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Smooth attitude stabilisation in prescribed time of a rigid body
despite uncertainties in inertia and additive disturbances

Ioannis Sarras

Abstract— We consider the problem of stabilisation in pre-
defined, finite time of the attitude of a rigid body. Inspired by
classical laws in missile guidance, the proposed control law is
time-varying but smooth as opposed to classical sliding-mode-
based laws that are generally discontinuous, or continuous at
best, and suffer from robustness issues. Through a backstepping
design, and the explicit construction of a strict Lyapunov
function, we are able to ensure stabilisation to a desired attitude
even in the presence of uncertainties in the inertia matrix and
under the effect of additive disturbances. Numerical simulations
show the efficiency of the proposed controller.

I. INTRODUCTION

Aerospace vehicles such as satellites, launchers and drones
are constantly required to be more efficient while performing
under challenging conditions. This translates into designing
robust control algorithms that can respond successfully to
various mission scenarios. Typically, the principal objectives
that need to be attained by these vehicles are precise attitude
stabilisation and/or tracking.

This is the general attitude control problem which has
drawn the attention of engineers and researchers for decades
and is still in the focus of a large number of publica-
tions. Seminal papers such as [1], [2], [3] and [4] have
shed light to the geometric and analytic properties of the
underlying problems and proposed various solutions. As
there are different types of available attitude parametrisation
[5], such as rotation matrices, quaternion, Euler angles and
the (Modified) Rodrigues vector, one can select which is
appropriate to model the underlying problem at hand and
eventually, hint on its solution. However, in general, it is
preferable to work with minimal and global parametrisations.

A minimal and almost global representation, that is widely
used in the aerospace industry, is the Modified Rodrigues
vector [5]. Some of the most impactful original works that
adopted this representation in order to solve the attitude
cotrol problem were [6] and [7]. The authors applied the
sliding mode control methodology and established attitude
stabilisation (in finite time) with a discontinuous law and
showed that this law was optimal with respect to a perfor-
mance index that is quadratic with respect to the orientation
and angular velocity errors. The attractive nature of such
a SMC design, is that it exploits the additional inherent
property of sliding mode control of rejecting bounded (with
known bound), additive perturbations.

Since these seminal works, sliding-mode control has been
rapidly evolving as a field of research and applied to various
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aerospace vehicles [8]. These advances try to remedy the
robustness issues of SMC that are well known (chattering),
the constructive gain selection and the involved stability and
robustness analyses. One crucial point with regards to SMC
is that the final convergence time is dependent on initial
conditions, which is a limitation in the context of aerospace
and defence applications. Some recent developments on
SMC in this direction were presented in [9].

The particularly tight performance requirements imposed
on aerospace vehicles necessitate that the control design
guarantees stabilisation in a finite horizon even in the pres-
ence of unknown uncertainties and perturbations acting on
the vehicle. Hinging upon the sliding mode framwork, a large
number of works, for example see the recent works [10] and
[11], have tackled the problem of attitude stabilisation (and
the more general one for tracking) in fixed/finite-time while
rejecting bounded disturbances. However, these solutions
suffer from the common robustness issues of SMC and are
only valid for bounded disturbances. Furthermore, they do
not consider the possible variations of the inertias. On the
other hand, the effect of time-variations of the inertia matrix,
although important in applications (e.g. fuel depletion, mass
displacement), has been poorly studied. An exception is the
work [12] which however does not account for additive
disturbances nor a fixed-time convergence.

This paper proposes a smooth, time-varying control law
that ensures fixed-time stabilisation of a desired orientation
in a prescribed time, which is independent of initial condi-
tions, and despite uncertainties in the (time-varying) inertia
matrix and additive, non-vanishing, (matched) disturbances.
In addition, the stability proof is established by a constructive
Lyapunov analysis. The design follows the recent paradigm
for prescribed-time stabilisation proposed in [13], [14] that
hinges upon the backstepping methodology [15] and applied
to autonomous nonlinear systems that are in strict-feedback
form. Our control design differs from the one in [13], [14]
in certain ways: a) We do not transform the system in the
(partially linear) strict-feedback form therein and tailor the
design to the specific rigid body equations; b) We define
differently the scaled error in the angular velocity, which
allows us to simplify the design and analysis; c) We establish
the prescribed-time stability claim without resorting to small-
gain arguments but through a direct Lyapunov analysis. To
the author’s knowledge this is the first work that establishes
prescribed-time stabilisation for the (fully actuated) attitude
control problem.

