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Abstract— Large scale monitoring systems, enabled by the
emergence of networked embedded sensing devices, offer the
opportunity of fine grained online spatio-temporal collection,
communication and analysis of physical parameters. Various
applications have been proposed and validated so far for envi-
ronmental monitoring, security and industrial control systems.
One particular application domain has been shown suitable for
the requirements of precision agriculture where such systems
can improve yields, increase efficiency and reduce input usage.
We present a data analysis and processing approach for
distributed monitoring of crops and soil where hierarchical ag-
gregation and modelling primitives contribute to the robustness
of the network by alleviating communication bottlenecks and
reducing the energy required for redundant data transmissions.
The focus is on leveraging the fog computing paradigm to
exploit local node computing resources and generate events
towards upper decision systems. Key metrics are reported which
highlight the improvements achieved. A case study is carried
out on real field data for crop and soil monitoring with outlook
on operational and implementation constraints.

I. INTRODUCTION

Internet of Things (IoT) systems are based on distributed
sensing, computing and communication devices that collabo-
rate in order to monitor and control physical processes. These
enable the collection of real world data at an unprecedented
scale and resolution which can then be used to improve the
models that define the understanding and help the forecasting
of the processes, be it technical, social or environmental.
New data processing infrastructure are thus needed to store
and retrieve the information collected in an online manner
while providing mechanisms to run the analysis and control
algorithms based on this data. Beyond conventional environ-
mental monitoring as initial key driver of IoT design, current
domains include (smart) cities, industry and agriculture.
Finally the outcomes of the analysis are either handled in
closed loops for control actions or they are supplied to
hierarchical entities for decision support.

Among the applications areas mentioned above, precision
agriculture represents one of the salient areas where IoT-
enabled systems can improve the quality, productivity and
increase automation [1]. Main challenges in this field relate
to reducing input use: water, fertiliser, work, and obtaining
better crop yields which is demanded by the market to
keep food costs low under the strains of increasing global
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population. By having access to reliable, on-line information,
relayed over distributed networks, domain specialists can
oversee tangible improvements [2].

The conceptual and practical challenges that we approach
in the design of such systems is related to efficient data
reduction and management which impacts directly the con-
gestion and energy metrics of the deployed network. This
is performed by proposing a hierarchical data processing
architecture in accordance to fog computing design princi-
ples. Fog computing as a concept has initially emerged as
a computing organisation alternative to leverage intelligent
network edge devices which make up modern IoT systems
[3]. The limited computing resources available on these
embedded devices are thus exploited to reduce the large
quantities of collected data and transmit only higher level
information pieces upstream. Given the large heterogeneity
the processing primitive can run of the edge nodes range
from basic threshold detection and averaging up to more
advanced outlier detection and embedded learning algo-
rithms. Wireless sensor networks (WSN) are an enabling
technology to deploy fog computing systems [4], [5] where
hundreds to thousands of sensing nodes self organise intro
and communicate over low power radio channels. As with
the case with agriculture, large areas can thus be covered
with multi-hop communication networks as the networking
protocols rely on cluster heads, gateways and hubs serving
as intermediary data concentrators. One alternative definition
presents fog systems in opposition or as complementary to
conventional centralised and large scale cloud infrastructures.
The complex functionality of the cloud platform is broken
down at the field level over functional or spatially distributed
entities which collaborate to achieve a common monitoring,
event-detection and control case. In the precision agriculture
use case this can help implement an optimised distributed
irrigation or fertiliser dosage schemes accounting for local
properties and variance of soil, micro-climate and crop
particularities. The need to integrate fog computing with
cloud computing in this particular scenario lays with the fact
that joint observations can be derived when federating high-
level information across multiple farms.

The main novelty of the paper is justified by the appli-
cation of fog computing data aggregation and modelling
primitives in the context of IoT-enabled smart agriculture,
a highly active area of research currently. The subsequent
contributions of the paper can be argued:
• system architecture for hierarchical data processing and

analysis based on field level IoT devices;
• data aggregation methodology based on the fog comput-

ing paradigm under precision agriculture constraints.
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II. RELATED WORK

