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Abstract—This paper aims at proposing a procedure to de-
rive distributed algorithms for distributed consensus-based op-
timization by using distributed algorithms for network resource
allocation and vice versa over switching networks with/without
synchronous protocol. It is shown that first-order gradient dis-
tributed consensus-based optimization algorithms can be used for
finding an optimal solution of distributed resource allocation with
synchronous protocol under weaker assumptions than those given
in the literature for non-switching (static) networks. It is shown
that first-order gradient distributed resource allocation algorithms
can be utilized for finding an optimal solution of distributed
consensus-based optimization. The results presented here can be
applied to time-varying and random directed networks with or
without synchronous protocol with arbitrary initialization. As a
result, several algorithms can now be used to derive distributed
algorithms for both consensus-based optimization and resource
allocation, that can overcome limitations of the existing results.
While the focus of this paper is on the first-order gradient
algorithms, it is to be noted that the results also work with
second-order gradient algorithms.

Index Terms—distributed optimization, resource allocation,
random networks, asynchronous.

I. INTRODUCTION

Resource Allocation problem appears in a wide spectrum

of domains including higher education [2], economics [3],

and health care [4], to name a few. Resource Allocation

problem is to allocate the network resources among a group of

agents while optimizing a certain performance index. Network

resource allocation is also fundamental and an important

problem that arises in a variety of application domains within

engineering such as the media access control in communi-

cation networks [5], signal processing [6], the load demand

management [7], and economic dispatch problems in power

systems [8] (see the survey paper [9] for more details).

In centralized allocation schemes [10], the allocation deci-

sions are made centrally by gathering all network data together

and coming up with a decision to satisfy certain central

objective and then sending the decision back to the agents.

However, centralized algorithms may not be effective and

practical in a large-scale network due to heavy communication,
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computational burden, private information, or complicated

network structure. Therefore, designing decentralized and/or

distributed algorithms for resource allocation is very important

and highly desirable. Several researchers have focused their

attention to develop decentralized and/or distributed algo-

rithms [8], [11]- [37]. Among these, the authors of [27]- [37]

have considered switching graphs and imposed assumptions

such as connectivity at any time, B-connectivity1, independent

and identically distributed (i.i.d.), or Markov chain on the

underlying graph. In [22] and [32], asynchronous2 algorithms

have been proposed for solving distributed resource alloca-

tion problem. Hence, only few results exist for decentral-

ized and/or distributed resource allocation algorithms over

switching graphs or with asynchronous protocol, where the

proposed algorithms are first-order gradient. The authors of

[13]- [14] have proposed discrete-time distributed second-

order algorithms over static (non-switching) graphs under

synchronous protocol for resource allocation optimization. The

second-order gradient algorithms provide faster convergence

rates.

Another challenge in networked systems is distributed

consensus-based optimization. Distributed consensus-based

optimization appears in many problems such as sensor net-

works or data regression (see survey papers [40]- [43] for more

applications). The aim of agents in distributed consensus-based

optimization is to get an agreement on some value that is an

optimal solution to the problem. Note that the agents may

not necessarily get an agreement on some value in distributed

resource allocation. As seen in surveys [40]- [43], several

distributed algorithms for consensus-based optimization have

been proposed over static, time-varying, or random networks

with or without asynchronous protocols. Recently, the first

totally asynchronous (see footnote 2) first-order gradient al-

gorithm has been proposed in [44] for distributed consensus-

based optimization. To the best of authors’ knowledge, a totally

asynchronous algorithm has not been proposed for distributed

1There exists a bounded time interval such that the union of the graphs is
strongly connected, and each edge transmits a message at least once.

2In a synchronous protocol, all nodes activate at the same time and perform
communication updates. On the other hand, in an asynchronous protocol,
each node has its concept of time defined by a local timer, which randomly
triggers either by the local timer or by a message from neighboring nodes.
The algorithms guaranteed to work with no a priori bound on the time for
updates are called totally asynchronous, and those that need the knowledge
of a priori bound, known as B-connectivity assumption, are called partially

asynchronous (see [38] and [39, Ch. 6-7]). As the dimension of the network
increases, synchronization becomes an issue.
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resource allocation.

