
  

Nonlinear Optimal Generalized Predictive                                     
Functional Control of Piecewise Affine Systems

Sultan Alotaibi, M. Grimble and L. Cavanini

Abstract—An algorithm for nonlinear optimal generalized 
predictive functional control is defined for controlling discrete-
time piecewise affine systems. The main piecewise affine form is 
transferred into a corresponding state-dependent system form. 
The principal piecewise affine system's hybrid properties are 
retained, and both the continuous and switching dynamics are 
combined in the same system description. This method enables 
the use of nonlinear generalized predictive functional control for 
this hybrid system class. In the generalized predictive functional 
control method, different classical controller structures can be 
employed in the feedback loop, such as PI, PID or other classical 
transfer-function structures. The loop controller is defined here 
to have a PI structure, and its selected linear transfer-functions 
set is multiplied by gains that are found to minimize a GPC type 
of cost-index. The simulation results are shown using a model of 
a continuous stirred tank reactor. 

I. INTRODUCTION 
Systems represented by continuous and discrete signals 

are called Hybrid dynamical Systems (HS) and increasingly 
have sparked interest from the computer science and control 
communities. Numerous authors have concentrated on some 
HS subclasses in which the analysis and/or the control design 
methods have been established. Some of these subclasses are 
Linear Complementarity (LC) systems [1], [2], Mixed Logical 
Dynamical (MLD) systems [3], first-order linear HS with 
saturation [4], Piecewise Affine (PWA) systems [5], and Max-
Min-Plus Scaling (MMPS) systems [6]. Computer researchers 
have suggested many models, such as the essential Hybrid 
Automata (HA) [7]. Equivalence relations among MLD, LC, 
MMPS, ELC and PWA form have been established satisfying 
moderate conditions in [8]. The equivalence relations between 
PWA systems and State-dependent (Sd) systems established 
in [9] and were extended in [10] to show the link between Sd 
systems and Linear Hybrid Automata (LHA) as in Fig. 1. 
Noting that an arrow pointing from class A to class B implies 
that A is a subset of B. and a star * sign on the arrow means 
some conditions are involved in the creation of the specified 
inclusion. 

The initial work in [9], [11] used a Nonlinear Generalized 
Minimum Variance (NGMV) controller in controlling PWA 
systems, which was translated into Non-linear (NL) Sd system 
by inserting a custom logic state to be able to describe the 
intersection of switching sections. The merit of using the Sd 
model of PWA systems is because Sd systems are much 
simpler to construct since all state, input constraints and logic 
state can be incorporated in the Sd system model.  

This work is the Nonlinear Generalized Predictive Functional 
Control (NGPFC) [12], [13] extension for PWA systems. 
PWA is a main class of HS and a proper structure to describe 
or approximate various physical processes as approximating 
NL systems using multiple linearizations over different 
operating points. This work follows the previous methodology 
to control Sd systems by first obtaining the PWA system in Sd 
form and constructing the NGPFC, which is easy to calculate 
and implement. Noting that, hard constraints can be included 
using a quadratic programming solution. 

This paper is arranged as: The augmented system description 
outlined in Section II. The PI controller design procedures for 
PWA systems is discussed in section III. Section IV shows a 
potential application in simulation, and Section V summarizes 
the paper. 

II. SYSTEM DESCRIPTION 

A. PWA Systems 
The state-space model of delayed discrete-time PWA systems 
is described as: 

 
( 1) ( ) ( ) ( )
( ) ( ) ( )

i i i i

i i i

x t A x t B u t k D t f
y t C x t E u t k g

ξ+ = + − + +
= + − +

 (1) 

where x ∈ Rn, u ∈ Rm, y ∈ Rp and d ∈ Rn are the states, inputs, 
outputs and disturbances, respectively. The k represents the 
value of a common delay component.  

Definition: every (Ai, Bi ,Ci ,Di ,Ei), i=1,…,s situated affine 
sub-system in the polyhedron cell Ωi⊂ Rn×Rm are assumed a 
polyhedral set specified by matrices Gix, hix, Giu and hiu: 

 |i ix ix iu iu

x
G x h G u h

u
   Ω = ≤ ∧ ≤  
   

 (2) 

The cells satisfy Ωi∩Ωj=∅, ∀i ≠ j and states along with inputs 
admissible set  Ω = ∪i=1

 s Ωi is represented by their union. 
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Fig. 1: Hybrid systems classes link 

 



  

B. Sd System 
The Sd system includes time-varying state equation matrices 
as they depend on states, inputs, external parameters and/or 
control signal. The system matrices can be described as: 
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D x t u t t
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 (3) 

Introduce supplementary logic variable δi(t)∈ {0,1} as defined 
in (4): 
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 (4) 

Then the PWA system in (1), with the segment in (2), can be 
transformed into this format: 
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Noting that the bias term fi and gi in (1), can be considered as 
a measured disturbance in (3). 

