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Abstract— This work investigates the feasibility of using
input-output data-driven control techniques for building con-
trol and their susceptibility to data-poisoning techniques. The
analysis is performed on a digital replica of the KTH Live-
in Lab, a non-linear validated model representing one of the
KTH Live-in Lab building testbeds. This work is motivated
by recent trends showing a surge of interest in using data-
based techniques to control cyber-physical systems. We also
analyze the susceptibility of these controllers to data poisoning
methods, a particular type of machine learning threat geared
towards finding imperceptible attacks that can undermine the
performance of the system under consideration. We consider the
Virtual Reference Feedback Tuning (VRFT), a popular data-
driven control technique, and show its performance on the
KTH Live-In Lab digital replica. We then demonstrate how
poisoning attacks can be crafted and illustrate the impact of
such attacks. Numerical experiments reveal the feasibility of
using data-driven control methods for finding efficient control
laws. However, a subtle change in the datasets can significantly
deteriorate the performance of VRFT.

I. INTRODUCTION

Recent trends have shown a surge of interest in methods
that intelligently learn from the data. This trend is also
motivated by recent successes in using deep-learning based
methods for supervised learning tasks or control problems.
In control systems data-driven control approaches, a branch
of adaptive control, have gathered much attention over the
last few decades [1]–[6], due to some interesting features,
such as being able to directly compute a control law from
experimental data gathered on the plant. This type of tech-
nique avoids identifying a model for the plant, which is
particularly troublesome in those cases where it is difficult
to derive, from first-principles, a mathematical description of
the system, thus enabling direct data-to-controller design.

In this work, we will analyze the feasibility of using
the Virtual Reference Feedback Tuning (VRFT) method
[1], [6], [7] for temperature control in buildings. VRFT,
compared to other data-driven control methods such as
those based on Willems’ lemma [4], [8], allows to specify
which requirements the closed-loop system should satisfy
and aims at deriving a control law that satisfies the prescribed
requirements. This particular feature of VRFT, coupled with
the fact that the method is straightforward to use, makes
it appealing in many control scenarios, from wastewater
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treatment [9] to unmanned aerial vehicle control [10] and
control of solid oxide fuel cells [11].

Despite these advantages, the performance of VRFT
is tightly coupled with the data being used and can be
seen as an identification problem. As such, it inherits the
weaknesses of using data-based methods. For example,
recently, it has been shown in the supervised learning
community that a malicious agent can severely affect the
performance of classifiers at test time by means of slight
changes in the data used at training time [12]–[14]. A recent
analysis demonstrated that data-driven control techniques
are also affected by this particular attack for simple PID-like
controllers [15], whilst the case where VRFT is used with
non-linear controllers is left unexplored. Similar attacks,
conducted at test time, have also been shown to work in the
case of systems controlled through Reinforcement Learning
controllers [16].

Contributions: the objectives of this work are twofold:
(1) We first analyze the feasibility of using VRFT for
temperature control in buildings. This is validated by using
a digital replica of the KTH Live-In Lab testbed [17], a
model of the real building set up using IDA Indoor Climate
and Energy (IDA ICE) [18], a software used to simulate
buildings performance.
(2) We then analyze the susceptibility of VRFT to data
poisoning attacks, using the IDA ICE environment. We
believe this is an important example of how data-driven
control laws can be attacked. In buildings, the probability of
sensors being hijacked is far from remote, and a malicious
agent can use the data in several ways. This data could
be used to determine the number of people present in the
building or be poisoned to decrease the building’s energy
efficiency. Gartner [19] predicts that through 2022 30% of
all AI cyberattacks will leverage training-data poisoning, AI
model theft, or adversarial samples to attack AI-powered
systems. In [20], Microsoft engineers analyzed 28 companies
and found out that only 3 of them have the right tools in
place to secure their ML systems. This further stresses the
importance of studying such problems.