Upon the review of the literature on distributed consensus-

based optimization and distributed resource allocation and

their importance in engineering, the natural questions that

arise are: Question 1) is there a relation between these two

problems?; Question 2) is it possible to use algorithms for dis-

tributed consensus-based optimization for solving distributed

resource allocation problem?; and Question 3) is it possible

to utilize algorithms for distributed resource allocation for

solving distributed consensus-based optimization problem? Al-

though it has been established that there is a relation between

these two problems in one direction (reviewed below), it is

not known if there exist two-way reciprocity for solving these

problems. This paper is addressing this question.

With regard to Question 1, it is known that the Lagrange’s

dual problem of resource allocation is consensus-based op-

timization, e.g., see [25, Sec. III.A] for proof; and Fenchel’s

dual problem [45] of distributed consensus-based optimization

is resource allocation, e.g., see [46, Sec. III.A] for proof.

It needs to be mentioned that Fenchel’s dual problem is

a duality problem (like Lagrange’s duality) represented by

(Fenchel) conjugate functions (e.g., see [45] for details). Note

that solving both Fenchel’s and Lagrange’s dual problems is a

challenging problem since the cost function in dual problems

is not an explicit function of dual variables and, in fact, is

determined by another minimization problem (see Comment

1 is Section IV for details).

The existing literature presents some answers to Question

2 which are explained next. In [47], it is mentioned that a

distributed consensus-based optimization algorithm may be

used for resource allocation through solving the dual of

resource allocation; however, the authors of [47] did not

present any method to do so. Later, the authors in [24] showed

the relation that the first-order optimality conditions of the

two aforementioned problems have when underlying graph is

static, connected, and undirected with synchronous protocol

and when the cost function of each agent is proper, closed, and

convex. This leads to the use of decentralized or distributed

consensus-based optimization first-order gradient algorithms

with arbitrary initialization for solving resource allocation

without investigating the Lagrangian dual relationship between

the two problems. Note that the optimality conditions given in

[24] only work for static networks. Recently, it was shown

in [25] how to use distributed consensus-based first-order

gradient optimization algorithms for solving resource alloca-

tion over static directed networks with synchronous protocol

when cost function of each agent is strongly convex. Based

on the explanation above, one can apply existing distributed

consensus-based optimization algorithms only over static net-

works with synchronous protocols, and we cannot derive

algorithms for distributed resource allocation over switching

networks and/or with asynchronous protocol to overcome

restrictions of existing algorithms.

Contribution: In this paper, we present how to utilize

distributed consensus-based optimization algorithms to find an

optimal solution of a distributed resource allocation problem

and vice versa over switching networks with/without syn-

chronous protocol. Therefore, the objective of this paper is

not to propose a distributed algorithm and to analyze its

convergence; in fact, we propose a procedure (i.e., P1-P3) to

derive a distributed algorithm for consensus-based optimiza-

tion and resource allocation while its convergence analysis

has already been analyzed by imposing suitable assumptions.

As such, several algorithms can be employed, by imposing

suitable assumptions, to derive distributed algorithms for both

consensus-based optimization and resource allocation, that can

overcome limitations of the existing results. We show that

first-order gradient algorithms for distributed consensus-based

optimization can also be used to find an optimal solution of

distributed resource allocation over static directed networks

with synchronous protocol under weaker assumptions (than

strong convexity in [25]) such as strict convexity, Lipschitz

gradient, or coercivity. We show that distributed resource

allocation first-order gradient algorithms can also be utilized

to find an optimal solution of distributed consensus-based

optimization. Thus, our results show the applicability of dis-

tributed resource allocation algorithms for solving distributed

consensus-based optimization, namely to present an affirma-

tive answer to Question 3. It is important to emphasize that

conditions given here can lead to use distributed algorithms

for both consensus-based optimization and resource allocation

over static, time-varying, or random directed networks with or

without asynchronous protocols under arbitrary initialization.

While the technical issue behind is challenging (see the fifth

paragraph in this section) to demonstrate how significant the

improvement is made when fixing the gap in the literature,

we apply the first totally asynchronous (see footnote 2)

first-order gradient algorithm [44] intended for distributed

consensus-based optimization to derive the first totally asyn-

chronous first-order gradient-based algorithm for distributed

resource allocation (which is a missing gap in the literature)

where the algorithm does not require a priori B-connectivity

(see footnote 1) or distribution assumption on switching

communication graphs for convergence. The derivation of

first-order distributed consensus-based optimization algorithms

from distributed resource allocation algorithms is similar to the

derivation of distributed resource allocation algorithms from

distributed consensus-based optimization algorithms, namely

the P1-P3 are still valid. While we focus in this paper on first-

order gradient algorithms, the results also work with second-

order gradient (see Lemma 1 and Observation 1) algorithms

where the related results are given in [48]. This paper provides

proofs and related details for theorem given in [1] as they were

omitted due to space limitations.