In [6] a fog computing framework for precision agriculture
is introduced. The two tiered system is able to reduce
significantly the data transmitted in the network. Reducing
the computational loads, and most important, the cloud
computing costs associated with centralised processing is
highlighted as an essential benefit of the fog approach. The
authors of [7] propose a hybrid IoT for smart farming in rural
areas. The communication network uses 6LoWPAN local
radio for the field interfaces while long range connections
are implemented over WiFi. A 6LoWPAN border router and
dedicated gateway are used to assure cross-domain integra-
tion of the networks from field level, intermediate long range
relays and cloud. Network requirements for smart agricul-
ture applications are also discussed in terms of throughput,
latency and mobility support. These offer a good reference to
quantify the data aggregation potential in conjunction with
the sensing and control requirements. A distributed comput-
ing architecture is presented in [8] which the agricultural
system basic components such as: crop, soil, climate, water
and nutrients, energy. The messaging system is standardised
around the Message Queuing Telemetry Transport (MQTT)
to interlink sensors, actuators, communication nodes, devices
and subsystems [9]. A decision tree is designed for irrigation
control and integrated on the edge devices for in situ decision
making. At the top level cloud services supply data through
an end-user dashboard for high level decision support.

[10] introduce an intelligent irrigation system based on
distributed sensor using the LoRA long range, low rate,
nodes and gateways. The FIWARE infrastructure is leveraged
as data management middleware platform which provides the
support services. Several operation scenarios are discussed
based on the scalability requirements, in terms of tens
of thousands of nodes. Reference computational resource
assessment for cpu, memory and network is also reported.
Large scale IoT monitoring is discussed in [11]. The focus
is on the ground level clustering mechanisms that support
the timely collection of data and generating of the field
level monitoring events. Aerial robotic platform support is
provided through suitable high level control of trajectories
for data collection and backhaul. Data reduction is achieved
by thresholding over locally computing moving averages in
conjunction with expert knowledge adapted to the monitored
processes. Several radio access technologies are available to
achieve reliable transmissions [12].

III. SYSTEM ARCHITECTURE AND
METHODOLOGY

A. SYSTEM ARCHITECTURE FOR DATA COLLECTION
AND PROCESSING

The proposed system architecture that we have designed
for the purpose of efficient data collection and processing
in precision agriculture is illustrated in Figure 1. It consists
of the following information and physical layers: field layer,
fog computing layer, cloud computing layer, data presen-
tation layer, which are linked by cross-layer upstream and

downstream data and control information flows. The layer
functionality is detailed next:
• Field layer: includes the actual sensors deployed in the

precision agriculture application to measure the physical
parameters of interest; these include air temperature,
air humidity, solar radiation, soil temperature at various
depths, windspeed and rainfall; the field layer can also
be expanded to accommodate intelligent actuators e.g.
for irrigation or fine grained nutrient dosage, to execute
commands incoming from higher level systems;

• Fog Computing layer: the fog nodes collect data from
the sensors and run the data processing primitives for
intelligent aggregation in order to reduce network traffic
and energy expenditure; the main idea is to locally
derive basic model characteristics of the particular pro-
cess which are sent to the cloud in compact form;
correlations between the sensed variables can also be
exploited at this level for local decisions thus avoiding
completely the increased cost and latency of the upper
layers;

• Cloud computing layer: data is streamed towards a
common cloud platform; regarding the particular im-
plementation we use the ThingSpeak [13] platform in
conjunction with Matlab algorithm development for
higher level processing routines; at the cloud layer the
model parameters allow the reconstruction of the time
series characteristics if needed, while accounting for the
inherent modelling errors;

• Data presentation layer: is concerned with the front-end
software systems that present the outcomes of the data
analysis to end-users or decision makers with the ability
to provide mobile access and timely alerts in the case
of event detection; parametrisation of the process by
domain experts is also achieved at this layer.

A more detailed algorithm flowchart is provided in Figure
2. It includes the steps for algorithm description which runs
on the fog computing node.

In-field measurements are uploaded to the IoT application
in two ways depending on the type of information: events
and measurements. Note that, a primary batching procedure
is usually available for most of the monitoring systems,
basically consisting of performing minimum, maximum and
mean value during a specific period of time. We consider
this as the starting point for further local data processing.

Primary batch aggregation Note that, a primary batching
procedure is usually available for most of the monitoring
systems, basically consisting of performing minimum, max-
imum and mean value during a specific period of time.
We consider this as the starting point for further local data
processing.

For instance, batches are defined within 30 minutes. Once
a new batch is available, min,max and mean values are
computed (step A).

Check for outliers procedure For each batch of mea-
surements, an outliers’ check procedure is performed, con-
sidering an acceptance bandwidth of data variance for the
measured value around the mean (step B). The procedure
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Fig. 1: Distributed data processing based on fog computing for precision agriculture

outputs an event if the minimum or maximum values exceeds
the thresholds. The event E is defined as:

E = {e(xi) ∈ Q,Tmin < xi < Tmax} (1)

where:
• xi is the measured value at iteration i
• Tmin and Tmax are thresholds computed as:

Tmin = mean(1− w) (2)

Tmax = mean(1 + w) (3)

where w is a weight for acceptance bandwidth size
define.

