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Pursuit-evasion Game for Nonholonomic Mobile Robots With Obstacle
Avoidance using NMPC

Mukhtar Sani, Bogdan Robu, Ahmad Hably

Abstract—In this work, non-cooperative competitive games
between two unmanned ground robots using Nonlinear Model
Predictive Control (NMPC) while incorporating obstacle avoid-
ance techniques are studied. The objective of the first player
(pursuer) is to minimize the relative distance and orientation
between itself and the second player (evader) while avoiding
obstacles, whereas the evader does the opposite. The Pursuit-
Evasion Game (PEG) being a typical class of a differential
game is formulated as a zero-sum game with two homogeneous
players in five different game scenarios. The objective function
of each player is formulated as a double optimization problem
and is solved separately using NMPC techniques. The optimal
trajectory of each player is computed iteratively by consid-
ering the best response of the opponent player. The level of
information is assumed to be symmetric. Simulations of various
scenarios show the winning possibility of each player.

I. INTRODUCTION

Nowadays, game-theoretic paradigm has been getting a fas-
cinating attention in the field of robotics and control despite its
high computational complexities. This is due to its possibility
to interpret a control law as a sort of intelligent rational
decision maker that was designed to produce a desired effect
[1]. Pursuit-evasion is an interesting class of differential games
which is a typical non-cooperative game problem. It includes
a number of mobile pursuers and evaders in a conflicting
scenarios. Example of such problem involve a pursuer trying
to catch the evader while the evader is trying to dodge in a
real environment; this can be achieved by independently min-
imizing and maximizing the relative distance and orientation
between them.

The application of the this setting was argued in [2] to be
numerous. In surveillance and security, for tracking malicious
evader that is trying to escape, the security robot must ensure
that the evader didn’t escape by maintaining visibility. Also, in
home care setting, a tracking robot can follow an elderly per-
son and alert caregivers in case of emergencies. It can also be
useful in wildlife monitoring, where unmanned surface vehicle
(USV) is required to navigate in a cluttered environment while
tracking marine species.

Several approaches for solving differential games and in
particular pursuit-evasion games have been presented in the
past while earliest approaches are optimal control based tech-
niques. In [3] variational techniques was used to solve differ-
ential games, conditions for capture and optimality are derived
for a class of pursuit-evasion problem. Reachability-based
approached are presented in [4] using Hamilton-Jacobi-Isaac’s
formulation to compute the reachable set of a continuous

1 The auathors are with the Univ. Grenoble Alpes, CNRS, Greno-
ble INP*, GIPSA-lab, 38000 Grenoble, France. {mukhtar. sani,
bogdan. robu, ahmad.hably}@grenoble.fr

dynamic differential game. However, [5] argued that solutions
of HII equations are not readily available from the practical
point of view especially for the problems with multiple agents
and non-trivial dynamics, thus proposed conditions for the
game to be terminated in terms of reachable sets inclusion.
Numerical solutions to differential games by a sequence of
finite state Markov games has been presented in [6] where
players are assumed to be moving at constant speed. In [7],
Improved Potential field method has been used for solving
pursuit-evasion problem. A novel incremental sampling-based
algorithm to compute the open-loop solutions for the evader
assuming worst case scenario for the pursuer is presented in
[8]. In [9] non-cooperative multi-agent planning problem was
formulated as a stochastic game for a situation where there is
an uncertainty from the sensor and actuator noise. Recently,
a more intelligent approach was proposed in [10] where a
tool from social psychology known as Social Value Orienta-
tion (SVO) was integrated into autonomous vehicle decision
making. This was aimed to quantify the degree of agent’s
selfishness or altruism, thus allow for a better prediction of
the agent’s interaction and cooperation with others.

Pursuit-evasion often involves cooperation among agents.
For example, a group of pursuers trying to capture a sin-
gle evader as in [11] or the opposite case where a single
pursuer against many evaders as in [12]. In other scenario
where cooperation is involved in the pursuit-evasion game
is Target, Defender and Attacker called (TAD) game. Two
pursuit-evasion problems are coupled: Attacker-Target and
Defender-Attacker as in [13]. The Attacker chases the Target
whilst avoiding being captured by the defender and in parallel
the Target cooperates with the Defender in order to dodge
from the Attacker while helping the Defender to capture the
Attacker. A practical application the TAD game is in active
defense as proposed in [14] where an Attacker missile pursues
a Target aircraft protected by a Defender missile which aims
at intercepting the Attacker before the latter reaches the Target
aircraft.

