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Abstract— The performances of braking control systems
for robotic platforms, e.g., assisted and autonomous vehicles,
airplanes and drones, are deeply influenced by the road-tire
friction experienced during the maneuver. Therefore, the avail-
ability of accurate estimation algorithms is of major importance
in the development of advanced control schemes. The focus
of this paper is on the estimation problem. In particular, a
novel estimation algorithm is proposed, based on a multi-
layer neural network. The training is based on a synthetic
data set, derived from a widely used friction model. The open
loop performances of the proposed algorithm are evaluated in
a number of simulated scenarios. Moreover, different control
schemes are used to test the closed loop scenario, where the
estimated optimal slip is used as the set-point. The experimental
results and the comparison with a model based baseline show
that the proposed approach can provide an effective best slip
estimation.

I. INTRODUCTION

The widespread diffusion of autonomous vehicles, drones,
and in general, more advanced robotic terrain platforms,
brings to extend research activities on traction and braking
control systems too. A challenge that all these devices share
is the estimation of the tire-road friction coefficient: the
more the evaluation improves, the more the control system
guarantees the behavior of the vehicle during the braking
phase. Indeed, many effective slip control algorithms have
been proposed, such as [1], [2], [3] and [4]. All of them
require as input a slip set-point that can critically affects the
performance of the entire system. Addressing the best (set-
point) slip estimation problem usually involves the modeling
of the tire dynamic and their relationship with the ground
surface. In this context Artificial Neural Networks can im-
prove the road estimation process: treated as smart sensors,
their outputs can be used both as inputs for existing braking
control algorithms and in combination with other estimation
approaches. Following this intuition, in this paper we propose
a novel data-driven approach based on a Multilayer Neural
Network ( Multi Layer Perceptron - MLP).

In the literature, ”slip-oriented” methods explore the ef-
fects of the vehicle dynamics steaming from a specific terrain
surface: exploring the impact of friction on slip value (i.e., on
the normalized difference between vehicle and wheel speeds)
to estimate the actual tire-road conditions.
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The typical friction model (see Section II) assumes that the
longitudinal tire-road force is given by Fx = µ(λ)Fz , where
Fz is the normal force acting on the contact point between
tire and road, and µ(λ) is the normalized nonlinear friction
curve, which is a lumped model for all the phenomena
characterizing actual friction as a function of longitudinal
slip. A common assumption of the estimation schemes based
on nonlinear models, such as Pacejka [5] and Burckhardt
[6]–[8], is that a single pair (λ, µ) is available at each time
instant.

1) Model oriented: In this framework, least square and
maximum likelihood approaches have been discussed in [9],
[10], with the purpose of estimating the whole tire-road
friction curve. The idea is to estimate the parameters of
the Burckhardt model, or to use a linearly parametrized
approximation. A similar, linearly parametrized model is
used also in [11], [12] , where the basis functions are chosen
according to a global optimisation problem, and a Recursive
Least Square (RLS) approach is used to compute parameter
estimates. The proposal in [13] improves previous results
by integration with a sliding mode observer to estimate
vehicle acceleration. The tire-road friction coefficient is also
estimated by using an observer based approach [14] and an
Extended Kalman-Bucy Filter [15]. Others approaches such
as [16], [17], [18], [19], [20] and [3] use a modified (i.e
linear or linear approximation) version of the µ−λ relation.

2) Data-oriented: The slip estimation problem has been
addressed also by using machine learning tools and ap-
proaches. A seminal work in this direction is [21], where
a neural network has been trained by using data from the
Pacejka model to estimate the friction coefficient µ and the
slip angle θ. [22] uses a combination of a General Regression
Neural Network (GRNN) and a Bayes filter to estimate the
instantaneous friction coefficient µ. Other algorithms have
also been explored for this problem, such as SVM [23]
and deep learning [24]. Other problems and approaches are
discussed in [8], [25], and [26]. These data driven algorithms
are typically combined with classical probabilistic filters such
as EKF [23].

