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Abstract— The paper deals with the behavior of an MPC
for the control of a level of a tank, whose inflow is subject to
persistent plantwide disturbances. It is shown that the response
of an industrial MPC can be aggressive and oscillatory in such
situations. The result is that the disturbance propagates further.
The reason is the assumption made by the industrial MPCs
regarding the future evolution of the disturbance. To improve
the response in presence of plantwide disturbances, an MPC
with disturbance forecasting is proposed. Such MPC is able
to handle tight constraints and still reduce the movement of
the outflow of the tank, therefore reducing the disturbance
propagation. To compare the MPC with prediction forecasting
with other two strategies used in industrial practice to handle
measured disturbances, the paper uses sinusoidal disturbances
and real disturbances coming from a refinery.

I. INTRODUCTION

In process plants, a disturbance is an undesired, transitory
deviation of a process variable from its desired set point.
Such disturbances can affect the quality of the product, or
they can cause a malfunction of the site machinery and
accelerate its wear [1]. Further, a disturbance originating
from one unit can propagate to other units because of
material, energy or information and control interconnections.

Control systems have a role in propagating a disturbance.
A controller compensates the effect of the disturbance on
the controlled variable by adjusting the manipulated vari-
able. However, the manipulated variable can be an external
disturbance for another plant unit. In this way, the plantwide
disturbance continues to propagate.

The controller should manage the trade-off between re-
jecting the disturbance from the most critical controlled
variables, and avoiding propagating the disturbance further.
However, various disturbances, each characterised by its own
time trend, can affect a plant over time. Therefore, there
should be an optimal control action for each disturbance.
For this, it would be useful for the control algorithm to be
able to detect that a disturbance is occurring and to predict
the future evolution of the disturbance.

The present paper implements a disturbance forecast based
on the weighted version of k−nearest neighbour method
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in an MPC framework. The case study is based on the
benchmark model in [2] and consists of a heated tank whose
inflow is affected by persistent disturbances. In this paper,
the aim of the MPC with disturbance forecast is to stop
the propagation of a disturbance coming from the inflow,
while keeping the level within tight constraints. In particular,
the paper compares the response of the MPC provided of a
disturbance forecaster with other strategies used by industrial
MPCs to handle measured disturbances. It will be shown how
the response of the MPC can be enhanced by providing the
controller with a disturbance forecast.

Section II examines the background and motivation and
Section III describes the case study used for this work.
Section IV shows the MPC response first to purpose made
sinusoidal disturbances, and then it shows the response to
disturbances based on real measured time trends from a
refinery. The paper ends with a discussion and conclusions.

II. BACKGROUND AND MOTIVATION

Being able to predict the future evolution of a disturbance
can improve the performance of a controller. In process
systems, feedforward control is used routinely to compensate
for measured disturbances when they are detected [3], [4],
but the standard implementation of feedforward control does
not include a prediction of the future evolution of the distur-
bance. Koerber and King [5], and Mehra et al. [6] described
how previewing a disturbance improved the control action
with applications in wind turbines and automotive industries.
However, modelling and predicting a disturbance remains
an open question. Literature provides many methods such
as ARIMA models and Artificial Neural Networks [7]. The
methods are classified into first principle models, statistical
methods and data-driven methods. Difficulties in choosing
the method arise mainly when the disturbances are caused
by non-linear effects such as limit cycles, or when they arise
because of random events.

Borghesan et al. [8] proposed two versions of a k−nearest
neighbours method to forecast the future trend of persistent
disturbances: a weighted and an unweighted version. The
methods have been able to provide good predictions of time
trends coming from a refinery.

The disturbance forecast based on the weighted version
of the k−nearest neighbour method is implemented an MPC
framework in the present paper. The MPC should stop the
propagation of a plantwide disturbance by minimizing the
variation of the outflow of a tank affected by a persistent
disturbance of the inflow. To stop the disturbance propaga-
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tion, the outlet flow of the tank should be change only if
necessary, that is only if the level is going to violate the pro-
vided constraints. Therefore, the tank works as buffer tank.
However, the imposed constraints are tight. The reason is that
the use of buffer tanks has decreased in the recent years [9].
Therefore, a realistic scenario is that the propagation of the
disturbance should be stopped by optimally exploiting the
limited buffer capacity of other process units, for example,
distillation columns.

