
LQR Temperature Control in smart building via real-time weather forecasting

Marco Barbiero1, Alessandro Rossi2, and Luca Schenato3

Abstract— In this work we consider the problem of climate
control within a smart building instrumented with multiple
temperature sensors and controllable HVACs. The main contri-
bution is to use real-time weather forecasting readily available
via internet connection to obtain real-time information about
external temperature and solar insulation to reject external
disturbances and anticipate temperature changes. The control
system is based on MIMO LQR control with a reduced order
observer and integral control applied to a model of the building
dynamics obtained from construction data. The proposed ar-
chitecture shows substantial improvements in numerical simu-
lations as compared to PID-based standard controllers in terms
of improved comfort, while being computationally simpler than
more advanced solutions such as MPC or AI-based control.

I. INTRODUCTION

Over the last decade, the development of Internet of
Things devices and wireless technologies has reduced the
monitoring cost in buildings, allowing constructors to install
sensors even in residential buildings. The spread of Energy
Performance Contracting (EPC) in some European countries,
including Italy, has also boosted the demand for increasingly
effective controls that can reduce operating costs while
maintaining comfort. The remuneration of ESCos promoting
these contracts depends on the achieved amount of energy
savings and, hence, they are interested in tools that allows
to maximize it.

To address this problem, in particular for residential units,
we propose a standard procedure based on two ideas. The
first is to use building construction data to model the thermal
behaviour of the building. The second idea concerns the use
of real-time data, not only from sensors, but also weather
prediction and sun insulation from internet connectivity, that
can be used to control the thermal comfort of the building
and compensate external disturbances. This data is also used
to compensate for any model design errors. The challenge
that this work aims to solve is to use and exploit all the
data that a modern house provides without requiring anything
else. We identify all the available data: building plans and
materials used are usually known, while, regarding real time

1Marco Barbiero is a Ph.D. student in Information Communication
Technology at the Department of Information Engineering of the University
of Padua. He works as a data integration specialist at EDILVI S.p.A. who
is also the sponsor of his Ph.D. barbier4@dei.unipd.it

2Alessandro Rossi is a Ph.D. student in Information Communication
Technology at the Department of Information Engineering of the University
of Padua. He works as a software engineer at Euclid Labs who is also the
sponsor of his Ph.D.

3 Luca Schenato received the Dr. Eng. degree in electrical engineering
from the University of Padova in 1999 and the Ph.D. degree in Electrical
Engineering and Computer Sciences from the UC Berkeley, in 2003. Cur-
rently, he is Associate Professor at the Information Engineering Department
at the University of Padova.

data, internal temperatures and solar radiation (inferred from
the production of solar panels, mandatory in Italian houses
newly built or renovated since June 2012) can be logged.
Furthermore, all the environment data are available from the
regional weather service.

The target of this work is to exploit all the available
information about a building, both that obtained in real time
from sensors and predictions, and the properties of building
elements from the designs, to improve energy saving without
loss of thermal comfort. We desire to achieve this result
by assuming to control directly the actuators: we assume
to control the heating power injected or extracted by the
HVAC devices. This assumption is not always valid in real
environment: sometimes devices have already control loops,
allowing to control only set points and not low-level inputs
[1]. However, it is possible to extend the methodology of
this work by modelling set points as control variables: it is
sufficient to add their dynamics into the model.

For buildings thermal modelling, the most spread method-
ologies are the white box, grey box, and black box methods
[2]. White box models are built by means of heat physic
equations whereas the black box ones are created by exploit-
ing the thermal data logged during tests in the real buildings
we want to model. Grey box models, instead, try to merge
these two approaches and shall be preferred, although they
always require testing in real buildings. The most widely
used in recent years is the black box approach: Machine
Learning and Artificial Intelligence techniques are becoming
more precise allowing to create a model without knowing
anything about the building. Indeed, it is only necessary to
collect data from sensors about building temperature, inputs,
and habits of the occupants. Hong [3] reports the state-of-
the-art about these technologies. Anyway, we want to exploit
all available data and provide a fully functional system from
the day of delivery to the customer, so we follow the white
box methodology. Although white box approaches are widely
used in literature for more than a decade, this work wants
to combine those together with real time data and weather
forecasts.