3) Proposed approach: The proposed approach relies on
a novel data-driven strategy to model the relation between
sequences of slip-friction pairs and optimal slip values. The
solution is based on an MLP, trained on a synthetic dataset
built from a set of Burckhardt curves. The training phase has
been designed to guarantee generalization, i.e, the capability
of the networks to correctly react to input data not seen
during training. While the use of the Burckhardt model is
widespread, to the best of authors knowledge, the approach
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used in this paper for network training is completely new, as
well as the idea to estimate optimal slip instead of the actual
surface model. Moreover, at runtime, the use of the proposed
estimation scheme does not requires any knowledge of the
friction model. The MLP takes as input data the vehicle and
wheel speed, which are used to produce an estimate of a
sequence of pairs (λ, µ). The use of a sequence of pairs
allows to embed the dynamic nature of the phenomena in
the MLP input, and to smooth out high frequency variations.
The generalisation capability acquired during the training
phase allows the estimator to properly handle also situations
with sudden surface variations, even in case of a sequence
of those variations. Finally, differently from most of the
literature, the estimated optimal slip is used as the set-point
of a slip control scheme, achieving very satisfactory braking
performances. Remarkable results were achieved also in case
of road-surface variation during the maneuver.

The paper is organized as follows. Section II presents
the dynamic model and formulate the problem. Section III
propose and discuss the MLP architecture and the dataset
used for the training phase. Section IV briefly outlines the
control schemes, and the results are discussed in Section V.
Section VI draws conclusions and outline future work

II. PROBLEM DEFINITION

The dynamics of a vehicle, for the purpose of slip control,
can be described by means of the Quarter-Car Model (QCM):

Jω̇ = rFx − Tw
Mv̇ = −Fx

(1)

where ω and v are the wheel angular velocity and vehicle
longitudinal speed, J and M are the associated momentum
of inertia and mass, r is the wheel radius, and Tw is the
braking torque, i.e., the control signal.

The phenomena of interest in this paper depend on the
longitudinal slip λ, which, during braking, is defined as:

λ :=
v − rω
v

= 1− rω
v
. (2)

The key term in the QCM, for braking control, is the
friction longitudinal force Fx, which describes the road-
tire contact force. A widely adopted model for Fx assumes
dependence on the vertical force Fz acting at the tire-road
contact point, on the longitudinal slip λ and the wheel side-
slip angle θ according to the rule:

Fx = µ(λ, θ, β)Fz, (3)

where the additional parameter vector β characterizes the
normalized friction function µ with respect to the specific
type of road surface. In the following, it will be assumed the
braking maneuvers will occur along a straight line. In these
circumstances, the dependence of function µ on the wheel
side-slip angle θ can be omitted. A relevant situation where
such an assumption is valid is the airplane landing phase.

A largely used model for the normalised friction function
µ(λ, β) is the static Burckhardt model [6], [7], given by:

µ(λ, β) = β1
(
1− eβ2λ

)
− β3λ . (4)

The Reference Road Scenarios (see red curves in Figure 2)
are: Asphalt dry (β1 = 1.2801, β2 = 23.99, β3 = 0.52),
Asphalt wet (β1 = 0.857, β2 = 33.822, β3 = 0.347), and
Snow (β1 = 0.1946, β2 = 94.129, β3 = 0.0646).

Let denote with µ∗ the optimal friction, i.e., the maximum
of the friction curve, and with λ∗ the optimal slip, i.e., the
associated slip value. The presence of such a local maximum
implies that, for each road type, there is a single slip value
yielding the best braking performance.

The slip function λ can be assumed as the nonlinear output
map of the dynamic model (1). Also, vehicle velocity v
changes in a slower manner than wheel speed ω. Hence, by
using λ as a new state variable, in place of ω, by assuming
v as a slow varying parameter, and by assuming Fz =Mg,
the QCM dynamics can be rewritten as:

λ̇ = −1

v

[
(1− λ) + M r2

J

]
gµ(λ) +

r

J v
Tw. (5)

Based on the above considerations on the function µ(λ)
and on the slip dynamics (5), the problem of interest in this
paper is the estimation of the optimal slip, and the use of
such an estimate as the set-point of a slip controller. Hence,
the objective of the paper is the solution to the following
estimation problem.