The organisation of the paper is as follows. Section II
introduces the model of the rigid body, the necessary defi-



nitions of prescribed-time stability and the working assump-
tions. Section III presents the proposed control law and the
corresponding Lyapunov-based stability analysis. Numerical
simulations of the closed-loop system then follow in Section
IV. We conclude with some remarks and future perspectives.

II. PROBLEM FORMULATION

A. Notation

Depending on the context, we will denote by |x| the
Euclidean norm of the vector x or the L2 norm of the signal
x(t). Similarly, ||A|| will represent the matrix induced 2-
norm for any matrix A. Also, I will denote the identity
matrix of appropriate dimensions and λ(A) will denote the
spectrum of the matrix A. Throughout, for any x ∈ R3 we
will define by

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (1)

the matrix representation of the linear map y 7→ x× y, with
y ∈ R3, and ‘ × ‘ denoting the usual cross product in R3.
We will interchangeably use both notations, i.e. x × y and
S(x)y, to simplify the presentation.

B. Dynamic model

We consider a moving rigid body subjected to the angular
velocity ω ∈ R3 (in body axes). Its orientation will be
represented by the Modified Rodrigues Parameters (MRPs)
that allow for eigenaxis rotations up to 360 degrees [5].

The kinematic model is represented by the differential
equations [5]

σ̇ = F (σ)ω (2)
d

dt
(J(t)ω) = (J(t)ω)× ω + τ + dτ (t) (3)

with the matrix F defined as

F (σ) :=
1

2
(
1− σTσ

2
I + σ× + σσT ). (4)

In the above J(t) is the inertia matrix while dτ (t) models the
additive disturbances acting on the system. We consider that
these disturbances are not necessarily vanishing but rather
have an unknown bound ||dτ ||[0,t] := sups∈[0,t] dτ (s).

The class of rigid bodies which are treated in this work
satisfy the following working assumption.

Assumption 1 (A.1): The inertia matrix is decomposed
into a known, constant matrix J0 and a unknown, time-
varying matrix J1(t)

J(t) = J0 + J1(t), (5)

with J1(t) being uniformly bounded

J1 ≤ ||J1(t)|| ≤ J1 (6)

||J̇1(t)|| ≤ J̇1, (7)

with known bounds J1, J1 and unknown bound J̇1.

For later use, we also note the following linear parametrisa-
tion identities

J̇1(t)ω = ψ1(ω)d1(t) (8)
(J1(t)ω)× ω = ψ2(ω)d2(t), (9)

with known functions ψ1, ψ2 of appropriate dimensions
and d1, d2 vectors containing the elements of J̇1(t), J1(t)
respectively.

Finally, it follows that for the total inertia matrix we obtain
explicit bounds such that

Jm ≤ ||J(t)|| ≤ JM . (10)

Since the problem at hand is to stabilise a desired orientation,
represented as σd, we naturally need to define an associate
error and express the corresponding error kinematics. By
defining the MRP error as

δσ := σ − σd, (11)

we can derive the error kinematics and obtain the following
equations [5]

δ̇σ = F (δσ)ω (12)
d

dt
(J(t)ω) = (Jω)× ω + τ + dτ (13)

with

F (δσ) =
1

2
(
1− δσT δσ

2
I + δσ× + δσδσT ). (14)

For particular properties of the MRP parametrisation σ and
matrix F one can consult for example [5], [3].

C. Prescribed-time stability

Before procedding to the control design and the main
result of this work, we will define certain functions that will
be used throughout and that have particular properties which
will allow to establish the prescribed time stability claim.

We define the following scaling functions:

µ1(t) :=
tf

(tf − t)
(15)

µ(t) :=
t1+m
f

(tf − t)1+m
= µ1+m

1 , (16)

for t ∈ [0, tf ] and some positive integer m > 0 to be defined.
Properties of these functions have been presented in [13],
[14]. In particular, the function µ (similarly for the function
µ1) is monotonically increasing and has the properties

• µ(0) = 1, µ(tf ) = +∞
• µ−1(0) = 1, µ−1(tf ) = 0.

Finally, we remind the definitions of prescribed-time stability
given in [13], [14] which will be used in this work.