The logic variable values δi(t)∈ {0,1} in (4) relying on the 
state x(t) and the input u(t) variables. Assigning, less than or 
equal (≤) function LE (x, m) as: 
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where the limit m∈ Rn. Then, 

 ( ( ), ) ( ( )( ,) )j j l l
ix ix iu u

j
ii

l

LE G x t h LE Gt u t hδ = ∏ ∏  (6) 

and j and l represent jth and lth rows, correspondingly.  

To simplify the notation in (3), constitute Asd=A(x(t),u(t)) 
and for matrices: Bsd, Csd, Dsd and Esd, then substituting (6) in 
(5), obtain: 
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Consequently, the PWA system (1) is converted to the NL Sd 
system (9) that has the form in (3). 

 
( 1) ( ) ( - ) ( )

( ) ( ) ( - ),      ( ) sd

sd sd sd sd sd sd
n
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 (9) 

C. Total Linear Sub-System and Sd System 
The general system described in [14] was used to obtain the 
control algorithm for Sd systems as in Fig. 2. 

Reference Model: 

 
( 1) ( ) ( ),      ( )

( ) ( )
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r r r r r

r r
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 (10) 

Disturbance Model: 
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Error Weighting: 
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Fig. 2: System description 

 



  

The error weighting in (12) is given using (9) as: 
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The linear sub-system augmented description can be obtained 
by augmenting the disturbance, the linear reference and error-
weighting models as: 

 ( ) ( ) ( ) ( )
TT T T

ls d p rx t x t x t x t =    

Noting the equation (10), (11) and (12), the linear sub-system 
augmented description is: 
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Then the overall augmented state-vector of linear and Sd sub-
system model can be outlined as: 
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Therefore, the augmented linear and the Sd sub-systems state-
vector and the associated disturbances become: 
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Clearly from equations (9), (13),(14) and (15), the augmented 
Sd and the weighted error system models format are: 
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D. State-Space Prediction Models 
The prediction of the weighted error is needed for the control 
solution. Both the states and weighted error future values at 
time t may be found by iterative utilization of the state model 
in (17) and the i-steps-ahead state is acquired as: 
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The controlled weighted error ep at future times i ≥ 0 follows 
similarly as: 

 1

1

( ) ( )

( 1 )
( 1)

( )

i
p pt i t

i ji
t j t j

pt i
j t

pt i

e t i C A x t

A B u t j k
C

D t j k
E u t i k

ξ

+

−
+ + −

+
=

+

+ =

 + − −
+   + + + − 
+ + −

∑  (21) 

Equation (21) can be introduced in vector-matrix notation as: 
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E. Kalman Filter 
The estimated weighted error (22) is arranged in the next N+1 
vector structure (23). 
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where x�(t+k|t) are a least-squares state-estimate resulted from 
Time-Varying Kalman Filter (TVKF). This filter is employed 
alongside the Sd model, and delays are adjusted in the input 
channels [15].  

The time-varying matrices At, Bt, Ct  and Et  produce a time-
varying error covariance matrix Pt and accordingly, a TVKF 
gain factor Kft derivation [16]. The controlled plant is stated 
observable and controllable from the plant noise inputs. 

Also, the k-steps-ahead weighted error in (22) is accordingly 
determined in this vector form: 
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0
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+ ++ += +  (24) 

and founded on (23) and (24), the prediction error: 
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  (25) 

The state estimation error (26) doesn't depend on the selection 
of the control signal. 

 ˆ( ) ( ) ( | )x t k t x t k x t k t+ = + − +  (26) 

III. HYBRID GPFC IN PI STRUCTURE 
The optimal control solution utilizing Kalman filter state-

estimation and prediction is: 
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Remarking that the optimal error estimate is orthogonal to the 
estimation error can simplify terms in the cost index (27). 
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E{.|t} is the conditional expectation on measurements till time 
t, λj is control action weighting factor, ρj are controller gains 
cost-weightings. The multi-step cost-function (28) is: 
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The controller within the loop is assumed in the next example 
to have a PI structure. For the optimal control computing, the 
PI gains were optimized using a unique approach to the usual 
unconstrained model-based predictive control where a future 
predicted controls vector is determined, and the control at time 
t is executed.  