This paper is organized as follows: In Section II, neces-

sary preliminaries on operators and stochastic convergence

are provided. Formulations of the resource allocation and

consensus-based optimization problem are given in Section III.

In Section IV, the procedure for using distributed consensus-

based optimization algorithms to solve distributed resource

allocation is given. Section V presents how to use distributed

resource allocation’s algorithms to solve distributed consensus-

based optimization.

Notations: ℜ denotes the set of all real numbers. (.)T

represents the transpose of a vector or a matrix. For any

vector z ∈ ℜn, ‖z‖2 =
√
zT z, and for any matrix Z ∈
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ℜn×n, ‖Z‖2 =
√

λmax(ZTZ) = σmax(Z) where λmax

represents the maximum eigenvalue, and σmax represents the

largest singular value. Sorted in an increasing order with

respect to real parts, λ2(Z) represents the second eigenvalue

of a matrix Z . Re(r) represents the real part of the complex

number r. In represents Identity matrix of size n × n for

some n ∈ N where N denotes the set of all natural numbers.

⊗ represents Kronecker product. E[x] denotes Expectation of

the random variable x. ∇f(x) represents the gradient of the

function f at x. ∂f(x) represents the sub-differential of the

function f at x. 0n and 1n denote the vector of dimension n
whose elements are all zero and one, respectively.

II. PRELIMINARIES

A vector v ∈ ℜn, n ∈ N, is said to be a stochastic vector

when its components vi, i = 1, 2, ..., n, are non-negative and

their sum is equal to 1; a square n×n matrix V is said to be

a stochastic matrix when each row of V is a stochastic vector.

A square n×n matrix V is said to be doubly stochastic when

both V and V T are stochastic matrices.

Let H be a real Hilbert space with norm ‖.‖ and inner

product 〈., .〉. An operator A : H −→ H is said to be monotone

if 〈x − y,Ax − Ay〉 ≥ 0 for all x, y ∈ H. A : H −→ H is

called ρ-strongly monotone if 〈x− y,Ax−Ay〉 ≥ ρ‖x− y‖2
for all x, y ∈ H. A function f(.) is ρ-strongly convex if

〈x − y,∇f(x) − ∇f(y)〉 ≥ ρ‖x − y‖2 for all x, y ∈ H.

Therefore, a function is ρ-strongly convex if its gradient is

ρ-strongly monotone. A function f(.) is strictly convex if

∀x, y, x 6= y, ∀κ ∈ (0, 1), we have

f(κx+ (1− κ)y) < κf(x) + (1− κ)f(y).

A mapping B : H −→ H is said to be K-Lipschitz continu-

ous if there exists a K > 0 such that ‖Bx−By‖ ≤ K‖x−y‖
for all x, y ∈ H. Let S be a nonempty subset of a Hilbert

space H and Q : S −→ H. The point x is called a fixed point

of Q if x = Q(x).

Let (Ω∗, σ) be a measurable space (σ-sigma algebra) and

C be a nonempty subset of a Hilbert space H. A mapping

x : Ω∗ −→ H is measurable if x−1(U) ∈ σ for each open

subset U of H. The mapping T : Ω∗ ×C −→ H is a random

map if for each fixed z ∈ C, the mapping T (., z) : Ω∗ −→ H
is measurable, and it is continuous if for each ω∗ ∈ Ω∗ the

mapping T (ω∗, .) : C −→ H is continuous.

Let (Ω,F ,P) be a complete probability space where Ω
denotes the sample space, F denotes a σ-algebra on Ω, and P

is a probability measure on F . A sequence of random variables

xt is said to

• converge almost surely to x if there exists a subset

A ⊆ Ω such that P(A) = 0, and for every ω /∈ A,

limt−→∞ ‖xt(ω)− x(ω)‖ = 0.
• converge in mean square to x if E[‖xt − x‖2] −→ 0 as

t −→ ∞.

Definition 1 [44]: If there exists a point x̂ ∈ H such that

x̂ = T (ω∗, x̂) for all ω∗ ∈ Ω∗, it is called fixed-value point,

and FV P (T ) represents the set of all fixed-value points of T .

Definition 2 [45], [49]: The (Fenchel) conjugate of a

function f : ℜn −→ ℜ is defined as

f∗(y) := sup
x

(yTx− f(x)).