Definition 1 (FT-ISS): The system ẋ = f(x, t, d) (of
arbitrary dimensions of x and d) is said to be fixed-time
input-to-state stable in time tf (FT-ISS) if there exist a class
KL function β and a class K function γ, such that, for all
t ∈ [0, tf ]

|x(t)| ≤ β(|x0|,
tf

tf − t
− 1) + γ(||d||0,t). (17)



Definition 2 (FT-ISS+C): The system ẋ = f(x, t, d) (with
x and d of arbitrary dimensions) is said to be fixed-time
input-to-state stable in time tf and convergent to the origin
(FT-ISS+C) if there exist class KL functions β, βf and a
class K function γ, such that, for all t ∈ [0, tf ]

|x(t)| ≤ βf (β(|x0|,
tf

tf − t
− 1) + γ(||d||0,t)). (18)

Remark 1: References [13], [14] present a detailed dis-
cussion and comparison between the proposed approach and
the sliding mode methodology. For the interested reader,
technical issues about fixed-time stability, robustness and
the high-gain nature of the controllers (near the origin) are
discussed therein.

With the above at hand, we can now state the problem
that we wish to solve and whose solution will be provided
in the following section.

Problem Statement: Design a smooth, time-varying, con-
trol law based on the model (12)-(13), with uncertainties
characterised by assumption A.1, that provides prescribed
time stabilisation of the desired attitude σd while rejecting
the additive disturbances dτ .

III. CONTROL DESIGN

In this section, we present the main result, that is a control
law which ensures prescribed-time convergence to zero while
attenuating the uncertainties in the inertia matrix and the
effect of additive disturbances.

The main result is summarised in the following.
Proposition 1: Consider the system (12)-(13) in closed-

loop with the control law

τ = −JM
(
k1ω + λ1||ψ1(ω)||2 + λ2||ψ2(ω)||2

)
µ(ω − ωd)

− (J0ω)× ω. (19)

Then, under assumption A.1, and for k1ω , λ1, λ2 satisfying
the conditions

k0 = 4(kf +
ϵ1 + ϵ2

2
+
ϵ0
8
), kf > 0 (20)

k1 = k0 +
4(1 +m)

tf
(21)

k2ω > 0 (22)

k1ω(t, δσ) = k2ω +
1 +m

tf
+

(1 +m)2µ2k21
2ϵ1t2f

+
ϵ3
2J2

m

+
k1µ(1 + |δσ|2)

4
(
k31µ

2ϵ2
+ 1) +

1 + |δσ|2

8ϵ0
(23)

λ1 ≥ ϵ3
2J2

m

(24)

λ2 ≥ ϵ3
2J2

m

, (25)

for any positive scalars ϵ0, ϵ1, ϵ2, ϵ3, the closed-loop system
is fixed-time input-to-state stable in prescribed time tf and
convergent to zero.

Proof: We follow a backstepping design approach [15],
[13], [14]. The first step is to consider that ω acts as an input
to the subsystem (12) and define an ideal desired input, ωd,
that stabilises δσ to the origin in prescribed-time. Then, as

a second step, we consider the complete system (12)-(13),
and design the torque input τ in order for ω to track ωd in
prescibed-time while attenuating the effects of uncertainties
and perturbations. A benefit of the backtepping methodology
will be that it will naturally lead to the construction of a
strict Lyapunov function and thus, simplify the stability and
robustness claims.

Let us start by defining the desired ωd that stabilises the
origin of (12). Inspired by the works by [13], [14] we propose
the choice

ωd := −k(t)δσ (26)

with the time-varying gain k : R≥0 → R>0 of the form

k(t) = k1µ(t) (27)

k1 = k0 +
4(1 +m)

tf
, k0 > 0. (28)

The resulting δσ dynamics is given by

δ̇σ = −k1µ
4

(1 + |δσ|2)δσ. (29)

Using the scaling function µ(t)1 and the transformation

eσ := µ(t)δσ, (30)

we re-express the (desired) error kinematics as

ėσ =
1 +m

tf
µ

1
1+m eσ − k1µ

4
(1 + |µ−1eσ|2)eσ

= −µ
(k1
4
(1 + |µ−1eσ|2)−

1 +m

tf
µ− m

1+m

)
eσ. (31)

Following a similar analysis as in [13], [14], and using
in particular the property µ− m

1+m ≤ 1, one can establish
prescribed-time stability using the Lyapunov function

Vσ(eσ) =
1

2
|eσ|2. (32)

Since it will be used later on, we write the time derivative
of Vσ along trajectories of (31) and obtain the bound