Relevant data extraction Aggregated data sets are achieved
based on different methods. All seek for relevant data point,
aiming to a reduced size set providing at the same time a
satisfying reconstruction of the initial data.

One effective method, in terms of data volume, is based
on using the min and max values extraction, computed for
24 hours. It is obvious that this method is suitable only
for measurements that follow a regular shape during time,
with insignificant variations during a day. A measurement
for which this method is suitable is the soil temperature.

Instead, change detection is a common method applicable
for irregular shaped data sets. This method follows extraction
of data points where trend changes occur.

Given a set of data point (xi, yi), i = 1, ..., n, trend ti is
followed for each pair xi, xi+1, such that for

xi+1 − xi > δ =⇒ t(i) = 1

xi+1 − xi < δ =⇒ t(i) = −1

xi+1 = xi =⇒ t(i) = 0

(4)

Then, if t(i) 6= t(i + 1) means that a trend change is
detected. The coresponding data point x(i + 1) is added to
the relevant data set.

Relevant data extraction (step C) is performed when a set
of primary aggregated batches is available.

B. DATA AGGREGATION

One reference method of extracting high level information
from sensor data is Symbolic Aggregate Approximation
(SAX) [14]. It operates by assigning label symbols to
segments of the time series thus porting it in a unified
lower dimension representation. It belongs to the family of
time series data mining techniques leading to non-parametric
modelling. Ranges are identified through the data histogram
or in a uniform manner. The method provides linear complex-
ity and opens up the use and application of multiple statistical
learning tools. Parametrisation of SAX is highly important
by defining the number of segments and the alphabet size
which can influence the quality and robustness of the result.

The background on which SAX has been defined is
established by PAA [15] where symbols are attributed to
the aggregated numerical values listed by PAA. Several
discrete event models can incorporate the resulting aggre-
gated segments e.g. Markov models in order to compute the
probability of the observed patterns for future observations.
According to the PAA method description, starting with a
time series X of length n, this is approximated into a vector
X̄ = (x̄1, ..., x̄M ) of any length M ≤ n, with n divisible by
M . Each element of the vector x̄i is calculated by:

x̄i =
M

n

(n/M)i∑
j=n/M(i−1)+1

xj (5)
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Fig. 2: Fog Computing algorithm

The dimensionality of the time series is thus reduced from
n to M samples by initially dividing the original data into
M equally sized frame and then compute the mean values
for each frame. A new sequence is achieved by putting
the mean values together which is considered to be the
PAA transform (approximation) of the original data. With
regard to computational considerations, the PAA transform
complexity can be reduced from O(NM) to O(Mm) with
m being the number of frames as tuning parameter of
the method. The distance measure between two time series
vector approximations X̄ and Ȳ is defined as:

DPAA(X̄, Ȳ ) =

√
n

M

√√√√ M∑
i=1

(x̄i − ȳi) (6)

It has been shown by the proposers of the method that
PAA satisfies the lower bounding condition and guarantees
no false dismissals such that:

DPAA(X̄, Ȳ ) ≤ D(X,Y ) (7)

C. INTERPOLANT METHODS

The Cloud-based application rebuilds data sets by esti-
mates based on interpolation mechanisms. For performance
evaluation we showcase three methods: the common linear
interpolant (also referred as piecewise linear interpolant ) and
two closely related interpolants, cubic spline and shape pre-
serving Piecewise Cubic Hermite Interpolating Polynomial
(pchip).

Given a set of data points (xi, yi) , (xi+1, yi+1) , ...,
(xn, yn), the linear interpolation is defined as the concatena-
tion of linear interpolants between each pair of data points,
thus a set of straight lines between each data points. Any
pair of data points with xi 6= xi+1 determines a unique
polynomial p of degree less than two whose graph passes
through the two points with the property:

p(xi) = yi (8)

with the form:

p(x) = a1x+ a0 (9)

a 1-D linear interpolation.
In general, given n points (xi, yi) , i = 1, ..., n, with

disting xi, a polynomial of degree less than n whose graph
passes through the n points denoted Pn(x), is expressed in
the Lagrange form as:

Pn(x) =

n∑
i=1

(
n∏

j=1

j 6=i

x− xj
xi − xj

)
yi (10)

The Lagrange form in (10) can be written out in power
form of an interpolating polynomial as,

Pn(x) = a1x
n−1 + a2x

n−2 + ...+ an−1x+ an (11)

where the coefficients ak are computed through a system
of linear equations:

xn−11 xn−21 ... x1 1
xn−12 xn−22 ... x2 1

...
...