Moreover, the conjugate function is a convex function.

Definition 3 [45]: A function f : ℜn −→ ℜ is said to be

0−coercive and 1−coercive when

lim
‖x‖−→+∞

f(x) = +∞ and lim
‖x‖−→+∞

f(x)

‖x‖ = +∞,

respectively.

III. PROBLEM FORMULATION

We use the switched3 network topology similar to the one

used in [44] wherein a network of m ∈ N nodes labeled by

the set V = {1, 2, ...,m} is considered. The topology of the

interconnections among nodes is not fixed but defined by a

set of graphs G(ω∗) = (V , E(ω∗)) where E(ω∗) is the ordered

edge set E(ω∗) ⊆ V×V and ω∗ ∈ Ω∗ where Ω∗ is the set of all

possible communication graphs, i.e., Ω∗ = {G1,G2, ...,GN̄}.

We assume that (Ω∗, σ) is a measurable space where σ is the

σ-algebra on Ω∗. We write N in
i (ω∗)/N out

i (ω∗) for the labels

of agent i’s in/out neighbors at graph G(ω∗) so that there is

an arc in G(ω∗) from vertex j/i to vertex i/j only if agent i
receives/sends information from/to agent j. We write Ni(ω

∗)
when N in

i (ω∗) = N out
i (ω∗). We assume that there are no

self-looped arcs in the communication graphs. We also assume

that there is no communication delay or noise in delivering a

message from agent j to agent i.
Now, we consider the distributed resource allocation prob-

lem with m agents that share their local resources. For each

node i ∈ V , there is a private convex cost function fi : ℜn −→
ℜ and a private finite amount of a local resource, given by an

n-dimensional vector, owned by the agent i, i.e., Ri ∈ ℜn,

that are known to node i. The objective of each agent is to

collaboratively seek the solution of the following optimization

problem using local information exchange with the neighbors

and possibly switching communication topologies with or

without asynchronous protocol:

min
x1,...,xm

m
∑

i=1

fi(xi)

subject to

m
∑

i=1

xi =
m
∑

i=1

Ri

(1)

where xi ∈ ℜn is the decision variable of agent i, and the

constraint represents resource sharing among the agents.

So far, we have introduced the distributed resource al-

location optimization (1). Another problem in multi-agent

systems is distributed consensus-based optimization where the

3Switched systems can be roughly divided into two groups: those subject
to arbitrary, i.e., state-independent switching, and those subject to state-

dependent switching (see [50] for details). We require to mention that we
consider arbitrary switching in this paper. Note that weighted matrix of the

graph, Laplacian, or Adjacency matrix can be used for information of the
network in our formulation. For instance, we use weighted matrix of the graph
in this paper. Laplacian has been utilized in [48] for second-order gradient
algorithms.
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objective of each agent is to collaboratively seek a solution of

the following optimization problem:

min
s

m
∑

i=1

hi(s) (2)

where s ∈ ℜn, and hi : ℜn −→ ℜ is the private cost of agent

i. As a matter of fact, the formulation of distributed consensus-

based optimization by using local variables of agents is:

min
x1,...,xm

m
∑

i=1

hi(xi)

subject to x1 = x2 = . . . = xm

(3)

where xi ∈ ℜn is the decision variable of agent i, and

the constraint is achieved by interacting with neighbors and

possibly switching communication topologies with or without

asynchronous protocol. Relevantly, the set

C := {x ∈ ℜmn|xi = xj , 1 ≤ i, j ≤ m,xi ∈ ℜn} (4)

is known as consensus subspace.

In Section IV, we show that first-order gradient algorithms

of distributed consensus-based optimization can also be used

to find an optimal solution of (1) over static directed networks

with synchronous protocol under weaker assumptions (than

strong convexity) such as strict convexity, Lipschitz gradient,

or coercivity. In Section V, we show that first-order gradient al-

gorithms of distributed resource allocation can also be utilized

to find an optimal solution of (3) under certain assumptions.

Remark 1: All assumptions given in this paper can lead

to derive distributed algorithms for both consensus-based

optimization and resource allocation over static, time-varying,

or random directed networks with or without asynchronous

protocols under arbitrary initialization.