Organization of the paper: §II introduces the notation,
the VRFT method, and the KTH Live-in Lab Testbed, which
is a smart residential building located at the KTH campus.
In §III, the VRFT method is used to derive a controller that
can control the temperature in the KTH Live-in Lab testbed’s
model. Finally, in §IV, the data poisoning attack from [15]
is presented and applied to the VRFT method introduced in
the previous section.
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II. BACKGROUND AND PRELIMINARIES

A. Notation

We consider discrete-time models, indexed by t ∈ N0, and
we will indicate by [N ] the sequence of integers from 0 to N .
We denote by z the one-step forward shift operator and by
H2 the Hardy space of complex functions which are analytic
in |z| < 1 for z ∈ C. For a vector x ∈ Rn and a function
f : Rn → R, we denote by∇xf(x) the n-dimensional vector
of partial derivatives, where each element is ∂xif(x) with
∂xi = ∂

∂xi
. We will describe a linear time-invariant system

in the following way for t ∈ N0:

xt+1 = Axt +But, x0 ∈ X0 (1)
yt = Cxt +Dut, (2)

where xt ∈ Rn is the state of the system, ut ∈ Rm is the
exogenous input, yt ∈ Rp is a vector of measurements and
X0 is a closed-convex subset of Rn. We can equivalently
use transfer function notation and denote the input-output
relationship using transfer function notation yt = G(z)ut,
with G(z) = C(zI − A)−1B + D. We also denote the
multiplication of two transfer functions G(z) and L(z) by
GL(z) (similarly the sum). Finally, we will denote by XT =[
x0, . . . , xT

]>
a matrix of dimensions (T+1)×n containing

a collection of state measurements of the system, for T ∈ N0.
Similarly, we can define UT and YT .

B. Virtual Reference Feedback Tuning

In the following, we will denote by DN = (UN , YN ) the
data available to the learner that comes from experiments
on the plant, with N > 1. This data will be used to learn
the control law, and it is usually assumed to have been
taken in open-loop conditions. In VRFT [1], the design
requirements are encapsulated into a reference model Mr(z)
that captures the desired closed-loop behavior from rt to
yt, where rt ∈ Rp is the reference signal. We assume that
Mr satisfies some realizability assumptions, such as being a
proper stable transfer function.

In VRFT, we wish to find a controller Kθ(z), parametrized
by θ ∈ Rnk , that minimizes the difference between the
reference model and the closed-loop system in the H2 norm
sense. Define ∆θ(z) = Mr(z)−[(I+GKθ)

−1GKθ](z), then
the criterion is usually casted as follows

JMR(θ) =
∥∥Mr(z)− [(I +GKθ)

−1GKθ](z)
∥∥2
2

(3)

=
1

2π

∫ π

−π
Tr
[
∆θ(e

jω)∆>θ (e−jω)
]

dω. (4)

One can immediately observe that JMR(θ) is non-convex in
θ. To address this difficulty, the following assumption [1],
[3], [7] is often used:

Assumption 1 ( [1]): The sensitivity function I−Mr(z) is
close (in theH2 norm sense) to the actual sensitivity function
(I +GKθ̂)

−1(z) in the minimizer θ̂ of 3.
This allows us to instead consider the following criterion

J̄MR(θ) = ‖Mr(z)− [(I −Mr)GKθ](z)‖22 . (5)

One can show that minimizing 5 can be cast as a problem
that involves minimizing the difference between the input
signal ut injected during the experiments and the control
signal Kθ(z)et computed using the virtual error signal, et.
The latter is defined as et = rt − yt = (M−1r (z) − 1)yt
where rt is the virtual reference signal computed using the
reference model Mr(z) as rt = M−1r (z)yt. Unfortunately
this minimization will lead to a biased estimate of the
minimizer if the controller that leads the cost function to zero
is not in the controller set. To address this problem, one can
introduce a filter L(z) that will pre-filter the data DN . One
can then define the objective criterion that is actually solved
in the VRFT method:

JVR(θ,DN ) =
1

N + 1

N∑
t=0

‖ut −Kθ(z)et‖22, (6)

and it can be proven [1] that for stationary and ergodic
signals {yt} and {ut}, we get the following asymptotic
result: limN→∞ JVR(θ,DN ) = JVR(θ), where