In most of the above situations Nash equilibrium of the
game is computed using optimal control approaches, however,
a much better technique is the so called “best response”
where the Nash equilibrium is attained when all the agents
are best responding. In [15] several information patterns are
reviewed and then Best response is used to compute the Nash
equilibrium for two quadrotor drone racing. The work was
improved in [16] where sensitivity enhanced iterated best re-
sponse algorithms was used to solve for the approximate Nash
equilibrium in the space of feasible trajectories and applied to
a car-like vehicle. In [17], the concept of iterated best response
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Fig. 1. Schematic diagram of mobile robot

and model predictive control was combined to solve for an
agile interaction between two ground vehicles modeled in a
semi-stochastic formulation.

Nonlinear Model Predictive Control approach has been
applied to two aerial systems in [18]. Each aircraft computes
its optimal strategy by firstly predicting the opponent’s optimal
trajectory assuming each have information about the dynamics
and the current state of the itself and the opponent. The game
can be switched due to its symmetrical nature, i.e the pursuer
can become the evader and the vice-versa. Similar approach
of using nonlinear Model predictive control (NMPC) have
been presented in [19] for two heterogeneous systems. The
unmanned ground vehicle (UGV) and the unmanned aerial
vehicle (UAV). Two independent Model predictive controllers
are designed using the dynamic model of UAV and the UGV.
The PEG appear to be constant-sum instead of zero-sum game
due to its heterogeneous nature. Nevertheless neither one of the
two papers, [18] and [19], include obstacle avoidance which is
a crucial aspect when dealing with the control of robots in a
realistic environment.

In this paper, we intend to use NMPC techniques to compute
optimal trajectories for two homogeneous autonomous ground
vehicles in an cluttered environment and to analyse the various
game scenarios in order to determine the win possibility for
both players assuming equal level of information. The rest of
the paper is organized as follows. In section II , we present the
models of the non-holonomic robots, the obstacle avoidance
techniques and formulation of the pursuit-evasion problem as
a Nash equilibrium search. In section III, design of the game
theoretic controllers is presented while the game scenarios and
the results are presented in section IV. Finally conclusion and
suggestions of future work are presented in section V.

II. PROBLEM STATEMENT
A. Non-holonomic Mobile Robots

A robot is said to be holonomic if all its dynamics con-
straints are integrable into positional constraints. Another class
of robots are called non-holonomic robots whose dynamic
constraints are non-integrable. Such systems are also referred
to as differential drive robots. This type of robots can be de-
scribed as a cart having two controlled wheels with a control-
free wheel at its front or as a tricycle with three controlled
wheels. It can also be represented with a four-wheels configu-

ration. The kinematic model of cart robots is given as [20]:

T =wcosl
Yy =wsinf (1)
0 =w

Where the state vector denoted as X = (x, y, §) represents the
Cartesian (x, y) position of the robot in the earth frame of ref-
erence and the orientation angle 6, while v, w are respectively
the linear and the angular speeds of the robot measured in m/s
and rad/s, contained in the input vector U = (v, w). Moreover,
the control inputs v and w are related to the angular speeds of
the left (w;) and right (w,.) wheels of the robot by the following
equation:

wr = (20 4+ wRy0p) /27 )

wi = (20 — WRyb) /27

where R, is the length of the robot’s base from the center
and r is the radius of the robot’s wheels.

The discrete version (Euler) of the kinematic model in eq.
(1) is used for designing the discrete NMPC for both robots.

oFtt = ok 4 T, (v cos OF)
Yyt = yF 4 T, (v¥ sin 6) 3)
OF T = 0F + Ty (wF)

For the purpose of notation, lets represent the discrete kine-
matic equations of the two robots as follows, where the symbol
”p” denotes pursuer and the symbol ”e” denotes evader, T is
the sampling time.

k+1 _ E Jrk
Xy = fp(Xy, U, Ts) @
Xk = f.(XF UE, Ts)

Where the state variables XY = [z, y¥ %] and X} =
[zF, yF 0%]T are measured using sensors at every decision
instant.

B. Obstacle avoidance

One of the key issues associated to autonomous navigation
of mobile robots is obstacle avoidance [21]. Mobile robots
operating in a dynamic environment had to be enhanced with
obstacle avoidance techniques for the safety of the objects
around and that of the robot.