V̇σ ≤ −µ
4
(k0 + k1|µ−1eσ|2)|eσ|2. (33)

We look now at the real error kinematics that are given by

ėσ = −µ
(k1
4
(1 + |µ−1eσ|2)−

1 +m

tf
µ− m

1+m

)
eσ

+ µF (µ−1eσ)(ω − ωd). (34)

Calculating now Vσ’s time derivative results in

V̇σ ≤ −µ
4
(k0 + k1|µ−1eσ|2)|eσ|2

+ µeTσF (µ
−1eσ)(ω − ωd). (35)

We proceed now with the second step and consider both
the attitude kinematics and dynamics. We first define the
error between the angular velocity ω and the desired angular
velocity ωd defined in (26)-(28) as

δω := ω − ωd. (36)

1To enhance readability, we will drop the explicit dependence on time
and simply write µ when refering to µ(t).



Then, the angular velocity error dynamics takes the form

δ̇ω = J−1(t)
(
(Jω)× ω − J̇(t)ω + τ + dτ

)
− ω̇d

= J−1(t)
(
(J0ω)× ω + (J1(t)ω)× ω − J̇1(t)ω + τ + dτ

)
− ω̇d, (37)

where to obtain the second equality we used the splitting of
the inertia matrix as per assumption A.1. Noticing that the
second and third terms of (37) can be factored as per (8),
(9), we can express (37) as

δ̇ω = J−1
(
(J0ω)× ω − ψ1(ω)d1 + ψ2(ω)d2 + τ + dτ

)
− ω̇d (38)

Now, as with the scaled MRP error eσ , we define the scaled
angular velocity error

eω := µ(t)δω, (39)

and obtain its dynamics

ėω = J−1
(
(J0ω)× ω − ψ1(ω)d1 + ψ2(ω)d2 + τ + dτ

)
− ω̇d +

1 +m

tf
µ

1
1+m eω. (40)

We continue now with the definition of a candidate Lya-
punov function for the eω-subsystem given by

Vω(eω) =
1

2
|eω|2. (41)

Before proceeding, notice that ω̇d equals

ω̇d = −k1
(1 +m

tf
µ

2+m
1+m δσ + µF (δσ)(ωd − δω)

)
=

−k1
( 1 +m

tf
µ

1
1+m eσ + µF (µ−1eσ)ωd − µF (µ−1eσ)µ

−1eω

)
and, in addition, consider the following form of the control
law

τ = −JM
(
k1ω(t, eσ) + λ1||ψ1(ω)||2 + λ2||ψ2(ω)||2

)
eω

− (J0ω)× ω,

with k1ω , λ1, λ2 positive scalars to be properly defined.
The time derivative of Vω along trajectories of (40) yields

V̇ω =
1 +m

tf
µ

−m
1+mµ|eω|2 +

1 +m

tf
µ

−m
1+mµ2k1e

T
ωeσ

+ k1µ
2eTωF (µ

−1eσ)(ωd + eω) + µeTωJ
−1τ

+ µeTωJ
−1ψ1(ω)d1 + µeTωJ

−1ψ2(ω)d2 + µeTωJ
−1dτ

≤ 1 +m

tf
µ|eω|2 +

(1 +m)2µ3k21
2t2f ϵ1

µ|eω|2 +
ϵ1µ

2
|eσ|2

+
k41µ

3

8ϵ2
(1 + |µ−1eσ|2)|eω|2 +

ϵ2
2
(1 + |µ−1eσ|2)|eσ|2

+
k1µ

2

4
(1 + |µ−1eσ|2)|eω|2 +

µϵ3
2J2

m

||ψ1||2|eω|2 +
µ

2ϵ3
|d1|2

+
µϵ3
2J2

m

||ψ2||2|eω|2 +
µ

2ϵ3
|d2|2 +

µϵ3
2J2

m

|eω|2 +
µ

2ϵ3
|dτ |2

−
(
k1ω + λ1||ψ1(ω)||2 + λ2||ψ2(ω)||2

)
µ|eω|2

where we applied Young’s inequality in the appropriate
cross-terms with positive constants ϵ1, ϵ2, ϵ3 > 0. With these
bounds, and the expressions in (20)-(25), we can finally
obtain

V̇ω ≤ −k2ωµ|eω|2 +
ϵ1 + ϵ2

2
(1 + |µ−1eσ|2)µ|eσ|2

+
µ

2ϵ3

∣∣∣
 d1
d2
dτ

 ∣∣∣2. (42)