IV. SOLVING (1) BY USING DISTRIBUTED

CONSENSUS-BASED OPTIMIZATION ALGORITHMS

The Lagrangian L : ℜmn × ℜn −→ ℜ associated with (1)

(see [49]) is defined as

L(x, y) :=
m
∑

i=1

fi(xi) +

m
∑

i=1

yT (Ri − xi) (5)

where x = [xT
1 , . . . , x

T
m]T , and y is the Lagrange multiplier

associated with the equality constraint in (1). It is known that

Lagrange’s dual problem of (1) is distributed consensus-based

optimization (e.g., see [25, Sec. III.A] for proof), i.e.,

min
y1,...,ym

G(Y ) :=

m
∑

i=1

Gi(yi)

subject to y1 = y2 = . . . = ym

(6)

where Y = [yT1 , . . . , y
T
m]T , and

Gi(yi) := f∗
i (yi)− yTi Ri (7)

is the private cost of agent i, in which

f∗
i (yi) := sup

xi

(yTi xi − fi(xi)) (8)

is the Fenchel conjugate of fi(xi) (see Definition 2).

Comment 1: As seen in (7) and (8), the main difficulty

in solving (6) is that the functions Gi(yi), i = 1, . . . ,m, are

not explicit functions of dual variables yi. In fact, Gi(yi), i =
1, . . . ,m, are derived from optimization problems in (8) whose

gradients are hard to compute directly. This poses a big

challenge to solve (1) by using distributed consensus-based

optimization algorithms where the cost functions must be

explicit functions of the variables. As mentioned in Section

I, several researchers have addressed this issue by using

first-order gradient distributed consensus-based optimization

algorithms over static networks with synchronous protocol

under certain assumptions.

In this section, we propose a procedure (i.e., P1-P3 below)

that can be used for applying first-order gradient algorithms of

distributed consensus-based optimization to solve distributed

resource allocation optimization (1) under some assumptions.

The assumptions given here are weaker than those of the

existing results and thus offer more algorithm options for using

existing distributed consensus-based optimization (see Surveys

[40]- [43]) which work over static, time-varying, or random

directed networks with or without asynchronous protocols (see

also Remark 1).

For using first-order gradient algorithms of distributed

consensus-based optimization, we are required to know the

properties of first-order gradients of Gi(yi), i = 1, . . . ,m.

Consequently, we need to know properties of first-order gradi-

ent of f∗
i (yi). Therefore, it is critical to know relations between

properties of fi(xi) and f∗
i (yi). These relations are given in

Lemmas 1 and 2 below.

Lemma 1 [45, Cor. 4.1.4, Th. 4.2.1, Th. 4.2.2, Cor. 4.2.10]:

• Let fi : ℜn −→ ℜ, i = 1, . . . ,m, be strictly convex,

differentiable, and 1−coercive. Then

(i) f∗
i is likewise finite-valued on ℜn, strictly convex,

differentiable, and 1−coercive;

(ii) The continuous mapping ∇fi is one-to-one from ℜn

onto ℜn, and its inverse is continuous;

(iii) We have

f∗
i (yi) = 〈yi, (∇fi)

−1(yi)〉 − fi((∇fi)
−1(yi)), (9)

∀yi ∈ ℜn.

• Assume that fi : ℜn −→ ℜ, i = 1, . . . ,m, are ρ−
strongly convex where ρ > 0. Then domf∗

i = ℜn, and

∇f∗
i is 1

ρ
−Lipschitz, i.e.,

‖∇f∗
i (s1)−∇f∗

i (s2)‖ ≤ 1

ρ
‖s1 − s2‖, ∀s1, s2 ∈ ℜn.

• Let fi : ℜn −→ ℜ, i = 1, . . . ,m, be convex and have

L−Lipschitz gradient on ℜn where L > 0. Then f∗
i is

1
L
−strongly convex on each subset C ⊂ dom∂f∗

i .
• Let fi : ℜn −→ ℜ, i = 1, . . . ,m, be convex, twice

differentiable, and 1−coercive. Assume, moreover, that

∇2fi(xi) is positive definite for all xi ∈ ℜn. Then f∗
i

enjoys the same properties and

∇2f∗
i (yi) = [∇2fi(∇f−1

i (yi))]
−1, ∀yi ∈ ℜn. (10)
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Lemma 2 [51]: Let fi : ℜn −→ ℜ, i = 1, . . . ,m, be strictly

convex.Then

∇f∗
i (yi) = argmax

xi

(yTi xi − fi(xi)). (11)

Remark 2: Gradient and Hessian of the Fenchel conjugate

f∗
i (yi), i = 1, . . . ,m, are given explicitly in (11) and (10),

respectively, under the assumptions in Lemma 2 and Lemma

1. One can also compute gradient and Hessian of f∗
i by using

(9) under the assumptions in Lemma 1.