Literally, obstacle avoidance can be achieved via two stages,
obstacle detection and collision avoidance. Some of the widely
accepted obstacle avoidance techniques are:

o Bug Algorithms: These are basically the simplest algo-
rithms [21]. The robot moves on the shortest path from
its current position towards the goal until it come across
an obstacle. The algorithm forces the robot to move
tangentially around the obstacle’s surface until it returns
to its original path. The primitive bug algorithms makes
the robot to circumnavigate the whole obstacle before
returning to its original path.

o Artificial Potential Field (APF) Methods: In APF meth-
ods, the robot, obstacle and the goal are considered as
electric charges such that the robot and the obstacle have
the same polarity so that repulsive force is created while



the goal is assumed to have opposite polarity with the
robot so that attractive force will be created [22].

o Bubble Band Technique: In these methods as firstly pro-
posed in [23], the robot is surrounded by a “bubble”
containing the maximum available free space which the
robot can pass in any direction without collision.

o Vector Field Histogram: This method was firstly pro-

posed in [24] in order to deal with the issue of sensor
noise through constructing a polar histogram using the
most recent readings of the sensor. In the histogram, a
probability of obstacle’s presence in a particular direction
is plotted against the angle associated with the sonar
sensor readings. A local occupancy grid map of the envi-
ronment around the robot is created in order to compute
the probabilities.
The polar histograms is used to determine all the passages
large enough to avoid collision with the obstacle. The
passage to be followed by the robot is selected by evalu-
ating the cost function defined for each passage which is
a function of the alignment of robot’s path with the goal
and the difference between the current wheel orientation
and the new direction. The passage having minimum cost
function is selected.

In this work, the bug type algorithm is selected due to its
simplicity and the intention to avoid increasing the computa-
tional cost of the NMPC. We consider M obstacles which are
assumed to be spherical in shape with radius R,,s and each
being positioned in a point described by it’s Cartesian coor-
dinates (z,ps,Yobs)- Detection of the obstacles can be achieved
by measuring Rops, Tobs and Yops using sensors. Collision with
the obstacles is avoided by including the following function as
an inequality constraint in the NMPC formulation.

\/(xrob - xobs)Z + (yrob - yobs)2 Z (Robs + Rrob + ds)

&)
where x,,, and ¥y, are the position of the robot (pursuer or
evader) in x-y plane, d; is a safe distance between the robot
and an obstacle. In this work, three spherical obstacles each of
2m in diameter are placed on strategic positions. Each Robot
have a diameter of 0.4m while the safe distance selected is
0.2m.

C. Game Theoretic Formulation

In game theory, systems are modelled as intelligent rational
decision makers where an agent considers the opponent’s
move before deciding own strategy. The agent predict the
opponent’s best response which is the worst case from the
agent’s point of view and then computes its optimal strategy
according to that. If each agent plays its best response, Nash
equilibrium is attained in which no player has incentive to
deviate.

In our pursuit-evasion problem, the two agents have exactly
the opposite intention. This depicts the zero-sum property in
which an increase in utility/cost for one player results in a de-
crease in utility/cost for the other player by the same amount.
The sum of the two objective function can be expressed as:

Ip(Up, Ue) + J(Up,U.) =0 YU, €U,, U €U, (6)

where [Jp, Jel, [Up,U.] and [U,, U] are the cost function, the
control strategy and the admissible control strategies for the
pursuer and evader respectively. Given this special structure,
zero-sum games are usually expressed in terms of a single
objective function 7, thus

J(Upa Ue) = Jp(Upa Ue) = _JE(Up7 Ue) @)

Therefore the objective function of the pursuer and the evader
can be defined in terms of the single objective function using
double optimization as:

J = maxy, ming, J(Up, U.)
J = miny, maxy, J(Up, Ue)
The strategy pair [U,,U;] is a Nash equilibrium if?

JU;,U.) < J(U;, U < T(U,,U7)

which indicates that U, is the best response for the U and
vice versa, thus J = J.

The value of the game corresponds to the saddle points of the
game is given by:

®)

VG=J (U;, Uy)
III. CONTROL DESIGN

Nonlinear Model Predictive Control (NMPC) technique was
employed to compute the control inputs for both robots. The
main motivations for using NMPC in our case are threefold: 1)
Being an online optimization technique so that new controls
can be computed at each decision instant. 2) Ability to handle
Nonlinear dynamics of mobile robots. 3) Ability to handle
MIMO systems such as the mobile robots.