JVR(θ) =
1

2π

∫ π

−π
Tr
[
∆̄θ(e

jω)Φu(ω)∆̄>θ (e−jω)
]

dω

∆̄θ(z) := I − [Kθ(I −Mr)G](z),

with Φu being the power spectral density of ut. Let K? de-
note the minimizer over all possible transfer functions K(z)
of ‖Mr(z)− [(I −Mr)GK](z)‖22. If K? ∈ {Kθ(z) : θ ∈
Rnk}, then K? is also the minimizer of 6. Otherwise, one
can properly choose a filter L(z) to filter the experimental
data so that the minimizer of 6 and 5 still coincide (refer
to [1] for details). Here the control set is assumed to be be
linearly parametrized in terms of a basis of transfer functions:

Assumption 2: The control law K is represented by an
LTI system Kθ(z) that is linearly parametrized by θ ∈ Rnk ,
and we will write Kθ(z) = β>(z)θ, with β(z) being a vector
of linear discrete-time transfer functions of dimension nk.

Assumption 2 includes different types of control law,
such as PID, and can be relaxed to other types of models,
including neural networks [6], [21].

C. KTH Live-In Lab Testbed and IDA ICE

The Live-In Lab Testbed KTH [17] (see Fig. 1) is located
in one of Einar Mattsson’s three plus-energy buildings (see
Fig. 2) in the KTH Main Campus, in Stockholm. The Testbed
KTH premises feature a total of 305 m2 distributed over
approximately 120 m2 of living space, 150 m2 of technical
space, and an office of approximately 20 m2. The living
space currently features four apartments; each apartment has
a separate living room/bedroom and a bathroom and shares
the kitchen as a common space. Space heating is provided via
ventilation. The testbed, which is part of the larger Live-In
Lab testbed platform, is designed to be energetically indepen-
dent, with dedicated electricity generation systems through
PV panels, heat generation (ground source heat pumps), and
storage (electricity and heat) systems. Sensors are extensively
used to monitor and control the indoor climate, to improve
energy efficiency, study user behavior, and to improve control
and fault detection strategies.



Fig. 1: Digital view of the
Live-In Lab Testbed KTH
apartments.

Fig. 2: Digital image of the
Live-In Lab [source: property
developer Einar Mattsson].

In this paper, a digital replica of the testbed that focuses on
one apartment was created using the IDA ICE software [18].
IDA ICE is a state-of-the art dynamic simulation software for
energy and comfort in buildings. In order to assess the control
laws that we derived, we set up a co-simulation environment
that allowed IDA ICE and a Python script to communicate
and exchange data through APIs available in IDA ICE.

III. VRFT METHOD AND TEMPERATURE CONTROL

In this section, we will briefly describe how the VRFT
method has been applied to derive a controller. We will (1)
sketch the HVAC (Heating, ventilation, and air conditioning)
architecture of the testbed; (2) outline the usage of VRFT;
(3) conclude with a performance analysis of the derived
controllers.

A. Method and experiments

HVAC architecture. Fig. 3 shows a model of the HVAC
architecture of the Live-In Lab Testbed KTH. VRFT will
be applied to the ventilation control unit that regulates the
amount of airflow supplied from the central Air Handling
Unit (AHU) to the various apartments in the buildings.
Measurements coming from the apartment include the
temperature T (t) and CO2(t) readings, sampled every 540
seconds (9 minutes).

Experiment setup. The first step involves designing an
experiment that permits the user to gather informative data
from the plant. The data will then be used to compute a
control law using the VRFT method. We have decided to
gather data from an empty apartment during winter months,
and have used weather data from the local weather station in
Bromma. For simplicity, we have chosen the experiments to

Air Handling
Unit

External air

Apartment

Sensors

Exhaust air

Measurements

- Weather cond.
- Occupants

Building

Supply air

VRFT

Ventilation
Control

Fig. 3: HVAC architecture of the KTH Live-In Lab testbed.

be conducted in open-loop, with a control signal distributed
according to a Gaussian distribution N (µ, σ2). Since the
amount of airflow can be expressed as a percentage, the
control law ut is automatically clipped between 0 and 1.