Problem 1 (Estimation of optimal slip): Design a real-
time algorithm yielding the estimate λ̂∗ of the optimal slip,
using the measurements of the velocities v and ω, and the
knowledge of the control input Tw.

Remark 1: The assumption of a known control signal is
very reasonable whenever the control scheme is implemented
in the same framework of the estimation scheme, where all
the signals are available. In a number of cases, such as, for
example, electrically powered braking systems, a load cell is
available to measure braking torque. The scheme proposed
in this paper can be easily extended to cover such a case.

III. OPTIMAL SLIP ESTIMATION

A key challenge in most of the approaches to the es-
timation of the friction function µ(λ) relies on the non
linear parametrisation of the closed form models. This leads
to a number of solutions, and notably to those based on
approximate, linearly parametrised models, such as, among
others, [9]–[11], [19].

To tide over these issues, this work proposes a novel
optimal slip estimation strategy, starting from a different
hypothesis: the road-tire µ(λ) curve can be inferred by ana-
lyzing sequences of (λ, µ) pairs collected during the braking
procedure. If this relation can be captured, it is reasonable to
extend the estimation function to predict directly the optimal
slip value λ∗, leaving to the model internal structures the
task of representing the type of road surface. The use of
a sequence of pairs, which appears as wholly new, allows
to embed in the network the history of the braking, hence
allowing to discriminate among the various possible friction
curves. At the same time, this allow to partly filter out
measurement and system noise.



Fig. 1: The MLP estimation scheme, and the overall control scheme.

Driven by the previous considerations, this paper proposes
a novel data-driven strategy to model the relation between
sequences of slip-friction pairs and optimal slip values. The
solution is based on a multilayer neural network (Multi
Layer Perceptron-MLP), whose input features are vectors
containing (λ, µ) pairs:

x = {λ1, µ1, λ2, µ2, . . . , λP , µP } (6)

with P denoting the number of pairs, i.e., the window length.
The complete estimation algorithm is depicted, in the

framework of the overall scheme, in Figure 1: based on
the measurements of longitudinal and angular velocities, and
knowledge of the system parameters, an estimate of the
corresponding λ and µ values is derived by model inversion.
This is a common approach in the QCM based literature [3],
[12] while a more robust version could use a state observer,
such as the one proposed in [13]. Once P slip-friction pairs
are acquired, they are concatenated and provided as input
to the MLP, which outputs the estimated optimal slip. The
MLP is trained in a supervised manner, by using ground truth
optimal slip values y = λ∗GT .

A. Dataset Construction
In order to train the MLP, it is necessary to collect a set of

N training samples D = {(x1, y1), (x2, y2), . . . , (xN , yN )},
where xi are sequences of slip-friction pairs in (6), and yi
are the associated optimal slip values. This dataset could be
obtained by sampling the reference curves i.e., Asphalt dry,
Asphalt wet, and Snow. However, such a data set would be
not sufficient to allow the MLP to generalize with respect
to other possible scenarios. Hence, different values for the
parameters β1, β2 and β3 are explored, to generate different
slip-friction curves. In particular, for each parameter βj , an
interval Bj of possible values has been defined, in order to
cover all the reference surfaces.

The space (B1 ×B2 ×B3) ∈ IR3, defined as the friction
cube, is sampled by the following two strategies in order to
generate different road scenarios. First, Ndiag road surfaces
are sampled on the cube diagonal. This choice stems from
the observation that the reference surfaces lie close to the
diagonal. This makes it possible to simulate road scenarios
that resemble the reference ones. Secondly, to represent more
different road conditions, Nhyp curves are sampled in the
entire cube by using the Latin Hypercube Algorithm [27].