Observation 1: By reformulating distributed resource al-

location (1) as distributed consensus-based optimization (6)

on Lagrange’s dual variables yi, i = 1, . . . ,m, and using

properties of the Fenchel conjugate functions f∗
i (yi) (men-

tioned in Lemma 1), any first-as well as second-order gradient

distributed consensus-based optimization algorithms can be

used for solving (1) under the assumptions in Lemma 1. Here,

we give more assumptions than those of the literature such that

these assumptions allow us to utilize distributed consensus-

based optimization algorithms over directed static, time-

varying, or random networks with or without asynchronous

protocol under arbitrary initialization (see also Remark 1).

It remains to show how to apply existing first-order dis-

tributed consensus-based optimization algorithms by using

Lemma 1 to derive first-order distributed algorithm for re-

source allocation (1).

The procedure to solve (1) by solving (6) is given in P1-P3

as follows:

P1. Consider distributed consensus-based optimization (6)

with variables yi and select an existing first-order gradient

distributed algorithm and its related theorem for convergence.

P2. By using the selected distributed algorithm and condi-

tions of the related theorem, impose suitable assumptions on

first-order gradient of f∗
i (yi) defined in (8) (see Remark 2);

also impose suitable assumptions on fi(xi) by using Lemmas

1 and 2; consequently, compute the first-order gradient of

Gi(yi) defined in (7) by using Lemmas 1 and 2; therefore,

the optimization (6) is solved by the chosen algorithm whose

conditions are satisfied, namely all agents get consensus on a

dual optimal solution y∗ of (6).

P3. Each agent obtains the primal optimal solution x∗
i , i =

1, . . . ,m, of (1) via x∗
i = argmax

xi

(xT
i y

∗ − fi(xi)) if exists.

Consequently, the relevant theorem for solving (1) can be

developed from the related theorem of the selected algorithm

in P1.

In the following subsection, based on Observation 1, we

apply an existing first-order gradient distributed discrete-time

algorithm for solving distributed consensus-based optimization

to derive a first-order gradient discrete-time algorithm for

solving distributed resource allocation (1). We explicitly show

how to use P1-P3 above to derive such algorithms and to

develop related theorems. As we mentioned in Contribution in

Section I, we only develop first-order distributed algorithms

in this paper.

A. A First-Order Totally Asynchronous Algorithm for Solving

(1)

To the best of authors’ knowledge, the discrete-time algo-

rithm presented in this subsection is the first totally asyn-

chronous (see footnote 2) algorithm for solving (1).

Let the weighted matrix of the graph (see also footnote 3)

be defined as W(ω∗) = [Wij(ω
∗)] with Wij(ω

∗) = aij(ω
∗)

for j ∈ N in
i (ω∗) ∪ {i}, and Wij(ω

∗) = 0 otherwise, where

aij(ω
∗) > 0 is the scalar constant weight that agent i assigns

to the information xj received from agent j. For instance, if

W(Gk̃) = Im, for some 1 ≤ k̃ ≤ N̄ , implies that there are no

edges in Gk, or/and all nodes are not activated for communica-

tion updates in asynchronous protocol or both. The advantage

of this formulation is that it unifies switching networks with

asynchrony in a better understandable formulation (see [44],

[52] for details).

Assumption 1 [44]:

• A1. The weighted graph matrix W(ω∗) is doubly stochas-

tic for each ω∗ ∈ Ω∗ where Ω∗ is defined in Section III,

i.e.,

i)
∑

j∈N in
i

(ω∗)∪{i} Wij(ω
∗) = 1, i = 1, 2, ...,m,

ii)
∑

j∈Nout
i (ω∗)∪{i} Wij(ω

∗) = 1, i = 1, 2, ...,m.
• A2. The union of all of the graphs in Ω∗ is strongly

connected, i.e., Re[λ2(
∑

ω∗∈Ω∗(Im −W(ω∗)))] > 0.

• A3. There exists a nonempty subset K̃ ⊆ Ω∗ such that

FV P (T ) = {z̃|z̃ ∈ ℜmn, z̃ = T (ω̄, z̃), ∀ω̄ ∈ K̃} where

T (ω∗, x) := W (ω∗)x, ∀ω∗ ∈ Ω∗, W (ω∗) := W(ω∗) ⊗
In, and each element of K̃ occurs infinitely often almost

surely.