The previous bounds on V̇ω in (42) along with the bounds
on V̇σ in (35), that in the transformed errors become (after
some bounding with ϵ0 > 0)

V̇σ ≤ −µ
4
(k0 + k1|µ−1eσ|2)|eσ|2 + µeTσF (µ

−1eσ)µ
−1eω

≤ −µ
4
(k0 + k1|µ−1eσ|2)|eσ|2 +

ϵ0
8
(1 + |µ−1eσ|2)µ|eσ|2

+
1

8ϵ0
(1 + |µ−1eσ|2)µ|eω|2, (43)

can be combined to establish that

d

dt
(Vσ + Vω) ≤ −kfµ|eσ|2 − k2ωµ|eω|2 +

∣∣∣
 d1
d2
dτ

 ∣∣∣2

≤ −2min(k2ω, kf ) µ (Vσ + Vω) +
µ

2ϵ0

∣∣∣
 d1
d2
dτ

 ∣∣∣2, (44)

with the gains satisfying

k0 = 4(kf +
ϵ1 + ϵ2

2
+
ϵ0
8
), kf > 0

k1 = k0 +
4(1 +m)

tf

k2ω > 0

k1ω(t, δσ) = k2ω +
1 +m

tf
+

(1 +m)2µ2k21
2ϵ1t2f

+
ϵ3
2J2

m

+
k1µ(1 + |δσ|2)

4
(
k31µ

2ϵ2
+ 1) +

1 + |δσ|2

8ϵ0

λ1 ≥ ϵ3
2J2

m

λ2 ≥ ϵ3
2J2

m

.

Following the definition 2, we can thus establish the claim of
fixed-time input-to-state stability in time tf and convergence
to the origin.

IV. SIMULATIONS

The smooth behavior of the closed-loop system is now
illustrated in a simple simulation scenario. Simulations
were run for the model of a CubeSat used in [16], [17].
This CubeSat is a rectangular parallelepiped of dimensions
20 (cm)×10 (cm)×10 (cm) and mass 2 (kg) assumed to
nominally be homogeneously distributed. As such the nom-
inal inertia matrix is given as J0 = diag(J1

0 , J
2
0 , J

3
0 ) =

diag(87, 83, 37) (kg cm2). The uncertainty on the inertia
matrix is modeled as J1 = diag(J1

0 · 0.1 · sin(2t), J2
0 · 0.1 ·

sin(t + π/4), J3
0 · cos(0.5t + 3π/4)) so that the first two



inertias vary around 10 percent of the nominal value while
the third can vary 100 percent. The elements of both the
nominal and the uncertain inertias are depicted in Fig. 1.

Fig. 1. Nominal J0 (solid lines) and uncertain inertias J0+J1(t) (dashed
lines)

The initial conditions are taken for the angular velocity as
ω0 = (−0.1, 0.05, 0)T (rad/sec) and for the MRP parameters
such that the initial error be δσ0 = (0.9,−0.7, 0). The
disturbances are modeled as dτ (t) = (

√
(t);−1;−0.1 ·

sin(10t + π/4))T , which is a time-varying vector with
both uniformly bounded and strictly increasing components.
These are illustrated in Fig.2.

Fig. 2. Additive disturbances.

The gains were obtained from the conditions of Propo-
sition 1 and by setting ϵ0 = ϵ1 = ϵ2 = ϵ3 = 1, m = 2,
kf = 0.1, k2ω = 0.6 and λ1 = λ2 = 0.01 + ϵ3

2J2
m

.
We performed two sets of simulations: one for a desired

fixed-time tf = 10 (sec) and one for tf = 5 (sec).
For the first simulation, the behaviour of the MRP errors,
δσ, is depicted in Fig.3 while the behavior of the angular
velocities is shown in Fig.4. In both cases, we notice the
very smooth behaviour despite the presence of uncertainties

and disturbances as well as the convergence in the predefined
time tf .

Fig. 3. MRP errors - Fixed time tf = 10 (sec).

Fig. 4. Angular velocities Fixed time tf = 10 (sec).

Similar results are shown for the second set of simulations.
For this case, the attitude errors are shown in Fig.5 while the
angular velocities is shown in Fig.6.