Developing a white box model can be carried on by means
of two different approaches: the Finite Element Method
(FEM) and the lumped parameter one. The first is a numeri-
cal method that try to solve numerically the partial differen-
tial equations that describe the heat behaviour in the building.
It is widely used for very precise simulations because it
allows to determine accurately the temperature value at any
point in the space. For example, [4] uses this approach to
test energy demand and performances of different building
envelopes. The second approach, instead, assumes that the



heat flux between volumes which are separated by surfaces
can be approximated by first order differential equations [5].
Using the electrothermal analogy, we can simulate buildings
as easily as we analyse the dynamic response of RC elec-
tronic circuits. It is clear that the latter is the easiest and less
accurate method, but this shall not be mislead since it has
great potential, as reported for example in [6] where a multi-
layered building is simulated: this methodology is reliable [7]
and it is used in ISO 13790 too. Furthermore, this approach
is much more useful for control, as it allows the model to be
written in state space. Several RC-approaches are available
depending on the complexity: 2R1C, 3R2C, and 3R4C [8],
[9]. In this work, we use the 2R1C approach.

The topic of thermal control in buildings is also very
wide: it ranges from the oldest and most reliable technologies
presented in control theory manuals like PID [10], state space
techniques like LQ [11], and the most advanced ones based
on Model Predictive Control [12]. Our choice fell on an
LQR-based optimal control along with some techniques of
mitigation of design errors. Furthermore, inspired by [13],
we implement an external disturbances mitigation by means
of a feed-forward system to improve overall performances.
The main contribution is to show that this methodology
greatly improve over standard PI control: in particular, there
is an improvement of 90% in temperature tracking precision.
To achieve more realistic results, we assume to have a
constructive variability of up to 20% of the nominal values.
The major benefit comes from internet data about external
temperature and solar irradiance, that allows us to almost
completely reject these disturbances, achieving significantly
better comfort and energy savings.

This report can be summarized as follows. In Section II,
we describe the 2R1C methodology and how to develop
a lumped parameters model using the building construc-
tion data. Subsequently, uncontrollable external inputs are
modelled using the physical laws and meteorological data.
Section III describes the control design: we introduce a
reduced order observer for non-observable states and apply
the LQR control together with the integral one. In Section
IV, we evaluate the proposed solution for control against
a standard PI controller in different scenarios: for each of
these, we simulate the behaviour using the two controllers
and compare their performance. Final conclusions and future
improvements are drawn in Section V.

II. PROBLEM FORMULATION

The first goal of our work is to create the digital twin
of a real building. Since we want to control it by means of
LQR, it is necessary to define the model in state space. As
reported in [14], the best modelling approach is the lumped
parameters method as it produces a low order model, even
if the building has a considerable number of zones. This
feature is perfect for performing LQR control and MPC.
The lumped parameters method exploits the mathematical
analogy between different physical phenomena that can be
described by the same equations, net of constants. Table I

reports the analogy between thermal and electrical quantities
used in this work.

TABLE I
ANALOGY BETWEEN THERMAL AND ELECTRICAL QUANTITIES

Thermal Electric
Quantity m.u. Quantity m.u.

Temperature T K Potential V V
Temperature Diff. ∆T K Voltage ∆V V

Thermal Flux Q̇ J/s = W Electric current I A
Resistance R K/W Resistance R Ω

Capacitance C J/K Capacitance C F

A. RC model

From Table I, we can write down the electrical analogy
of the Newton’s law of cooling:

Q̇ = hA(T − Text) = hA∆T ↔ I = hA∆V =
∆V

R

where T is the surface object temperature, Text the surround-
ing temperature, A is the heat transfer surface area while h
is the heat transfer coefficient in W/m2K. Exploiting the first
law of thermodynamics, it is possible to describe the dynamic
of that heat flow with a first order differential equation:

Ṫ = −hA
C

(T − Text)

analogue to a capacitor discharge behaviour. This result
inspired the 2R1C model. Assume that two zones, with
temperature T0 and T1 respectively, are divided by a wall
with thermal resistance Rw and thermal capacitance Cw.
Furthermore, assume that the wall temperature T is spatially
uniform at any time during the heat transfer process. Then:

Q̇w = Cw
dT

dt
=

(T0 − T )

R0
+

(T1 − T )

R1
(1)

where R0 and R1 such that Rw =
(
R0
−1 +R1

−1)−1. Usu-
ally, R0 = αRw and R0 = (1− α)Rw, where α ∈ (0, 1). In
this work, we use α = 0.5 as suggested in [8]. Fig. 1 shows
(1) in the electrical domain.