The idea of using an optimal control to control buffer
tanks is not new. Campo and Morari [10] proposed the MPC
as control framework to maintain the level of a buffer tank
within the constraints while minimizing the change of the
outflow. However, their paper considered the future values of
the inlet flow equal to the present value. Since the assumption
on the future evolution of the inlet flow is not precise, it could
happen that the MPC does not find a feasible solution of the
control action that keeps the level within its constraints. In
[11] and [12], Li et al. used a stochastic MPC framework
to keep the outflow of a buffer tank as constant as possible
while the inflow is subject to disturbances. The inflow is
defined by a mean value and a standard deviation for each
instant of time. However, their work does not forecast in real
time the pattern of disturbance that is occurring.

Furthermore, this paper highlights the response of an
MPC to persistent plantwide disturbances. The reason is
that, as Darby and Nikolaou [13] state, the performance
degradation of an MPC in a process plant is often linked
to the presence of an oscillating disturbance entering in
the plant section controlled by the MPC. Therefore, the
response of the proposed MPC with disturbance forecast is
compared with other strategies used by industrial MPCs to
manage measured disturbances. Such strategies are ignoring
the presence of a disturbance and considering the future
values of a disturbance equal to the present value [4].

III. CASE STUDY

A. Physical model

Fig. 1 shows the considered case study, which consists
of a tank filled with water, a cold-water inflow and a water
outflow. The level is the only controlled variable and the
outflow valve of the tank is the only manipulated variable
available to the controller.

This case study has used the dynamics of the level [2].
However, in [2], the outflow valve was modelled to be fixed
at 50% of its maximal aperture. In this paper, it is modelled
as a controllable valve.

The original relation of the outflow was found empirically
and was (for the valve opening z equal to 50% and a certain
level x)

Fout(z = 50, x) = 10−4
(

0.1013
√

(55 + x) + 0.0237
)

To model the effect of the valve position in the present pa-
per, the flow has been considered as Fout(z) = Cv(z)

√
∆P .

In this expression, Cv(z) is the valve flow coefficient depen-
dent on the valve position, z, and ∆P = Pin − Pout is the

Fig. 1: Case study. The MPC receives measurements of
level and of cold water disturbance and sends its output to

the outflow valve.

differential pressure over the valve. The differential pressure
over the valve is proportional to the height of water above the
valve. Like in the original model, the valve is 55 cm under
the bottom of the tank. Therefore ∆P ∝ (55 + x), where x
is level of the tank in cm. Furthermore, if the characteristic
of the valve is linear, then Cv(z) = (az + b)CMax

v , where
CMax
v is the maximum valve flow coefficient for the valve

completely open, and a and b are coefficients to be found.
Setting b = 0 and neglecting the bias term 0.0237 that was
found in [2], the new modelled relation is:

Fout(z, x) =
0.1013(10)−4

50
z
√

55 + x (1)

where z ∈ [0; 100]. The valve position z has the following
dynamic, that can be expressed in the frequency domain as

z(s) =
e−s

(3.8s+ 1)u(s)
(2)

where u(s) is the output of the controller in the range 4-20
mA, like the measurements [2].

The inflow of the tank is considered constant in the
nominal case. The disturbance dCW is added to the nominal
value of the cold water and it considered measurable.

B. Structure of the MPC

The MPC controller has been developed using the MAT-
LAB Model Predictive Control Toolbox. The model internal
to the MPC is a linearised model of the considered nonlinear
system, obtained with the Linear Analysis Tool.

The MPC controller regulates the level of the water y
in mA in the tank (whereas x is the level of the water
in cm) by manipulating through u the valve position z, as
described in (2). The values of the disturbance dCW (N),
sampled at the discrete instants of time N , are provided to
the MPC as measured disturbance. Although the MPC cannot
manipulate a measured disturbance, the model internal to
the MPC describes the effect of the measured disturbance
dCW (N) on the level.