Because of this saturation effect, one needs to pay extra
attention while designing the experiment. To that aim, we
have designed two scenarios: scenario (A) where the mean
of the control law is µ = 0.5 and the standard deviation
is σ = 1/6; instead, in scenario (B) we have µ = 0.5 and
σ = 1. Scenario (B) represents the case where the user
does not take into consideration the saturation effect. In
contrast, scenario (A) guarantees that with 99% probability
the control action will belong between 0 and 1 (at the
cost of having a crest factor of 3). The amount of data
gathered for the training process is another important
factor. Therefore we have also decided to consider two
cases: one where we use N = 100 data points (roughly 10
hours of data with a sampling time of 540 seconds), and
N = 1000 data points (that is 150 hours). Finally, due to
the experiment’s randomness, we have decided to generate
50 sets of simulations for each scenario.

Fig. 5: On the left: step response of the reference model
Mr(z) (the circle denotes the settling time); On the right:
Bode plot of the reference model Mr(z).

Reference model and control law. In VRFT, the user
has to specify the closed-loop system’s design requirements
by choosing a specific reference model Mr(z). This model,
together with the data gathered during the experiments, is
used to derive the control law Kθ(z). We have opted for
a simple reference model and assumed that the closed-
loop response of the system could be well represented
by a second-order system. In practice, we assumed that it
would take approximately one hour for the heating system
in consideration to increase the temperature in the apartment
from 15◦ to 21◦ degrees Celsius.

Therefore, we have chosen a reference model of the type

Mr(z) =
(1− λ)2

z2 − 2λz + λ2
,

where λ = e−Tsω0 with ω0 = 0.002 [rad/s] and Ts = 540
[s]. Fig. 5 shows the response of Mr(z) to a step signal (with
amplitude 21, starting from an initial temperature of roughly
15◦ [C]), and its Bode plot. All the data has been pre-filtered
using a filter L(z) = (1−Mr(z))Mr(z) (as explained in §II;



or see [1] for more details). Finally, we have chosen to use
a simple PID controller, of the form

Kθ(z) = β>(z)θ =

3∑
k=1

θi
z−k+2

z − 1︸ ︷︷ ︸
βk(z)

.

This is one of the simplest controller that one can use with
VRFT. Future work could also involve the analysis of more
complex controllers, such as neural networks.

B. Performance validation and results

Validation of the controllers. As previously indicated, we
have conducted 50 different simulations for each scenario,
for a total of 200 simulations. The performance of each
controller Kθi(z) has been validated over 2 weeks (2240 data
points), with the apartment being occupied by one person
(according to the occupancy profile shown in Fig. 6).

Performance criteria. The performance of a controller
Kθi(z) has been evaluated on the basis of two crite-
ria: (1) the RMSE of the temperature signal eRMSE =√

1
N

∫ N
0

(T (s)− r(s))2ds, where T (t) is the temperature of
the living room and r(t) is the reference temperature, with
constant value r(t) = 21 [◦C]; (2) the average power spectral
density of T (t): ePSD = 1

1/(2Ts)

∫ 1/(2Ts)

0
ST (f)df , where

1/(2Ts) is the Nyquist frequency and ST (f) is the power
spectral density (PSD) of the temperature T (t) (which was
computed using Welch’s method).

Results. A summary of the results are shown in Fig.
4 and in Table I. From visual inspection of the results,
we decided to classify Kθi(z) to be a ”good” controller
if results for that controller satisfied the following ellipse
condition e2RMSE + ( ePSD

15 )2 ≤ 1: this guarantees that Kθi(z)
satisfies good tracking performance and small oscillations.
Overall, we found no major difference in performance in
using 100 or 1000 data points for Scenario A, whilst there
is a clear difference in using 100 or 1000 datapoints for
scenario B. In the latter case, using fewer points may result
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Fig. 6: Occupancy of the apartment over 2 weeks. We
assumed there is only one person living in the apartment.

in controllers with poor performance, as indicated by the
results. Surprisingly, using 1000 datapoints for scenario B
results in high performance controllers. Nonetheless, the
difference with controllers found in scenario A is minimal.