T0 R0 T R1 T1

Cw

Fig. 1. A wall block in 2R1C approach.

After describing the wall block, we can use this technique
to define all the elements of a building envelope and, then,
develop a methodology to create the digital twin of any build-
ing. Fig. 2 reports equivalent models of rooms, windows, and
internal walls in the electrical domain that are discussed in
the following paragraphs whereas external wall model can be
found in Fig. 1. The various blocks, interconnected according
to the following rules, form an electrical network whose
behaviour simulates the real building one.



a) External wall, roofs and floors: An external wall, a
roof and a floor connect an external T0-temperature environ-
ment with an internal T1-temperature zone with a noticeable
inertia. To describe them it is sufficient to use the definition
of a wall, i.e., (1) or Fig. 1. We can assume the heat flux
takes place only along the transverse direction and, therefore,
the description shall be the same in those scenarios: they can
be modelled using two resistors, R0 and R1, and a capacitor
Cw. The equivalent resistance Rw is given by the sum of the
resistances of each single layer as well as the capacitance
Cw is equal to the sum of the thermal capacitance of the
individual layers. The total resistance shall be split between
R0 and R1.

T

Cr

(a) Room

T0 Rf T1

(b) Window/Internal wall

Fig. 2. A room and a window (or internal wall) blocks in 2R1C approach.

b) Window: The description of a window can also
be traced back to the one of a wall that does not retain
heat. Indeed, a window links an external T0-temperature
environment with an internal T1-temperature zone with a
negligible inertia. In other words, the thermal capacitance
of a window can be approximated to zero. Therefore, the
heat flow Q̇T1→T0

f through the window with resistance Rf

can be defined as follows:

Q̇T1→T0

f =
T1 − T0
Rf

(2)

where T0 and T1 are the temperatures of the two zones
adjacent to the window. From an electrotechnical point of
view, the same situation is reported in Fig. 2b.

c) Rooms and Internal walls: The description of a
building internal wall is controversial: most of the authors,
like [15], model it with one capacitor while others omit it.
Other ones, like [16], model it using 2R2C approach. Since
the purpose of the work is to create a digital twin of a
building and then control it precisely, we are forced to find a
reliable way to shape rooms individually. Actually, rarely the
rooms in a house are all at the same temperature: an example
is the spatial division between living and sleeping areas,
which are heated alternately. For this reason, we decided to
model a room as a capacitor of the same size as the thermal
capacitance of the air contained in the room and connected to
the others by a resistor that describes the internal walls. In a
mathematical way, a room with volume Vr can be described
by a capacitor with a capacitance in J/K equal to

Cr = ρacpaVr (3)

considering ρa = 1.204 kg/m3 as the air density at 20 °C and
1 atm pressure and cpa

= 1007 J/kg/K as the air specific
heat at 20 °C and 1 atm pressure. To simplify the notation,
we assume the room is empty and consequently the value of
Cr depends from air properties only. However, it is possible

to adapt the formula to consider furniture, thus making the
estimate more accurate: simply add the thermal capacitance
of each furniture element to (3).

B. Input and disturbance modelling

To predict the behaviour of the real building in a useful
way, it is necessary to connect the created network to a model
of the surrounding environment. There exist three main
causes of a temperature variation within a building: external
temperature, sunshine, and internal loads. The former tries
to impose a temperature on the building and, when the
external temperature is the same as the internal one, the heat
exchange stops. The other two, instead, try to change the
temperature of the building by directly supplying heat to it,
regardless of its actual temperature. These two behaviours
can be described, by means of the electrothermal analogy,
by an ideal voltage or current sources.

T = Te

+
− Te

(a) External Temperature

T

Is

(b) Internal Load/Sunshine

Fig. 3. An External Temperature and Internal Load/Sunshine 2R1C blocks.

a) External temperature behaviour: Fig. 3 shows how
to model the external environment at Te K and an internal or
solar load of Is W. Voltage sources, one representing external
air and one representing the ground, shall be connected to all
the blocks in contact with them respectively. Current sources,
instead, shall be connected only to the capacitor inside the
node.

b) Sun heating behaviour: To describe the Sun’s heat-
ing behaviour with respect to the envelope, there are three
different problems to face: estimate the intensity, the direc-
tion, and the amount of heat that actually reaches it. The first
problem can be solved by relying on online services, even
free of charge, that provide direct sunlight in real time given
a location. To solve the second, it is necessary to model the
Earth motion of rotation and revolution. We assign to each
surface of the envelope a 3D vector representing the outer
normal of the surface and model, by means of algorithms
such as [17], the vector representing the Sun’s rays direction.
To determine the amount of radiation incident on the surface,
and the incident energy value, we calculate the dot product
between the vector of the sun and the vector of the surface.
It should not be forgotten, however, that every surface has an
albedo, i.e. it reflects part of the incident radiation. Therefore,
we weigh each input using 1 − a, where a represent the
surface albedo.