...
...

...
xn−1n xn−2n ... xn 1



a1
a2
...
an

 =


y1
y2
...
yn

 (12)

Considering this, a piecewise linear interpolant is produced
by first computing the divided difference:

δi :=
yi+1 − yi
xi+1 − xi

(13)

Then the interpolant is constructed as:

P (x) = yi + δi(x− xi) (14)

Further, for piecewise cubic polynomials, considering an
interval xi ≤ x ≤ xi+1 let hi := xi+1 − xi be the length
of an ith interval and dk := P ′(xi). Therefore, using this
derivative it is possible to adjust the interpolant in order to
enforce smoothness, by forcing the pair of derivatives from
consecutive piecewice cubics to agree.

All piecewise cubic hermite interpolating polynomials
are continuous and have a continuous first derivative. In
particular, spline is oddly smooth, meaning that it’s second
derative also varies continously.

Instead, pchip is not as smooth as spline, it is actually
designed so that it never overshoots the data. The slopes are
chosen so that P (x) preserves the shape of data and also
respects monotonicity.



IV. EXPERIMENTAL RESULTS

We collect experimental data from a network of field
devices installed on site at an experimental research farm.
Form the long term monitoring dataset we select a sample
for analysis that covers one month of data. The data is
preprocessed for missing values, noise removal and averaged
over 30 minute intervals.

We first illustrate the application of the SAX method on
the measured values for soil temperature and solar radiation
in Figure 3 and Figure 5. Segment levels codify the evo-
lution of the respective time series and provide a compact
representation with considerable impact on the data storage
and transmission requirements at the fog node. Finer grained
patterns can be observed by zooming in at the daily level
as is illustrated in Figure 5. Based on the selected segment
labels, if the expected value deviates significantly by entering
a different label segment, an event detection primitive can
trigger a communication message from the node upstream.
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In order to evaluate reconstructed data consistency,
achieved through different estimating algorithms, more pre-
cisely the proposed interpolants, some well known goodness-
on-fit statistics are performed:
• Sum of squares of errors (SSE) - measures the total

deviation of the response values from the fit to the
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Fig. 5: Solar Radiation - Day level aggregation

response values and is defined as:

SSE =

n∑
i=1

wi(xi − P (xi))
2 (15)

where wi is the weight for the ith error between
estimated ith value and the empiric data

• R-square - measures how successful the fit is in explain-
ing the variation of the data and is expressed as:

R− square = 1− SSE

SST
(16)

where

SST =

n∑
i=1

wi(xi − x̄i)2 (17)

where x̄i is the mean value of xi dataset.
• Root mean square error (RMSE) - is an estimate of the

standard deviation of the random component in the data
and is expressed as:

RMSE =

√
SSE

n
(18)

Results are summarised in Table I.

TABLE I: Goodness-on-fit statistics results

pchip RMSE sline RMSE interp1q RMSE
soil
temperature

0.0852 0.1104 0.0795

solar radiation 0.2627 0.3691 0.2551
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Figure 6 and Figure 7 graphically depict the results of
applying the alternative methods of interpolation on the two
time series. In Figures 8 and 9 the histograms quantify the
associated data reduction between the raw input data and the
interpolant methods presented.

For this case, the monotonicity property of pchip is more
desirable than the smoothness property of spline, which in
some places overshoots the data, thus one may prefer the
good behavior of the shape preserving pchip method. Note
that, as with the linear interpolation, when there are two
consecutive points with the same value, the interpolant is
constant over that interval. This behaviour was expected and
it is appropriate in this context.

Even if the metrics indicate better fitting for linear inter-
polation through the studied cases, one can choose the pchip
method, given that the results are quite close and it does a
much more visual pleasing representation, in particular better
modelling the peeks and following the expected behaviour
around the baseline.
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V. CONCLUSIONS

The paper presented a system architecture and distributed
data processing application based on IoT in precision agri-
culture. By exploiting the dense spatial and temporal dis-
tributions of the sensing nodes, intelligent data reduction
through aggregation and model reconstruction is illustrated
for significants benefits for network congestion and energy
efficiency. As the results achieved show promise, future work
is focused on extensive evaluation for online decision making
by domain experts in order to improve the reconstructed data
quality.
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