The MPC can use the data about dCW (N) in three
possible ways

• Predicting the future values of dCW (N + h), h ≥ 0
where N is the current discrete instant of time

• Considering dCW (N + h) = dCW (N),∀h ≥ 0. An
MPC that uses this strategy is also called Frozen Time
MPC (FTMPC) [14]

• Ignoring the presence of the disturbance. This is equiv-
alent to setting dCW (N + h) = 0, h ≥ 0

C. Tuning of the MPC

The documentation of Matlab [15] describes the QP op-
timization problem solved to calculate the control action of
MPC. Table I lists the tuning parameters used. In particular,
the weight on the controlled variable for the ’Output Refer-
ence Tracking’ is set to zero because the level of the water in
the tank must be free to fluctuate within the given constraints.
Instead a weight has been set for the ’Move Suppression’
of manipulated variable because the aim is to minimize
variations of the controlled variable. The sampling time is
short, because the tested disturbances have a high frequency.
The prediction horizon p = 1200 is more than the settling
time of the system (900 s). To limit the aggressiveness of
the MPC, the control horizon is short, as suggested by [16]
and [17].

The resulting objective function is:

J =

p−1∑
i=0

{wMV [u(N + i | N)

− u(N + i− 1 | N)]}2 + ρεε
2
N

(3)

where p is the prediction horizon, wMV is the weight for
moving suppression, u(N + i | N) is the control action
(the setpoint of position of the valve outflow) planned at
the discrete instant N + i and calculated at the instant N, ρε
is the weight for the penalization of the constraints violation,
and εN is the slack variable for y that describes the worst
violation of constraints calculated at instant N . The soft
constraints are defined as

yMin − εNV yMin ≤ y(N + i | N) ≤ yMax + εNV
y
Max

yMin and yMax are the nominal constraints for the con-
trolled variable (the level). V yMin and V yMax are adimensional
tunable weights, called in the documentation ECR weights,
that define how much the MPC can violate the nominal

TABLE I: Tuning parameters of the MPC

Tuning parameter Value
Output reference tracking 0

Manipulated variable tracking 0

Move suppression 2

Controller sampling time 1 s

Prediction horizon 1200

Control horizon 15

ECR controlled variable 1

TABLE II: Constraints of the MPC

Constraint Value Constraint Value
yMin 12 mA yMax 12.5 mA

uMin 4 mA uMax 20 mA

yrateMin

−1 mA
sample

yrateMax

−1 mA
sample

constraints. If V yMin and V yMax are set to zero, the constraints
are defined in terms of hard constraints.

Table II lists the constraints imposed. The constraints of
the level, yMin and yMax, are chosen tight. The aim is to
show how also process units with little buffer capacity, like
distillation columns, can reduce the disturbance propagation
with adequate control. The constraints on the manipulated
variable are instead relaxed. The aim is to highlight how
the control action changes automatically by providing a
disturbance prediction. Finally, constraints on the changing
rate, urateMin and urateMax of the manipulated variable [u(N + i |
N)− u(N + i− 1 | N)] were set.

D. Prediction forecast algorithm

Borghesan et al. [8] proposed a weighted k−nearest neigh-
bor method to predict the future evolution of a persistent
disturbance.

The k−nearest neighbours method supposes that the cur-
rent time series segment will evolve in future like a past
time series segment evolved previously [18]. The algorithm
uses the signal of a generic disturbance d made of N sam-
ples dM (N) = [d(1) d(2) . . . d(N)], called ’memory’. The
memory size increases as more samples d(·) are recorded.
The algorithm considers the time-series segment made of
the last m samples of dM (N). This time-series segment
dE(N) = [d(N −m+ 1) d(N −m+ 2) . . . d(N)] is called
’evolution’ and it represents the current evolving disturbance
pattern, while m is the ’embedding dimension’ [18]. The
algorithm searches within the memory dM (N) for the k time
series intervals of length m that are most similar to dE(N).
The similarity is measured with the Euclidean distance. The
k time series intervals dj , j = 1, . . . , k are the k−nearest
neighbours and are those k time series intervals within
dM (N) with smallest Euclidean distance from dE(N):