In NMPC, a controller is obtained by minimizing a cost
function subject to constraints which incorporate the nonlinear
dynamic model of the system. The controller output is a
sequence of open loop controls predicted ahead over a finite
horizon window called prediction horizon, /N. Only first part
of the controller is applied to close the loop at the particular
decision instant 75 and the rest of the solution is ignored. At
every decision instant, the prediction horizon is shifted one
step and the process is repeated to obtain the new optimal
control sequence.

In the context of game theory, each player must firstly
compute the worst case strategy of the opponent, then compute
its own strategy based on it; which means that our problem has
double stage optimization. Literally, the pursuer would first
use the evader’s dynamics and compute the maximum strategy
(which is the pursuer’s worst case), then compute its minimum
strategy as a function of the latter. The evader does exactly
the opposite by firstly computing the minimum strategy of the
pursuer and then computes its maximum.

A. Controller Design for the Pursuer

The pursuer’s controller is obtained by solving its Min-max
problem. This was achieved by firstly estimating the evader’s
best move U;':

N
max ] = > (X7 = X5)TQe(XE = X5) +(UE) RUE 9)
k=1



subject to:

Xkl = f(Xk UK, k=0,1,...,N -1

J(Xe, Xops(1)) > (Rops + Rpop +ds), i=1,..., M
Xepin X< X
Uepin < Ue < Ue
XP(O) = Xpo
XE(O) = Xeo

€max

max

(10)
Then compute U, based on the value of U, by solving.

N
: _ k krr= k k(rr* k k
II(}IPII J = Z[Xp _Xe (Ue )]TQP[Xp _Xe (Ue )]+(Up )TRZDUP

k=1
(11)
subject to:
XAt = f(XFUF), k=0,1,.N -1
f(vaXobs(i)) > (Robs + R'rob + ds); 1= 1; ceey M
Xpmm S Xp S X mazx
Upmm § UIJ S U, max
XP(O) = X;Do
Xe(o) = Xeo
(12)

Where N is the level of thinking (technically called prediction
horizon), M is the total number of obstacles in the game
scenario, (X, U.) and (X, U,) denote the dynamical states
and inputs of the evader and pursuer respectively, X,  and
X, are initial conditions, X5 represent the x-y positions
of the obstacles. The weighting matrices Q and R are chosen
by the designer in order to achieve the satisfactory controller
performance.

B. Controller Design for the Evader

Similarly, the evader’s controller is obtained by solving its
max-min problem which was is done by firstly computing U,
through solving:

N
minJ = (0~ X5 Qu(XE — X5+ (U5 Ry(U})

P k=1
(13)

subject to:

XFH = f(XE UK, k=0,1,.N—1

F(Xp, Xobs (7)) > (Robs + Rrop +ds), i=1,...., M

pmin = Xp <X,

Up,in <U, <,
Xp()

Xp(o) =
X(0) = X,

max

max

(14)
Then compute U, based on the value of U by solving.

N

subject to:
Xk = f.(XkUF), k=0,1,.N -1
f(XevXobs(i)) > (Robs + Rrob + ds)a 1= ]-7 ey M
Kepin < Xe < Xe
Uemnﬂn S Ue S Uem,am
XZ)(O) = Xz)o
X.(0) = X,
(16)

The @, and Q. are identity matrices of order 3, the R, and
R, are identity matrices of order 2, the prediction horizon is 5
while the sampling time Ts is 0.1sec.

N.B: The reference trajectory in eq. (13) and (15) are com-
puted using the opponent’s dynamics as a function of the
computed optimal control values.

IV. SIMULATION
A. Game Setup

The proposed controllers are implemented in MAT-
LAB/SIMULINK coded using CasADi [26] interfaced with
IPOPT solver. All simulations were done on a HP laptop with
Intel Core i7 vPro 2.60GHz processor, 16G RAM and running
64-b windows 7 operating system in order to achieve fast
computation. The Game was set up in five scenarios based on
the input constraints. The state constraints are chosen to be a
square shaped space for an indoor experiment defined by the
opposed corner coordinates [T in, Ymin] as [—5m, —5m] and
[Ymazs Tmaz) 8s [5m, 5m]. The initial conditions are randomly
selected but with the pursuer always behind the evader. Below,
we propose five different simulation scenarios in order to test
the extreme cases:

Scenario 1: Both the pursuer and the evader have the same
speed and agility. The linear and angular speeds limits for both
robots are —2ms~! < v < 2ms™ ! and —2rads™! < w <
2rads™! respectively.

Scenario 2: Both the pursuer and the evader have the same
speed but the pursuer is more agile. The linear speed limits
of both robots is —2ms~! < v < 2ms~! while the angular
speed limits for the pursuer and evader are —2rads™! <w <
2rads—! and —1rads™! <w < lrads™! respectively.