C. Solving the RC circuit via State-Space

The previous sections illustrate a method for modelling
a building as an electrical circuit. To evaluate the dynamic
behaviour, an efficient method to solve the circuit is needed.
Since the relationships between the components are linear,



the best idea is to reduce the circuit to a model in state
space since it would be very quick to evaluate its properties
and develop effective controllers. We take inspiration from
the method described in [18]. Without loss of generality,
we describe only ideal current sources, with or without
shunt resistors, since, in our case, voltage sources always
have a resistor in series: they represent external or ground
temperatures and they are always connected to a wall block.
Therefore, it is possible to apply the Norton theorem and
obtain an ideal current source in parallel with a shunt resistor.
We also assume that there are not null capacitances or
resistances, and resistors connected in series.

Let Nw be the number of external walls, Nr the number
of rooms and Nf the number of windows. Since only
rooms and walls are modelled by means of capacitors, let
N = Nw + Nr. Let C ∈ RN×N be the diagonal matrix
containing the capacitances, i.e., Cii = Ci, i ∈ {1, . . . , N}.
Since they are the only dynamic parts of the model, we
number them, order them, and we refer to them as node
ni. Similarly, let R be the diagonal matrix of resistors, i.e.,
Rjj = Rj , j ∈ {1, . . . , Ne}, where Rj indicates the j-th
non-shunt resistance and Ne is the total number of non-shunt
resistors in the circuit. It is immediate to note that resistors
behave like the edges of a graph in which the nodes are the
capacitors. It is useful to exploit this concept by introducing
some specific graph matrices.

Let Γ ∈ RN×Ne be the oriented incidence matrix, i.e., the
matrix that links nodes and edges: Γij = +1 if Rj starts
from ni, Γij = −1 if Rj ends in ni, and Γij = 0 otherwise.
The orientation of the resistors is completely free, but, when
it is defined, it shall be not changed in any phase of the
process. Let L = ΓRΓᵀ be an irreducible Laplacian matrix
and let S be the diagonal matrix of shunt conductance,
i.e., the conductance parallel to the ideal current sources:
they are as many as resistances in series to the voltage
sources that represent the outside temperature and the ground
temperature, i.e., Skk = 1/Rs

k, k ∈ {1, . . . , Ns} where Rs
k

is the k-th shunt resistor and Ns the number of them. Finally,
let I∗ be the column vector describing the current flows into
nodes, where I∗i is the current that flows into node i. I∗i
consists of several contributions, not all of which are always
present: the external temperature, i.e., Te/Ri

0, the ground
temperature, i.e., Tg/Ri

0, the sun contribution Isi , and internal
loads I li . As reported in [18], by exploiting these matrices,
the voltage circuit behaviour can be written as:

V̇ (t) = −C−1(L+ S)︸ ︷︷ ︸
F

V (t) + C−1I∗︸ ︷︷ ︸
GU

It can be described as a state space model: the state is
the voltage of the nodes, F is the state matrix whereas
G = [Ge|Gg|Gs|Gl] the input matrix by defining U as
the system inputs, i.e., U = [Te, Tg, I

s
1 , . . . , I

s
N , I

l
1, . . . , I

l
N ].

Indeed, the inputs are linear and can be easily expressed in
matrix form: the obtained matrix G is a tall matrix and,
therefore, not invertible. Recalling that the voltage of a
node represents the temperature of the corresponding room
or wall, the 2R1C model of the building in state-space

representation is

ẋ(t) = Fx(t) +Gu(t) (4)
y(t) = Hx(t)

by defining H as selection matrix: this matrix selects only the
rooms that can be measured. The model shown also allows
the application of controllable inputs: it is sufficient to add
to the internal loads the heat flow that the controller desires
to introduce in that node.