To generate the inputs to the MLP, each slip-friction curve
is discretized with 1000 points along the slip range λ ∈ [0, 1].
Afterwards, a sliding window of fixed size is used to select
P pairs (λi, µi) (P = 50 in this study, based on extensive
experimental tests) and build the feature vector. Each window
is then associated to the optimal slip value λ∗gt, which is
computed on the basis of the closed form model for µ. The
measurement noise is modeled by an AWG noise N (0, σ2)
acting on the µ values, with σ = 0.005. The obtained set
of curves are depicted in blue in Figure 2. It is stressed that
these data are only used on the training stage, and not during
the test phase.

Fig. 2: Complete set of curves.

B. Network Structure

The neural network architecture used to achieve optimal
slip estimation is designed with Rectified Linear Unit (ReLU)
non linearities as hidden layer activations and is trained by
optimizing the Mean Squared Error (MSE) loss function
[28]. The hyper-parameters (i.e., number of hidden layers,
number of neurons, learning rate and optimizer) are selected
by using standard cross-validation procedures. The best per-
formances are achieved with a stochastic gradient descent
optimizer [28] with a learning rate of 0.01, and two hidden
layers with 250 neurons each.

IV. SLIP CONTROLLER

In order to evaluate the slip estimation scheme, a closed
loop slip control system has been considered. Two slightly



different controllers have been evaluated, a PI regulator, and
a Sliding Mode Controller (SMC), based on the approach
proposed in [3]. Both controllers assume that an external
braking signal Tb is generated by the vehicle pilot. The
controller purpose is to reduce the braking effort in order to
keep the slip value to the given reference value. Hence, the
overall braking signal is given by Tw = Tbu, where u is the
closed loop control signal. The controller set-point is given
by the estimate of the optimal slip provided by the MLP.
The sliding mode controller, discussed in [3], comprises a
switching term to robustly drive the system to the sliding
surface, and an integral term to guarantee zero steady state
error. The overall control scheme is given by:

Tw = Tbu, u =
1

2
− βsat

(
e+ k0σ

ε

)
sc = e+ k0σ, e(t) = λ̂∗ − λ(t)

σ̇ = −k0σ + εsat
(sc
ε

) (7)

V. SIMULATION RESULTS

A. Experimental settings

To asses the benefits of the proposed approach, three
different set of tests are provided.

1) Optimal Slip Estimation Test: First, the capability of
the MLP model to predict the optimal slip value for a given
road surface is evaluated. To fulfill this purpose, the set of
curves generated as described in Section III-A are divided
into training, validation and test subsets. It should be noticed
that this choice allows to test whether the model is able to
generalize with respect to unseen road surfaces or not. Fur-
thermore, the three reference roads are used as an additional
test bench (since they are excluded from the training set).
These curves are represented in Figure 2, Burckhardt’s in red,
constructed in blue. Quantitative evaluations are provided by
computing the Root MSE (RMSE) [28] over the training and
the test sets, and for the reference roads.

2) Open Loop Test: This case is evaluated by simulating
the landing of an aircraft over an unknown surface whose
conditions change during the braking operation. In particular,
a step signal simulating the pilot brake request Tb, is provided
to the QCM, which returns wheel and vehicle speed (with
M = 1600 (Kg), J = 0.4500 (Kg ·m2), and r = 0.3 (m)). In
these tests, the system operates in open loop configuration,
i.e., pilot braking signal Tb is directly applied to the vehicle,
without the intervention of any slip control scheme. In all the
experiments, the initial aircraft speed is set to 80 (m/s), while
the initial wheel velocity is set to simulate a null initial value
for the slip, i.e., the case where braking starts after ground
contact. During braking, road conditions are changed with
step-wise transitions. The requested braking force Tb is set to
the value that experimentally gives the best performance for
the initial surface, and it is not modified during manoeuvre.
The tests are made by exploring transition between the three
reference surfaces, i.e., Asphalt Dry (D), Asphalt Wet (W)
and Snow (S). It is important to stress that these surface
transitions are not used in the training phase of the MLP. The

performance of the proposed MLP predictor are compared
against the approaches presented in [11], [12], which rely on
the RLS strategy. The RMSE between the ground truth and
the estimated optimal slip during the entire braking operation
is computed to provide a quantitative evaluation.