‖ dE(N)− dj ‖ =

√√√√ m∑
i=1

(
dE(i)− dj(i)

)2
Each nearest neighbour dj is followed by a ’prediction

contribution’ dPj , j = 1, . . . , k. A ’prediction contribution’
is a time series of length h, where h is the desired prediction
horizon, that constitutes the basis for building the prediction
vector. The prediction contributions contribute to the pre-
diction proportionally to distance of their respective nearest
neighbour from the evolution. A weight wj for each nearest
neighbour is calculated. The weight wj = 1 if the nearest
neighbour dj has the smallest distance with dE(N). Instead,
wj = 0 if the nearest neighbour dj is the most distant from



(a) Tag 33 (b) Tag 34

Fig. 2: Time trend used and example of the prediction

dE(N).

wj =
max

`=1...k

(
‖ dE(N)− d` ‖

)
− ‖ dE(N)− dj ‖

max
`=1...k

(
‖ dE(N)− d` ‖

)
− min

`=1...k

(
‖ dE(N)− d` ‖

)
where j = 1, . . . , k. If k = 1, then w1 = 1.

The prediction d̂(N,h) = [d̂(N + 1) . . . d̂(N + h)] is ob-
tained as a weighted average of the prediction contributions,
where:

d̂(N + i) =
1∑k

j=1 wj

k∑
j=1

wjdPj(i) (4)

for i = 1, . . . , h.
The parameters m and k are the important parameters for

the quality of the prediction quality. Good results were found

setting m =

⌊
1

f0

⌋
, where f0 is the main frequency of the

disturbance, and in setting k =

⌊
N

m

⌋
, where

⌊
·
⌋

is the

floor function. The frequency of a persistent disturbance is
constant and therefore m is constant, while k is updated as
the size of the memory is increased.

E. Implementing the disturbance forecast in the MPC frame-
work

The former section has described how a prediction of h
steps ahead of a persistent disturbance can be obtained. Such
information must be provided to the MPC controller. The
MPCToolbox of Matlab allows the MPC controller to receive
a disturbance preview of the measured disturbances of the
controlled system. This feature has been used to provide the
MPC with the prediction of the disturbance.

d̂MPC(N) is the vector provided to the MPC controller.
Its length is p+ 1 and it is the concatenation of three parts.
The first part is the measurement of the current disturbance
value dCW (N). The second part is the prediction vector
d̂CW (N,h) with the h predicted values of the disturbance.
The third part is a vector 0p−h composed of p − h zeros
that fills the remaining elements of d̂MPC(N). Therefore,
d̂MPC(N) can be written as

d̂MPC(N) = [dCW (N) d̂CW (N,h) 0p−h]

= [d̂MPC(N) d̂MPC(N + 1) . . . d̂MPC(N + p)]

The reason for filling d̂MPC(N) with zeros is the fol-
lowing. Defining r the length of d̂MPC(N), if r < p + 1
the controller of MPCToolbox fills automatically the miss-
ing elements of the vectors. Precisely, it supposes that
d̂MPC(N) = d̂MPC(N + h), i = h, . . . , p − 1. However, if
d̂MPC(N + h) 6= 0 this would imply that there is a change
of the load for the level of the tank and that the outflow
should be permanently changed. Instead, since persistent
disturbances are considered, which do not imply necessarily
a permanent change of the load, the vector d̂MPC(N) has a
length of p+ 1 and d̂MPC(N + i) = 0, i = h, . . . , p− 1.

Finally, it has been found during the tests that the length of
disturbance forecasting should equal the control horizon, h =
c so that the controller can counteract the known disturbance.

F. Testing procedure

To compare the different strategies, first purpose made
sinusoidal time-trends and then time trends from an industrial
data set were used. The sinusoidal disturbances were used
to analyze the response of an MPC to a simple persistent
disturbance. The industrial time trends were instead used to
test the prediction algorithm proposed in conjunction with
the MPC.