Scenario 3: Both the pursuer and the evader have the same
speed but the evader is more agile .The linear speed limits of
both robots is —2ms~! < v < 2ms~! while the angular
speed limits for the pursuer and evader are —lrads 1 <w<
lrads—! and —2rads~! < w < 2rads~! respectively.

Scenario 4: Both the pursuer and the evader have the same
agility but the pursuer is faster. The angular speed limits of
both robots is —2rads~! < w < 2rads~! while the linear
speed limits for the pursuer and evader are —2ms~! < v <
2ms—' and —1ms~! < v < 1ms~! respectively.

Scenario 5: Both the pursuer and the evader have the same
agility but the evader is faster. The angular speed limits of both
robots is —2rads™' < w < 2rads~! while the linear speed
limits for the pursuer and evader are —1ms~! < v < 1ms~!

* * — 71< < -1 1 .
i = S IXE XU QU - XA (U Ry (A —2me™ < 0 < ama ety

k=1
s)

In each scenario, the relative distance and orientation
between the two systems, R.D is computed at each sampling



instant.

RD = \[(0y = )% + (4p — )% + (0 0. (1)

A threshold distance of 0.2m is selected to stop the simulation.
The game time in seconds is obtained to indicate how long it
takes the pursuer to catch the evader. Thus a pursuer is said
to win if the game time is very small while evader wins if the
game time is very long.
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Fig. 2. Simulation of scenario 1, the blue circles represents the obstacles
while the red and green lines represent the trajectory of the players.

B. Results

Several simulation experiments were conducted using sev-
eral random initial conditions. The results presented here, for
the purpose of consistency, are simulated with the same initial
conditions for all the scenarios. The pursuer’s initial conditions
are [z, Yp, 0,]7 = [0,4, —7/2]T while that of the evader are
[Te, Ye, 0] = 10,3, —m/2]T.

For Scenario 1, where both robots have the same speed and
agility, it takes the pursuer 14.8 seconds to catch the evader
as depicted in figure 2. Both robots avoided the obstacles
encountered and box constraints.

For scenario 2 and 3, the effect of agility is tested. The speed
of both robots is the same. In scenario 2, the pursuer is more
agile, thus catches the evader in just 5.4 seconds as in figure 3
while in scenario 3 the evader is more agile, thus it takes the
pursuer 17.3 seconds to catch it as in figure 4. The agility
differences has great effect in the game.

For scenario 4 and 5, the effect of speed is tested. The agility
of both players is the same. In scenario 4, the pursuer is faster,
it takes around 14 seconds to catch the evader as in figure 5

Pursuit-evasion Game in 2D
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Fig. 3. Simulation of Scenario 2, the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.
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Fig. 4. Simulation of Scenario 3,the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.
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Fig. 5. Simulation of Scenario 4, the blue circles represent the obstacles,the
red/green lines represent the trajectory of the players.

whereas in scenario 5 where the evader is faster, it takes 14.9
seconds to be captured by the pursuer. The speed has slight
effect in the game.

In table I, the agility and speed effects are compared with
the scenario 1. The percentage time gained are computed for
each robot. It’s observed that a more agile robot always has
advantage.

The computation time for both controllers is in range of 0.01
to 0.02 seconds.

Player | More Agile | Faster

Pursuer 63.5% 54 %

Evader 16.9 % 0.7%
TABLE I

COMPARISON OF THE ADVANTAGE OF AGILITY AND SPEED.

V. CONCLUSION

In this work, we used game theory to design two Nonlinear
Model Predictive Controllers for two homogeneous vehicles
having opposing objectives in the presence of obstacles. Five
scenarios have been examined, a robot that’s more agile has
better chance of winning the game in a cluttered environment
that a faster one. Realistic game situations have been utilised
and equal level of information has been assumed. Solution of
min-max and max-min leads to Nash equilibrium in which any
vehicle that deviate form it will eventually lose. Obstacles and
constraints on the playground has been seen to slightly affect
the winning. Thus in a tightly constraint environment, an agile
player is likely to win despite the fact that the opponent is
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6. Simulation of Scenario 5, the blue circles represent the obstacles,the

red/green lines represent the trajectory of the players.

playing its Nash equilibrium.

The future work is to validate the simulation results using
physical robots. Another trend is to develop a game of in-
complete information, in which each robot has to estimate the
dynamics of its opponent.
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