Scenario (N = 100) VRFT Loss RMSE Avg PSD % good controllers
Scenario A .36± .02 .13± .01 17.97± .31 100%
Scenario B .36± .02 .70± .42 25.82± 7.45 84%
Scenario (N = 1000) VRFT Loss RMSE Avg PSD % good controllers
Scenario A .38± .01 .12± .01 15.14± .18 100%
Scenario B .33± .01 .08± .01 5.95± .04 100%

TABLE I: For each scenario are shown the average value
and confidence level at 95% computed over 50 simulations.
Percentage of good controllers indicates the proportion of
controllers that falls inside the ellipse e2RMSE + ( ePSD

15 )2 = 1.

IV. DATA POISONING OF VRFT

In this section, we first present the data poisoning attack,
introduced in [15], which inherits the main characteristics of
the attack formulated in [12]. We then apply the poisoning
attack to the data that was gathered in the previous section
and conclude with a performance analysis of the poisoned
controllers.

A. Attack Framework and setup

Attack formulation We now assume that a malicious
agent has access to the experimental data DN and knows
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Fig. 4: Results for the VRFT method. On the left are shown results distributed according to the RMSE and the average PSD
computed over two weeks of data(for each color there are 50 simulations). Only scenario B with 100 data points yields poor
performance controllers (6 of them have an RMSE that is roughly 5 [◦C]). As an example, a controller from Scenario B is
shown at the top right, whilst at the bottom right is shown a controller with good performance form Scenario A.



the reference model Mr(z) used by VRFT to identify a
controller. The goal of the malicious agent is to degrade the
performance of the resulting closed-loop system by subtly
changing the dataset DN .

We denote the malicious signal on the actuators by au,t ∈
Rm, and respectively by ay,t ∈ Rp, the attack signals on the
sensors at time t. The new input and output data points in
the dataset at time t are u′t = ut + au,t and y′t = yt + ay,t,
respectively. We will then denote the corrupted dataset by
D′N = (U ′N , Y

′
N ) where U ′N =

[
u′0 u′1 . . . a′N

]>
, and

similarly Y ′N =
[
y′0 y′1 . . . y′N

]>
. We will focus our

attention on the maxmin attack, introduced in [15], which is
casted as a bi-level optimization problem

max
U ′

N ,Y
′
N

JVR(θ̂′,DN )

s.t. θ̂′ ∈ arg min
θ

JVR(θ,D′N )

‖U ′N − UN‖2 ≤ δu, ‖Y ′N − YN‖2 ≤ δy,

(7)

where the constraints limit the amount of change applied
to the dataset DN . In a maxmin attack, the malicious agent
aims at maximizing the learner’s loss. By choosing this cost
function, the malicious agent is implicitly maximizing the
residual error ‖Mr(z)− [(I −Mr)GKθ](z)‖2 (as N →∞).
Despite this criterion’s attractiveness, the resulting closed-
loop system may remain stable or just slightly affected by
the attack. One can formulate alternative criteria, as shown
in [15], but for the sake of simplicity, we will restrict our
analysis to the maxmin attack.

We also want to highlight a few differences compared to
classical data poisoning: first, in contrast with supervised
learning, there is no label for the data, which implies that
we cannot merely maximize the probability of classification
error. Second, the problem involves two sets of data, the
input UN , and the output data YN . Since the dependency of
the solution may depend in a complicated way on UN and
YN , the problem is harder.

Convexity. It can be shown that the optimization problem
7 is convex in U ′ for a fixed Y ′. Therefore, the maximum
over U ′, for some Y ′, is attained on some extremal point
of the feasible set. To find the optimal attack vector on the
input, one can use, for example, disciplined convex-concave
programming (DCCP) [22]. However, convexity with respect
to Y ′ does not hold, but one can still use gradient-based
methods or genetic algorithms to find a solution.