The controller structure applied here has the classical cascade 
feedback structure. For a scalar system, functions fi(z

-1) can 
be picked as in (30) utilizing two linear dynamic functions Ne 
to construct a PI controller: 
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and then the control signal can be obtained as in (31). 
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A suitable matrix representation is needed to calculate the gain 
through the optimization and (31) is arranged as: 
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where s∈[1,Ne] and the PI time-varying gains are gathered as 
in (33). 
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Compute the gains in (33) utilizing GPC related approach is 
simple as the future control action vector was formed as: 
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where Ufe is a matrix of N+1 rows and Ne columns.  

A receding horizon strategy type [17] is essential, where the 
gain kc can be assumed constant within the period [0, N] and 
gains computed at time t can be used to compute the optimal 
control action. At the subsequent sampling time, the process 
can be repeated.  

 
Fig. 3: NGPFC for Sd systems 

 



  

By setting the cost-function (29) gradient to zero [15] and 
swapping for control input from (34), the future optimal 
controls vector is calculated from (35) that follows. Note that 
hard constraints on gains or signals can be added using the 
same matrices involved in (29) using Quadratic Programming 
(QP) methods. 
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Finally, constraints can be applied on the value of a controller 
gains or the gains rate of change by utilizing QP [18], and the 
controller is realized as in Fig. 3 

IV. CSTR SYSTEM EXAMPLE 
Continuous stirred tank reactors (CSTRs) are prevalent in 

chemical and pharmaceutical systems. The CSTR system has 
extremely NL behaviour and often has a wide operating range. 
They may sometimes be run in different operating regions to 
produce a variety of separate manufactured goods to achieve 
flexible manufacturing to cope with market competition [19]. 
A crucial control goal is to reduce the product transition time 
by reducing off-specs products volume produced throughout 
any transition [20]. A basic two-state CSTR with exothermic 
irreversible first-order reaction A→B is illustrated in Fig. 5 
and used as a case-study in this simulation. 

The CA , T, qc  and Tcf  are resultant concentration, reactor 
temperature, coolant flow rate, and coolant temperature 
correspondingly. CSTR system output is CA, the input is Tcf 
and the system states are: 
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2

Ax C
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x T
   

= =   
  

 

The following NL equations can define the dynamics of the 
CSTR [21]: 
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where 
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The CSTR has three steady-states at u=0: 
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The NL system has been linearized at each steady-state region 
and then discretized by sampling time of 100 milliseconds to 
obtain the CSTR system PWA model in  [19] as: 
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Using (7) and (8), the PWA model (38) can be written in Sd 
form as follow: 
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Fig. 4: Operating points output tracking 
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The next constraints must be satisfied during the simulation: 

 
0 1

, 2 2
0 6

   
≤ ≤ − ≤ ≤   

   
sdx u  

The need to build the CSTR flexible operating strategies and 
optimal switching amongst operating regions motivates the 
design objective. The NL plant was moved between the 
different steady-states in (37) by tracking the concentration 
set-point throughout the operating regions. Satisfying tracking 
performance was obtained from the simulation results as 
shown in Fig. 5, with a slight overshoot around the unstable 
steady state xs2. The controller tracking performance showed 
no oscillation during the PWA model switching from one 
region to another. The auxiliary logic variable in (39), acted 
as supervisor and was responsible for selecting the associated 
PWA model based on the concentration measurement and 
allowed the NGPFC to update the loops' PI controller's gains 
accordingly, as shown in Fig. 6. 

V. CONCLUSION 
 An NGPFC controller has been designed based on a PWA 
model, in which switching dynamics are altered by the state 
and/or the control input. This controller has been set to have a 
PI structure and was used to control an NL model of CSTR in 
a reference tracking problem. The controller optimized time-
varying gains were consistently modified. Utilizing future 
prediction, the NGPFC controller can adjust to the reference 
trajectory variations and system operating regions' changes. 
Satisfactory tracking performance was obtained. 
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Fig. 5: Continuous stirred tank reactor 

 
 

Fig. 6: Evolution of the PWA regions 

 