Remark 3 [44]: If the sequence {ω∗(t)}∞n=0 is mutually

independent with
∑∞

t=0 Prt(ω̄) = ∞ where Prt(ω̄) is the

probability of ω̄ occurring at time t, then part A3 in Assump-

tion 1 is satisfied. Moreover, any ergodic stationary sequences

{ω∗(t)}∞t=0, P r(ω̄) > 0, satisfy part A3 in Assumption 1.

Consequently, any time-invariant Markov chain with its unique

stationary distribution as the initial distribution satisfies part

A3 in Assumption 1. Also B-connectivity (see footnote 1)

assumption satisfies part A3 in Assumption 1.

Assumption 2: fi : ℜn −→ ℜ, i = 1, . . . ,m, are 1
K

-

strongly convex where K > 0, and ∇fi(xi) are 1
µ

-Lipschitz

continuous where µ > 0.

In Theorem 1 below and its proof, we show how to

apply P1-P3 and Observation 1 to derive the first totally

asynchronous first-order gradient distributed discrete-time al-

gorithm for resource allocation (1).

Theorem 1: Consider distributed consensus-based opti-

mization (6) with Assumptions 1 and 2. Let β ∈ (0, 2µ
K2 ) and

α(t) ∈ [0, 1], t ∈ N ∪ {0}, satisfy

(a) lim
t−→∞

α(t) = 0,

(b)
∑∞

t=0 α(t) = ∞.
Then starting from any initial points, the sequences

{yi(t)}∞t=0, i = 1, . . . ,m, generated by

yi(t+ 1) = α(t)(yi(t)− βzi(t)) + (1− α(t))((1 − η)yi(t)

+ η
∑

j∈N in
i

(ω∗(t))∪{i}

Wij(ω
∗(t))yj(t)), (12)

zi(t) = xi(t)−Ri, (13)

xi(t) = argmin
qi

(fi(qi)− yTi (t)qi), (14)

where η ∈ (0, 1), and ω∗(t) is a realization of Ω∗ at time

t, globally converge almost surely and in mean square to the
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unique solution of dual problem (6). Moreover, the sequences

{xi(t)}∞t=0, i = 1, . . . ,m, converge almost surely and in mean

square to the unique primal solution of distributed resource

allocation (1).

Proof: Let’s apply P1-P3 and Observation 1 to prove

Theorem 1.

P1: We consider the first totally asynchronous algorithm

proposed in [44] for solving distributed consensus-based op-

timization (1) and its related theorem for convergence (i.e.,

Theorem 3 in Appendix A).

The first totally asynchronous distributed discrete-time al-

gorithm proposed in [44] in compact form is given as follows:

Y (t+ 1) = α(t)(Y (t)− β∇G(Y (t)))

+ (1− α(t))((1 − η)Y (t) + ηW (ω∗(t))Y (t))
(15)

where W (ω∗) := W(ω∗) ⊗ In, η ∈ (0, 1), and ω∗(t) is a

realization of Ω∗ at time t. From Theorem 2 in Appendix A,

Algorithm (15) converges almost surely and in mean square

to the unique optimal solution y∗ of (6) under Assumption 1

above and Assumption 3 in Appendix A (see Appendix A for

details).

P2: We impose suitable assumptions on the first-order

gradient of Gi(yi) defined in (7) and calculate it by using

Lemmas 1-2.

Since, from Assumption 3 in Appendix A, we require that

Gi(yi), i = 1, . . . ,m, be µ-strongly convex, and ∇Gi(yi) be

K-Lipschitz continuous, we need from Lemma 1 to impose

Assumption 2 on fi(xi). Therefore, based on Lemma 2 and

Assumption 2, we can compute the gradient of Gi(yi) as

follows:

∇Gi(yi) = argmax
xi

(yTi xi − fi(xi))−Ri. (16)

Now to develop Theorem 1 from Theorem 2 in Appendix A,

we substitute Assumption 2 for Assumption 3 since Assump-

tion 2 is on primal variables xi, i = 1, . . . ,m.
P3: Each agent obtains the primal optimal solution x∗

i , i =
1, . . . ,m, of (1) via x∗

i = argmax
xi

(xT
i y

∗ − fi(xi)).

We obtain the primal optimal solutions x∗
i , i = 1, . . . ,m, as

x∗
i = argmin

xi

(fi(xi)− xT
i y

∗) (17)

that exist from Assumption 2.