Algorithm and setup. Based on the previous discussion,
we use Alg. 1 to approximately solve problem 7. We first
perform the change of variable Au = U ′N − UN and
Ay = Y ′N − YN and solve in the new variables (Au, Ay).
The algorithm first solves 7 in the input variable Au using
DCCP, and then in the output variable Ay using PGA
(Projected Gradient Ascent). For both DCCP and PGA, we
pick uniformly at random 20 initial points at every iteration.
The algorithm stops whenever the increase between one
iteration and the other is not greater than a fixed user-chosen
value η > 0.

Algorithm 1: Max-min attack algorithm
Input: Dataset DN = (UN , YN ); parameters δu, δy, η
Output: Poisoned dataset D′N

1 i← 0, (A
(i)
u , A

(i)
y )← (0, 0) . Initialize algorithm

2 θ̂(i) ← arg minθ JVR(θ, UN +A
(i)
u , YN +A

(i)
y )

3 do
4 A

(i+1)
u ← solve 7 in Au using DCCP

5 A
(i+1)
y ← solve 7 in Ay (using A(i+1)

u ) with PGA
6 θ̂(i+1) ←

arg minθ JVR(θ, UN +A
(i+1)
u , YN +A

(i+1)
y )

7 i← i+ 1

8 while |JVR(θ̂(i+1), UN , YN )− JVR(θ̂(i), UN , YN )| > η

9 return D′N = (UN +A
(i)
u , YN +A

(i)
y )

B. Performance and results.

Setup. As in the previous section, we will consider 4
configurations: Scenario A with 100/1000 data points and
similarly Scenario B. For each configuration, we chose δu
and δy in 7 as δu = εu‖UN‖2 and δy = εy‖UN‖2, where
εu, εy are positive parameters in [0, 1] that we used as control
knobs to vary the amount of change in DN . For simplicity,
we also assume that the data has already been pre-filtered
using the filter L(z).

Results. The main result is shown in Fig. 7, whilst in
Fig. 8 we show an example of poisoned dataset for Scenario
A.
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Fig. 8: Example of poisoned (pre-filtered) data for scenario
A with 1000 data points and (εu, εy) = (0.1, 0.2).

Due to the large number of simulations performed, we
have decided to summarize results and show the average
value for each configuration in Fig. 7. This means that each
point in the left plots of Fig. 7 represents the average across
50 simulations (on top of each point are written the values of
εu, εy). The average values for the unpoisoned case are also
shown, which can be used as reference values to understand
the attack’s impact. As expected, from the plot, one can
immediately perceive that Scenario B is more susceptible
to the attack. But Scenario A, for a large number of data
points, is also significantly affected by the attack, while using
a low number of data points seems to improve robustness.
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Fig. 7: Results for the data poisoning attack. Each point on the left plots represents the average across 50 simulations for a
specific set of values (εu, εy), displayed on the top of each point (also the unpoisoned cases are depicted in the plots).

Unfortunately, as depicted in Fig. 8, minimal changes lead
to a substantial performance degradation, as shown in the
bottom right plot in Fig. 7. This stresses the importance
of performing experiments wisely and make sure that the
gathered data is secured.

V. CONCLUSION

In this work, we have shown the feasibility of VRFT,
an input-output data-driven method, for comfort control in
buildings, namely temperature control, and analyzed the
impact of the maxmin data poisoning attack. VRFT has
been validated on a digital replica of the KTH Live-In
Lab, modeled using IDA-ICE, showing good performance
and small tracking error. We then analyzed the impact of
data poisoning attacks, which revealed that small changes
in the dataset could disrupt the controller’s performance.
Results also indicated that smaller datasets are more robust
to data poisoning attacks, while datasets naively constructed
are more susceptible to the attack, resulting in substantial
performance degradation. This stresses the importance of
securing the data used to derive the control law.
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