Using real time trend, the result is an hybrid simulation,
in which two time series (Tag 33 and 34) from the SE Asia
data set in [19] were used to feed the disturbance dCW of
the CSTH model. Fig. 2 shows such time trends with an
example of the prediction at instant N = 2250. The signals
have been mean-centred, scaled to their maximum absolute
value and doubled in value.

d̃CW = 2
d̄CW

max | d̄CW |

where d̄CW is the mean-centered vector of dCW (N). The
time trends were made of 512 samples and it has been
arbitrarily assumed that 1 sample = 5 s. As Section III-
D described, the prediction algorithm needs a ’memory’
where it can search for the nearest neighbours of the present
evolution. Therefore, the initial size of the memory was made
of 256 samples over 512.



Fig. 3: Results of the responses of the level (CV), of the setpoint of the valve position (MV), and of the outflow
when the frequency of the sinusoidal disturbance is 1/30 Hz

(The inflow is dashed)

Fig. 4: Results of the responses of the level (CV), of the setpoint of the valve position (MV), and of the outflow
when the frequency of the sinusoidal disturbance is 1/60 Hz

(The inflow is dashed)

IV. RESULTS

The result section compares the three approaches de-
scribed in Section III-B to handle the measured disturbance.
The aim is to highlight how the disturbance prediction can

improve the MPC performance. Indicators of the perfor-
mance are the ability of the controller to keep the level within
the constraints, and to attenuate the disturbance propagation.

The results section considers two experiments. In the first
part, sinusoidal disturbances dCW = sin(ωt) enter in the



Fig. 5: Results of the responses of the level (CV), of the setpoint of the valve position (MV), and of the outflow
when the frequency of the sinusoidal disturbance is 1/120 Hz

(The inflow is dashed)

system. The assumption is that the controller knows exactly
perfectly the future evolution of the disturbance for h = c
steps, as Section III-E described. The scope of this test is
to understand the behavior of the MPC with a very regular
signal under different frequencies.

In the second part of the results section, the disturbances
that enters in the system are real data coming from a SE
refinery. These disturbance signals are those that have been
used to test the weighted k−nearest neighbors method in [8].

A. Sinusoidal disturbances

Fig. 3, Fig. 4 and Fig. 5 shows the trend over time of
the level, of the manipulated variable, of the outflow and,
dashed, of the inflow (the disturbance) using the three MPC
strategies mentioned in Section III.B for various sinusoidal
disturbances dCW . The disturbance is dCW = sin(ωt),
where ω ∈ 2π

30 ; 2π
60 ; 2π

120 .

When the frequency of the inflow disturbance decreases,
the responses of the MPCs using the traditional strategies
to handle disturbances improve. Furthermore, the responses
are more similar to the response of the MPC with exact
information regarding the future evolution of the disturbance.
However, for 2π

120 , it can be noted that all the controllers have
introduced nonlinearities in the plantwide disturbance, but
the nonlinearities are smaller, when the prediction is used.
Indeed, the outflow of the tank is more similar to a sinusoid
(like the inflow) when the MPC knows the future evolution
of disturbance, then in the cases of MPC with the ’Prediction
OFF’ or in the case of FTMPC.

The explanation of the above results is the following. Since

the controlled variable does not have to follow a reference
value, the MPC minimizes its objective function in Eq. (3)
by keeping the control action constant as long as possible in
absence of constraint violations. The MPC intervenes when
it detects that the constraints have been violated or are going
to be violated during the prediction horizon.

The MPC whose internal model ignores the presence of the
inflow disturbance, reacts when the constraints are violated.
In the first instants of the simulations such MPC does not
move the manipulated variable, as Fig. 3 and Fig. 4 show.
As soon as the constraints are violated, the controller reacts
by moving fast the manipulated variable in order to bring
the level within its constraints as fast as possible. Indeed,
as Eq. (3) shows, the violation of the constraints is strongly
penalized, more than a change of the control action.

The result are characteristic peaks that are visible in the
Fig. 4 and Fig. 5 in the rows denominated ’MV response’
and ’Outflow response’. The rise per sample of manipulated

variable is
1 mA
sample

, like the imposed constraints on the

changing rate of manipulated variable. If these constraints
are strengthened, the shape would look like a succession of
ramps.