V. CONCLUSIONS–PERSPECTIVES

We proposed a solution to the problem of stabilisation
in predefined time of the attitude of a rigid body. The
proposed control law is smooth and thus, does not inherit
the deficiencies of designs based on (dis)continuous designs.
The proposed design allows the stabilisation to the desired
attitude while attenuating the effects of additive disturbances
and (time-varying) uncertainties in the inertia matrix. The
performance of the resulting closed-loop is illustrated on a
CubeSat example through numerical simulations in MAT-
LAB. Furthermore, smooth attenuation of extreme cases of
time-variations of the inertia matrix and the disturbances was
also demonstrated.



Fig. 5. MRP errors - Fixed time tf = 5 (sec).

Fig. 6. Angular velocities Fixed time tf = 5 (sec).

Future works will focus on extending this setting to treat
saturation and state constraints following the developments,
based on barrier-Lyapunov functions, in [18]. Realistic sce-
narios where the available onboard sensors (IMU, star track-
ers) have to be considered and as such the control design
requires the incorporation of an attitude/velocity observer is
another interesting direction.

ACKNOWLEDGMENTS

The author thanks his colleagues at ONERA Florian
Dietrich and Bruno Hérissé for fruitful discussions on finite-
time control for optimal guidance of aerospace vehicles that
motivated this work.

REFERENCES

[1] J.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,”
IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148–
1162, 1991.

[2] C. I. Byrnes and A. Isidori, “On the attitude stabilization of rigid
spacecraft,” Automatica, vol. 27, no. 1, pp. 87–95, 1991.

[3] P. Tsiotras, “Further passivity results for the attitude control problem,”
IEEE Transactions on Automatic Control, vol. 43, no. 11, pp. 1597–
1600, 1998.

[4] ——, “Stabilization and optimality results for the attitude control
problem,” Journal of Guidance, Control, and Dynamics, vol. 19, no. 4,
pp. 772–779, 1996.

[5] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude
Determination and Control. Springer, New York, NY, 2014.

[6] J. L. Crassidis and F. L. Markley, “Sliding mode control using modified
rodrigues parameters,” Journal of Guidance, Control, and Dynamics,
vol. 19, no. 6, pp. 1381–1383, 1996.

[7] J. L. Crassidis, S. R. Vadali, and F. L. Markley, “Optimal variable-
structure control tracking of spacecraft maneuvers,” Journal of Guid-
ance, Control, and Dynamics, vol. 23, no. 3, pp. 564–566, 2000.

[8] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode
Control and Observation. Birkhaüser, 2014.

[9] Y. Choudhary, B. Singh, S. Kamal, and S. Ghosh, “Arbitrary time
attitude stabilization and tracking of rigid body on SO(3),” in 2021
29th Mediterranean Conference on Control and Automation (MED),
2021, pp. 292–297.

[10] D. Thakur, S. Srikant, and M. R. Akella, “Fixed-time attitude tracking
control for spacecraft without unwinding,” Acta Astronautica, vol. 151,
pp. 818–827, 2018.

[11] Y. Bai, J. D. Biggs, F. B. Zazzera, and N. Cui, “Adaptive attitude
tracking with active uncertainty rejection,” Journal of Guidance,
Control, and Dynamics, vol. 41, no. 2, pp. 550–558, 2018.

[12] D. Thakur, S. Srikant, and M. R. Akella, “Adaptive attitude-tracking
control of spacecraft with uncertain time-varying inertia parameters,”
Journal of Guidance, Control, and Dynamics, vol. 38, no. 1, pp. 41–
52, 2015.

[13] Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback
for regulation of normal-form nonlinear systems in prescribed finite
time,” Automatica, vol. 83, pp. 243–251, 2017.

[14] Y. Song, Y. Wang, and M. Krstic, “Time-varying feedback for stabi-
lization in prescribed finite time,” International Journal of Robust and
Nonlinear Control, vol. 29, no. 3, pp. 618–633, 2019.

[15] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
adaptive control design. John Wiley & Sons, New York, 1995.

[16] L. Magnis and N. Petit, “Angular velocity nonlinear observer from
vector measurements,” Automatica, vol. 75, pp. 46 – 53, 2017.

[17] I. Sarras, “Global exponential estimation of rigid body angular veloc-
ity directly from multiple vector measurements,” in 2020 European
Control Conference (ECC), 2020, pp. 979–984.

[18] E. Restrepo, A. Loria, I. Sarras, and J. Marzat, “Robust consensus
of high-order systems under output constraints: Application to ren-
dezvous of underactuated uavs,” IEEE Transactions on Automatic
Control, pp. 1–1, 2022.