III. CONTROLLER DESIGN

The aim of this work is to define a methodology to reduce
the energy consumption of a building without sacrificing
comfort. To pursue this objective, after defining a model, it
is necessary to develop a controller to govern its heating be-
haviour. In this work, we adopt a modified Linear-Quadratic-
Gaussian controller, consisting of an augmented states LQR
and a reduced order LQE, together with a feed-forwarding
system. We develop the controller in continuous time and
only discretise it at the end of design phase by means of
a zero-order hold. Furthermore, thanks to the separation
principle, we design controller and observer in two different
stages.

1) Integral LQR: The purpose of our controller is to
require the minimum power on the inputs in such a way that
a reference temperature is reached and maintained within
a subset of rooms R = {xR1 , . . . , xRm}, selected by matrix
Hm. Let r(t) ∈ Rm be the reference temperature to be
reached and maintained there. Therefore, the controller shall
minimize

‖e(t)‖ = ‖y(t)− r(t)‖ = ‖Hmx(t)− r(t)‖
in a robust manner, i.e., we desire y(t) to converge to
r(t) with no steady-state error for any constant input and
disturbance. We assume the temperature in R is available: if
it is not the case, it is sufficient to develop a state observer,
as it is reported in the Subsection III-.2. Let xI ∈ Rm be
a vector of additional states such that ẋI(t) = e(t). Our
target can be rewritten as xI(t) → 0, since that implies
y(t)→ r(t). We can define the augmented model:[

ẋI
ẋ

]
︸ ︷︷ ︸

ż

=

[
0 Hm

0 F

]
︸ ︷︷ ︸

Fz

[
xI
x

]
︸ ︷︷ ︸

z

+

[
0 −1
G 0

]
︸ ︷︷ ︸

Gz

[
u
r

]
(5)

and the quadratic cost function:

J(u) =

∫ ∞
0

zᵀQzz + uᵀRudt (6)

=

∫ ∞
0

xᵀIQIxI + xᵀQxx+ uᵀRudt (7)

We shall develop a linear state-feedback law u = −Kz
that minimize (6). Since (Fz, Gz) are a stabilizable pair
by construction, we can solve the associated continuous-
time algebraic Riccati equation and obtain the optimal gain
matrix K = [KI Kx]: this matrix guarantees the closed loop
is stabile.



2) Reduced-order LQE: The controller developed in the
previous section needs the measurements of each node in the
system. Since some nodes cannot be measured easily, like ex-
ternal wall nodes, we develop a reduced state observer whose
feedback matrix is designed using the LQE methodology.

Let T ∈ RN×N be the transformation matrix from state-
space to the reduce-observer space, i. e.,

[
xy
xe

]
= Tx. First

rows, xy ∈ Rm, represent the directly measurable nodes
whereas the others, xe ∈ RN−m, the nodes that shall be
estimated. Our target, therefore, is to develop an observer
for xe since xy(t) = y(t). Using T , we can partition the
system and obtain[

ẋy
ẋe

]
=

[
F11 F12

F21 F22

] [
xy
xe

]
+

[
G1

G2

]
u.

Using v(t) = xe(t) +Ly(t), L ∈ R(N−m)×m, it is sufficient
to estimate v(t) to obtain the xe(t) estimation. The observer
can be developed as

˙̂v = Fv v̂ +
[
Gy Gu

] [y
u

]
˙̂xe = Imv̂ +

[
L 0

] [y
u

]
.

The system dynamics is governed by F11−LF21. The esti-
mate converges to the real value only if Fv is asymptotically
stable: L allows Fv to be stabilised if the pair (F22, F12) is
detectable, i.e., the pair (F,H) is detectable. By constriction,
F is full rank and asymptotically stable. These considerations
allow us to design L by means of Kalman procedure, the
dual of LQR, after defining process noise covariance Q and
measurements noise covariance R.