3) Closed Loop Test: The availability of optimal slip
estimates allows to benefit from slip control schemes, aimed
at regulating slip to such an optimal value (see Figure 1). The
control schemes described in Section IV have been used.
It is stressed again that the focus of the paper is on the
MLP estimator, hence control schemes are only used for
the purpose of such a study. Similarly to the case of the
open loop test, the road conditions are changed during the
experiment and the performance are evaluated measuring the
RMSE between the ground truth and the estimated optimal
slip, the required braking time and the traveled distance.

B. Results and Discussion

1) Optimal Slip Estimation Results: A first consideration
about the generalization capabilities of the neural network
can be made analyzing the RMSE scores achieved by the
MLP listed in table I.

Training Validation Test Reference
RMSE 0.0463 0.0464 0.0290 0.0361

TABLE I: MLP scores on the datasets

The results obtained on the test data and the reference
roads are comparable (in this case better) to the training
set ones. By observing that the test and the reference roads
are completely excluded during the training procedure, it is
possible to conclude that the MLP is able to generalize with
respect to ”unseen” surfaces. Moreover, by considering that
a typical value for the optimal slip is λ∗ = 0.15, the error
percentage of the MLP (with respect to the RMSE) is 19% on
average. As shown by the other tests, this error is reasonable
when the estimate is used as the set-point values of a slip
control scheme.

2) Open Loop Results: The performance of the MLP
estimator are compared against the RLS strategy proposed
in [11], [12]. Tests are made both with fixed and changing

Asphalt RMSE
MLP RLS

D 0.0071 0.0213
W 0.0034 0.0216
S 0.0175 0.0101
D→S→D 0.0244 0.0415
S→D→S 0.0314 0.0582
W→D→ W 0.0510 0.0700
D→W→ D 0.0131 0.0260
W→S→ W 0.0238 0.0312
S→W→S 0.0226 0.0668
S→W→D 0.0872 0.1294
W→D→ S 0.0320 0.0227
D→S→W 0.0206 0.0608
S →D→ W 0.0536 0.1212
W→S→D 0.0378 0.0473
D→W→S 0.0401 0.1071

TABLE II: Scores of RLS and MLP: open loop data



(a) SNOW (b) D→W→S (c) S→D→S

Fig. 3: Open loop braking braking maneuvers: time behaviour of true optimal slip, RLS and MLP estimate.

(a) SMC S→W→D (b) SMC D→S→D (c) SMC D→S→W

Fig. 4: Time behavior of braking maneuvers under closed loop control schemes.

surface conditions during the aircraft braking (see Table II).

The MLP achieves lower estimation errors in most of the
cases, with only a few exceptions where the RLS scores are
better than the neural network, and all of them include the
snow surfaces (see Figure 3a). The motivation behind this
slight MLP performance drop can be explained by observing
that the optimal slip value for snow surface is close to zero.
As shown in Figure 2, for small λ values, all the curves
exhibit very similar behaviours and, thus, it is more chal-
lenging for the MLP to handle ambiguities in these scenarios.
This effect is further emphasized by the measurement noise,
which makes the curves nearly indistinguishable for small
slip values. Nevertheless, even in those situations, the MLP
performance are close to the RLS ones. Figure 3 provides
a qualitative analysis of the open loop test with various
transitions, where λ∗GT denote the optimal slip values, while
λ̂∗MLP and λ̂∗RLS the estimated ones. The MLP-based best
slip estimator shows better performance with respect to the
RLS, especially when road transitions occur. The spikes that
affect the MLP estimation behavior during the road surface
switch are caused by the transitory presence of inconsistent
(λ, µ) pairs in the input vector to the neural network. In
particular, the window buffer contains sample from both the
surface during the transitions, hence, the MLP is not able
to distinguish between them. However, this effect disappear
after P samples are collected and, as shown in the figure,
the estimation rapidly converges towards the ground truth
values.