Once the level is again within the constraints, the con-
troller changes only slightly the valve position. The choice
is not appropriate because the disturbance oscillating at high
frequency is bringing the level in the opposite direction. This
violates the opposite constraint. The controller intervenes
aggressively moving the manipulated variable in the opposite
direction. The result is a limit cycle. When the frequency of



(a) Tag 33

(b) Tag 34

Fig. 6: Results of the response of the level (CV) and of the outflow using real disturbances from a SE refinery
(the inflow of the tank is dashed)

the disturbance is lower, the control action of the MPC is
less aggressive because there is less interaction between the
effect of the inflow and of the outflow.

The FTMPC reacts instead when it calculates that the
constraints are violated in the future. For the FTMPC the
variation of the inflow at each instant of time is a step
variation. The effect of a step of the disturbance on the level
is far more significant than the effect of a higher frequency
disturbance. The reason is that the relation between inflow
and level is described by a first-order transfer function that
works as a low pass filter.

Under this (wrong) assumption, the FTMPC might predict
that the constraints are violated in the future if the position
of the outflow valve does not change. In such case, the
controller must change the value of the valve outflow so
that it fulfils the constraints. Fig. 3 and Fig. 4 show that the
first peak of the manipulated variable coincides with the first
peak of the inflow.

Thereafter a limit cycle starts. Indeed, at high frequencies,
the variations of the inflow between one instant of time
and the following are higher than at lower frequencies. The
corresponding control action involves large movements of
the manipulated variable which are too aggressive for the
limited effects that a high frequency disturbance can have.
The result is an aggressive control action that causes a limit
cycle and violations of the constraints. If the frequency of
the disturbance is slower, the control action of such MPC,
designed for disturbance whose frequency is f = 0, is more
reasonable. This improves the performance of the system.

Using the information of future evolution of the distur-
bance for the duration of the control horizon, the MPC
applies changes to the manipulated variable which are more
adequate. Fig. 3 shows for example that such MPC does
some small corrections to the manipulated variable before
leaving it constant over time. The other two MPCs instead
overreact to a constraint violation or to a future possible



TABLE III: Minimal and maximal value of the outflow for
the tested inflow disturbances

Tag 33
Pred. ON Pred. OFF FTMPC

Max outflow 14.04 mA 15.08 mA 15.18 mA

Min outflow 9.68 mA 9.26 mA 9.47 mA

Tag 34
Pred. ON Pred. OFF FTMPC

Max outflow 13.32 mA 15.03 mA 15.07 mA

Min outflow 10.71 mA 8.87 mA 8.39 mA

constraint violation, entering in a limit cycle as explained.

B. Real disturbances

The Fig. 6a and Fig. 6b show the results of applying real
time-trends on the considered case study using the proposed
prediction algorithm. The MPC with prediction forecasting
reduces the constraints violations for both Tag 33 and Tag
34 from [19]. Especially the MPC without any information
regarding the disturbance value, violates the given constraints
with both disturbances. The FTMPC violates less the con-
straints but its control action is aggressive.

The MPC with disturbance forecasting is instead able to
fulfill both requirements of keeping the level within the given
constraints and reducing the variations of the outflow. It is
particularly successful in case of Tag 34. The reason might
be that the prediction of the Tag 34 is more accurate because
the time trend is more regular. Table III list the highest
and lowest peak values of the measured outflow using the
considered strategies to handle the disturbance.

V. CONCLUSIONS

Plantwide disturbances can propagate because of the re-
sponse of controllers to the propagating disturbance. Since
disturbances characterized by different time trends can affect
a plant over time, an optimal control action would be needed
for each disturbance to handle the trade-off between keeping
the controlled variable with desired values and avoiding fur-
ther propagation of the disturbance. This paper proposes an
MPC that works in conjunction with a disturbance predictor
presented in [8]. The case study derives from [2], and it
consists of a tank filled with water, whose inflow is affected
by a disturbance. The aim of the controller is to reduce the
variations of the manipulated outflow, keeping the level of
the water within two constraints. The considered disturbance
are purpose made sinusoidal disturbances and two time series
from the SE Asia data set in [19]. A comparison is made with
two other industrial strategies used to handle disturbances.
Such strategies are ignoring the presence of a disturbance
and considering the future values of the disturbance equal to
present value.