Therefore, we obtain Algorithm (12) from (15)-(17). Note

that Algorithm (15) is in a compact form and can be viewed

based on local information as Algorithm (12). As a matter of

fact, the distributed algorithm (12) can converge almost surely

and in mean square to the primal optimal solutions x∗
i , i =

1, . . . ,m, of (1) under Assumptions 1-2. As seen in Theorem

2 in Appendix A, the convergence occurs over infinite-time

horizon. Thus the proof of Theorem 1 is complete.

Remark 4: Algorithm (12) does not require a priori B-

connectivity or distribution assumption on switching com-

munication graphs for convergence that results in the first

totally asynchronous algorithm for solving distributed resource

allocation (1) (see also Remark 3). In general, the rate of

convergence cannot be established for a totally asynchronous

algorithm. However, determining rate of convergence of Al-

gorithm (12) under suitable assumptions remains a part of the

future work.

Remark 5: We refer the interested reader to [48] for

deriving the first distributed second-order continuous-time

algorithm for resource allocation.

V. SOLVING (3) BY USING DISTRIBUTED RESOURCE

ALLOCATION ALGORITHMS

Fenchel’s dual problem [45] of distributed consensus-based

optimization (3) is the following resource allocation (see [46,

Sec. III.A] for proof):

min
y1,...,ym

m
∑

i=1

h∗
i (yi)

subject to

m
∑

i=1

yi = 0n

(18)

where h∗
i (yi) is Fenchel conjugate function of hi(xi) (see Def-

inition 2). We require to mention that similar challenge to the

challenge explained in Comment 1 holds for (18). Similar to

Observation 1, we have the following observation for solving

(3) by using distributed resource allocation’s algorithms.

Observation 2: By reformulating distributed consensus-

based optimization (3) as distributed resource allocation (18)

on Fenchel’s dual variables yi, i = 1, . . . ,m, and using

properties of the Fenchel conjugate functions h∗
i (yi) presented

in Lemmas 1-2, any first-as well as second-order gradient dis-

tributed resource allocation algorithms can be used for solving

(3) under the assumptions of Lemma 1. Indeed, Remark 1 is

also valid here.

As stated previously, the process for deriving first-order

gradient distributed consensus-based optimization algorithms

from distributed resource allocation algorithms is similar to

the procedures of the proof of Theorems 1 in the previous

section.

VI. CONCLUSIONS

In this paper, we have proposed a procedure to utilize dis-

tributed consensus-based optimization algorithms for solving

resource allocation optimization and vice versa over switching

networks with/without synchronous protocol. We have shown

that first-order gradient algorithms of distributed consensus-

based optimization can be used to find an optimal solution

of distributed resource allocation under weaker assumptions

than those of the literature over static networks under syn-

chronous protocol. This offers more choices for distributed

consensus-based optimization algorithms to be utilized for

solving distributed resource allocation problem that can over-

come difficulties of existing results. We have also shown that

distributed resource allocation algorithms can be employed

to derive distributed consensus-based optimization algorithms.

This paper has presented the first totally asynchronous algo-

rithm for solving distributed resource allocation by using the

proposed procedure. These results can also be utilized to de-

rive distributed algorithms for static, time-varying, or random

directed networks with or without synchronous protocol with

arbitrary initialization.
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APPENDIX A

The following theorem has been given in [44] for distributed

optimization (6).

Assumption 3 [44]: Gi(yi), i = 1, . . . ,m, is µ-strongly

convex, and ∇Gi(yi) is K-Lipschitz continuous.

Theorem 2 [44, Cor. 1-2]: Consider dual problem (6) with

Assumptions 1 and 3. Let β ∈ (0, 2µ
K2 ) and αn ∈ [0, 1], n ∈

N∪{0}, satisfy (a) and (b) in Theorem 1. Then starting from

any initial point, the sequence generated by the distributed

algorithm (15) globally converges almost surely and in mean

square to the unique solution of (6).

Remark 6: An example of the diminishing step size αn

satisfying (a) and (b) in Theorem 1 is α(t) := 1
(1+t)ζ

where

ζ ∈ (0, 1].

Remark 7: As seen from part A3 in Assumption 1,

Algorithm (15) does not require a priori B-connectivity or

distribution assumption on switching communication graphs

for convergence that results in the first totally asynchronous

algorithm for solving distributed consensus-based optimization

(6) (see [44] for details).
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