3) Closed Loop Results: Finally, Table III reports the
results obtained in the closed loop tests. The estimation
performance (RMSEs in the leftmost four columns of the
data) shows a trend similar to the open loop tests: the
MLP outperforms the RLS in most of the cases. Hence, by
using the proposed neural network estimator it is possible to
considerably improve the efficiency of the braking procedure,
as proven by the comparison on the distance traveled and
the braking time. This is well demonstrated, for example, in
the S→W→S and the S→D→S tests, where the controller
based on the RLS approach requires up to 700 meters and
16 seconds more than the MLP to stop the aircraft.

Furthermore, by comparing the performance obtained with
the PI and the SMC controllers, it can be observed that, in
general, their performance are comparable. Thus, this proves
that the proposed MLP estimation strategy can be easily
coupled with different control strategies.

A qualitative comparison between the time behavior of the
MLP and RLS estimates is provided in Figure 4. Similarly
to the open loop case, the MLP achieves lower errors and the
road transitions do not compromise the performance (except
from the spike during the road switch, as explained in the
previous section). Conversely, the RLS is heavily affected by
surface transitions and, in most cases, the estimate diverges
and becomes unreliable.

VI. CONCLUSIONS

This work proposes a novel data-driven strategy to es-
timate the optimal slip value to perform efficient braking



Asphalt
RMSE Distance (Meters) Braking time (Seconds)

MLP RLS MLP RLS MLP RLS
PI SMC PI SMC PI SMC PI SMC PI SMC PI SMC

D 0.0070 0.0070 0.0120 0.0070 280.8347 280.516 281.487 281.784 6.180 6.180 6.190 6.195
W 0.0104 0.0105 0.0202 0.0216 406.082 405.912 405.793 405.939 8.980 8.975 8.980 8.985
S 0.0172 0.0172 0.0036 0.0799 1739.4 1740.000 1733.700 1771.900 38.610 38.615 38.495 39.355
D→S→D 0.0116 0.0102 0.1094 0.1106 382.508 382.166 388.825 424.357 8.010 8.0150 8.210 9.310
S→D→S 0.0172 0.0159 0.1992 0.0797 640.039 644.486 1337.900 1526.100 18.350 18.475 32.760 35.925
W→D→W 0.0069 0.0092 0.0653 0.0560 353.358 352.302 364.263 364.847 7.655 7.635 8.010 8.000
D→W→D 0.0082 0.0089 0.0653 0.0391 313.771 312.375 317.432 317.248 7.155 7.135 7.280 7.255
W→S→W 0.0116 0.0125 0.2418 0.0800 518.687 516.136 530.236 556.100 11.420 11.375 11.950 12.895
S→W→S 0.0177 0.0165 0.1756 0.0552 1004.900 1001.400 1417.600 1502.300 25.820 25.760 33.770 35.430
S→W→D 0.0121 0.0120 0.1697 0.1436 538.298 537.571 636.579 892.028 9.690 9.680 11.175 18.355
W→D→S 0.0172 0.0161 0.1046 0.1152 593.928 591.514 625.628 629.436 18.375 18.330 19.320 19.410
D→S→W 0.0123 0.0122 0.0696 0.0922 427.638 423.989 428.758 455.905 10.065 10.020 10.090 11.180
S→D→W 0.0133 0.0130 0.1977 0.3248 575.939 576.856 774.532 807.920 10.890 10.890 14.295 15.145
W→S→D 0.0121 0.0122 0.5228 0.1124 484.147 483.461 516.051 564.871 10.100 10.110 11.425 13.220
D→W→S 0.0170 0.0157 0.128 0.1291 500.693 496.981 514.565 513.717 16.425 16.335 16.970 16.910

TABLE III: Performance of MLP under closed loop control schemes.

control. The approach exploits a neural network architecture
that can detect the road conditions by processing sequences
of slip-friction pairs. The experiments are performed by
simulating the landing of an aircraft over un unknown
surface whose road conditions change during the braking
operation. The results clearly show that the proposed MLP-
based estimator achieves better performance when compared
to a state-of-the-art RLS approach. Future work will analyze
other types of neural networks. In particular, Recurrent
Neural Network (RNN) will be considered to model temporal
correlations.
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