The present paper highlights how the response of an indus-
trial MPC to a persistent plantwide disturbance characterized
by a high frequency can be oscillatory and have significant
variations over time. This might be one of the reason why, as

Darby and Nikolaou [13] state, the performance degradation
of an MPC in a process plant is often linked to the presence
of an oscillating disturbance entering in the plant section
controlled by the MPC. Further this paper shows that to-
gether with a disturbance prediction, not only the inadequate
response of the MPC is mitigated, but also that an MPC can
even stop the propagation of a plantwide disturbance.

REFERENCES

[1] T. Yuan and S. J. Qin, “Root cause diagnosis of plant-wide oscillations
using granger causality,” Journal of Process Control, vol. 24, no. 2,
pp. 450–459, 2014.

[2] N. F. Thornhill, S. C. Patwardhan, and S. L. Shah, “A continuous
stirred tank heater simulation model with applications,” Journal of
Process Control, vol. 18, no. 3-4, pp. 347–360, 2008.

[3] B. G. Liptak, “Feedback and Feedforward Control,” 2005.
[4] E. Camacho and C. Bordons, Model Predicitve Control. Springer

Verlag, 2008.
[5] A. Koerber and R. King, “Combined feedback-feedforward control of

wind turbines using state-constrained model predictive control,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1117–
1128, 2013.

[6] R. Mehra, J. Amin, K. Hedrick, C. Osorio, and S. Gopalasamy, “Active
suspension using preview information and model predictive control,”
Proceedings of the 1997 IEEE International Conference on Control
Applications, pp. 860–865, 1997.

[7] J. G. De Gooijer and R. J. Hyndman, “25 Years of time series
forecasting,” International Journal of Forecasting, vol. 22, no. 3, pp.
443–473, 2006.

[8] F. Borghesan, M. Chioua, and N. F. Thornhill, “Forecast of persistent
disturbances using k -nearest neighbour methods,” in PSE 2018, San
Diego, 2018.

[9] W. L. Luyben, M. L. Luyben, and B. D. Tyreus, Plantwide process
control. McGraw-Hill Professional Publishing, 1998.

[10] P. J. Campo and M. Morari, “Model predictive optimal averaging level
control,” AIChE Journal, vol. 35, no. 4, pp. 579–591, 1989.

[11] P. Li, M. Wendt, H. Arellano-Garcia, and G. Wozny, “Optimal oper-
ation of distillation processes under uncertain inflows accumulated in
a feed tank,” AIChE Journal, vol. 48, no. 6, pp. 1198–1211, 2002.

[12] P. Li, H. Arellano-Garcia, and G. Wozny, “Chance constrained pro-
gramming approach to process optimization under uncertainty,” Com-
puters & Chemical Engineering, vol. 32, no. 1-2, pp. 25–45, 2008.

[13] M. L. Darby and M. Nikolaou, “MPC: Current practice and chal-
lenges,” Control Engineering Practice, vol. 20, no. 4, pp. 328–342,
2012.

[14] S. D. Cairano, D. Bernardini, A. Bemporad, and I. V. Kolmanovsky,
“Stochastic MPC with learning for driver-predictive vehicle control
and its application to HEV energy management,” IEEE Transactions
on Control Systems Technology, vol. 22, no. 3, pp. 1018–1031, 2014.

[15] Mathworks, “Optimization Problem - Documenta-
tion Matlab 2017b,” 2017. [Online]. Available:
https://de.mathworks.com/help/mpc/ug/optimization-problem.html

[16] ——, “Choose Sample Time and Horizons.” [Online].
Available: https://de.mathworks.com/help/mpc/ug/choosing-sample-
time-and-horizons.html, urldate = 2018-02-04

[17] D. E. Seborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics
and Control, second edi ed. John Wiley & Sons, 2004.

[18] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed.
Cambridge: Cambridge University Press, 2004.

[19] N. F. Thornhill, “Finding the source of nonlinearity in a process
with plant-wide oscillation,” IEEE Transactions on Control Systems
Technology, vol. 13, no. 3, pp. 434–443, 2005.


