function g(t) in the form 
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where ρ1,j is the jth element of the vector ρ1. Taking into 
account (26), we find the jth derivative (j ≥ 1) of θ in the 
following form 
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where [ ]ΟΟ= − ...,,,...,,, 1NMMNNG j
j , O is the zero 

matrix. 

Substituting (29) into (28), we get 
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It follows from (30), that derivatives of the signal w should 
be bounded up to the (γ – r – 1)th order for r ≤ γ . Taking into 
account (23) and (30), transform equation (24) to the form 
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Denote 
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Here ϑ is a bounded signal. Taking into account the 
notations, rewrite systems (26) and (31) in the following form 
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Consider Lyapunov-Krasovskii functional 
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where P = PT > 0 is the solution of ,T QPAPA pp −=+  

Q = QT > 0, 0T >= ijij NN . Taking the derivative of (33) 
along trajectory of system (32), we get 
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Consider upper bounds of terms in (34) 
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Obviously, there exist coefficients α and χ such that W > 0 
and Rij > 0. We get upper bound of (35) in the form 
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2) Let r ≥ γ. Rewrite the operator D(p) in the following form 
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Substituting (37) into (24), transform equation (24) to the 
form 
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Rewrite systems (26) and (38): 
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corresponds to matrix Fij one in (32). 

Since system (39) structure is similar to system (32) one, than 
further proof of the second case is similar to the first one. 
Theorem 3 is proved. 

5. EXAMPLE 

Consider the plant in the following form 
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 (40) 

The set Ξ of parameters possible values in (40) is given by 
inequalities:  

–1 ≤ q3 ≤ 0.1, –2 ≤ q2 ≤ 2, –3 ≤ q1 ≤ 3, –1 ≤ q0 ≤ 1. 
Additionally, |f(t)| ≤ 1. 

We choose σi = 1 and µ = 0.01 in (3). The parameter r in (3) 
will be determined in Table 1. 

Let α = 7, d0 = 0.9, d1 = 1.5, d2 = 2 and d3 = 0.5. Then control 
law (23) could be rewritten in the following form 

( ).)(5.0)(2)(5.1)(9.07)( )3()2()1( tytytytytu +++−=  (41) 

We use observer (22) for estimation of derivatives in (41). 
Let h = 1/20. Then the observer (22) is rewritten in the form 
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In addition, compare algorithm (3), (41), (42) with the 
classical high-gain observer (Esfandiary and Khalil, 1992) 
and modified high-gain observer (Astolfi and Marconi, 2015; 
Wang et al., 2015). The control laws (41) are the same in all 
algorithms.  

1) Introduce high-gain observer (Esfandiary and Khalil, 
1992): 
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2) Consider modified high-gain observer (Astolfi and 
Marconi, 2015; Wang et al., 2015): 
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 (44) 

Let q3 = 0, q2 = 1, q1 = 1, q0 = 0, f(t) = 0, w(t) = sin(0.5⋅103t) 
and z(0) = 1, 0)0()0( == zz  , 1)0( −=z  in (40). Table 1 
shows the maximum errors of estimation of the signal z(t) 
derivatives at steady-state mode using control system (3), 
(41), (42), control system (41), (43) and control system (41), 
(44). 

 

     



 
 

 

Table 1. The value of ( ) ( ) ( ) ( ) )()(sup tytzte ii

t

i −= , 3,0=i  at 

steady-state mode (after 8 s) for the proposed algorithm, 
algorithms (43) and algorithm (44) 

Control system ( )te  ( )( )te 1  ( )( )te 2   ( )( )te 3  

Control system 
(41), (43) 
(high-gain 
observer) 

0.22 8.41 132.3 698 

Control system 
(41), (44) 
(modified high-
gain observer) 

0.26 4.9 31.1 266.1 

Proposed 
control system 
(3), (41), (42) 
when r = 2 in 
(3) 

0.04 0.2 2 57 

Proposed 
control system 
(3), (41), (42) 
when r = 5 in 
(3) 

3⋅10–3 7.5⋅10–4 2⋅10–3 5⋅10–3 

 

Table 1 shows that the proposed control algorithm can 
significantly reduce the estimate error of derivatives of signal 
z. However, the dynamical order of the proposed algorithm 
for r = 2 is one less than the dynamical order of the algorithm 
(44). Furthermore, it follows from Table 1 that increasing the 
parameter r can improve the quality of derivative estimates. 

Let q3 = 0.1, q2 = 2, q1 = 3, q0 = 1, f(t) = sin t, 
w(t) = sin(0.5⋅103t) + sin(103t) + sin(104t), z(0) = 1, 

0)0()0( == zz  , 1)0( −=z  in (40). Fig. 1 shows the 
simulation result of z(t), )(tz , )(tz  и )(tz  using the 
proposed control algorithm (3), (41), (42) for r = 5 in (3). The 
simulation results of z(t) and )(tz  are represented by 
continuous curves and the simulation results of )(tz  and 

)(tz  are represented by dashed ones. 

The simulation results show (Fig. 1) that after 10 (s) the 
absolute values of the signals z(t), )(tz , )(tz  and )(tz  do 
not exceed 0.014. However, the absolute values of estimate 
errors of z(t), )(tz , )(tz  and )(tz  do not exceed 2⋅10–3. 

6. CONCLUSION 

In this paper the robust control algorithm under parametric 
uncertainties, external bounded disturbances and high-
frequency noises in measurement signal was proposed. For 
synthesis of control algorithm we used the approach that 
allows one to control independently the quality of noise 
filtering and the quality of the error of stabilization of the  

 

   

 

Fig. 1. The simulation results z(t), )(tz  (Fig. 1, a) and )(tz , 
)(tz  (Fig. 1, b).  

output variable. The simulation results show the effectiveness 
of the proposed algorithm as compared as standard high-gain 
observer (Esfandiary and Khalil, 1992) and modified high-
gain observer (Astolfi and Marconi, 2015; Wang et al., 2015). 
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