3) Weight choice: LQR and Kalman procedures provide
control matrices that minimizes the cost indexes. Using
Bryson’s rule [19], it is possibile to define Q and R matrices
as Qii = x−2i max and Rjj = u−2j max, where xi max represents
the max acceptable error on the i-th state whereas uj max

the max acceptable value on the j-th input. In this work, we
use xi max = 104 for non controlled nodes, xi max =

√
0.1

for controlled ones, xi max = 36 for integrator states, and
uj max =

√
103 for all the inputs. Some of this values are

obtained after a session of try and error: the main issue is
to maintain a good condition number of Q. The observer
weights, instead, shall describe the reliability of measures
and the model. Therefore, the ratio between the measures
noise weight and the process noise power is very important:
if the ratio is higher than 1, it suggests the observer to
trust more the measures than the model outcomes. Since a
building model has a lot of uncertainties, we choose to a ratio
equal to 105. The diagonal matrices chosen are Qii = 105

and Rjj = 1.
4) Feed Forward compensator: The designed controller

does not take external inputs into account. However, mea-
surements of external temperature and solar radiation are
readily available, even with low sampling times. For this
reason, we implement a feed forward compensation system
for external temperature, solar radiation, and the temperature

references. Remembering Equation (4) for controlling a
subset of nodes describes by selection matrix Hm, the system
can be written as:

ẋ = Fx+ [Ge|Gg|Gs]d(t) +Glu(t)

y = Hmx

where d(t) represents the disturbances, i.e., external and
ground temperatures and the solar radiation. When the sys-
tem is in steady-state, i.e, ẋ = 0, to obtain a feed forward
such that y → r, we shall use:

−HmF
−1([Ge|Gg|Gs]d(t) +Gluff (t)) = r

−HmF
−1(Gluff (t)) = r +HmF

−1([Ge|Gg|Gs]d(t)

uff (t) = −(HmF
−1Gl)+(r +HmF

−1([Ge|Gg|Gs]d(t))

IV. CASE STUDY

To test our methodology, we create a digital twin from
scratch. We obtained the blueprint and project data for a
single-storey house with a surface area of 128 m2, a overall
volume of 1130 m3, and a dispersion surface of 918 m2. The
analysed building is located near Treviso, Italy, climatic area
D. The house consists of 9 rooms, all heated except for the
garage: therefore, the number of controllable zones is m = 8.
All these zones are measurable. The equivalent RC model,
with the exception of the roof and fundaments, is shown in
Fig. 4. In particular, the model consists of 23 capacitors and
25 resistances; therefore, system dimension is N = 23.
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Fig. 4. RC Model on blueprint of case study.

To test our work, we compare the performance of our
controller with a PID controller. This type of control is quite
advanced in house thermal control area since, usually, the
temperature are controlled by means of an on-off thermostat.
The comparison is made on a 15-days simulation using
weather service data [20] from the 9-th to the 24-th February
2019. The controllers must reach 21 °C in the controlled
rooms from 8 a.m. to 10 p.m. and not less than 16 °C during
the rest of the day, minimizing the energy consumption.

To carry on this experiment in a more realistic way, we
select a subset of 4 rooms and we start the simulation at
6:00 am using the outer temperature as initial condition for
all nodes. Furthermore, we enable only the winter mode
of HVAC, i.e., only positive inputs can be applied. Fig. 5
shows the Root Mean Square Error in tracking using the



two different controllers. We do not report if temperature
is higher than reference since Sun energy can improve
appreciably the temperature and we don’t want to penalize
this natural factor.
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Fig. 5. Temperature error over 15 days (top panel) and zoom for days 8
to 10 (bottom panel).

In Table II the cumulative and synthetic results are re-
ported. These results show that, for the price of an increase
of less than 2% in energy consumption, there is a 9-fold
reduction in temperature tracking errors. Furthermore, Fig. 5
shows that the PID control commits an error above 1 °C for
many hours a day whilst it happens for only a few minutes a
day using our control. By checking the inputs defined by the
two controllers, it can be seen that the energy saving given by
the PID is due to the slow response to the reference change
and, therefore, this behaviour shall be condemned.

TABLE II
SIMULATION SYNTHETIC RESULTS

PID LQR FF + LQR
Energy Utilization 295.49 MJ 301.30 MJ 301.27 MJ
Mean RMSE 0.3459 °C 0.0404 °C 0.0388 °C

V. CONCLUSIONS

In this work, we have shown how the use of real time
weather forecast prediction in terms of external temperature
and solar radiation paired with model based control, namely
LQR, provides considerably higher comfort than standard
PID control while maintaining the same energy consumption.
The dynamical model of the building upon which the LQR
design is based, can be easily obtained from the 2R1C
methodology and can be automated as long as construction
material properties and building blueprint are available.

Future improvements include the comparison of the pro-
posed strategy with Model Predictive Control and its valida-
tion on the real building described in this work.
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