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Abstract— Deep learning (DL)-based solutions have been 

extensively researched in the medical domain in recent years, 

enhancing the efficacy of diagnosis, planning, and treatment. 

Since the usage of health-related data is strictly regulated, 

processing medical records outside the hospital environment for 

developing and using DL models demands robust data 

protection measures. At the same time, it can be challenging to 

guarantee that a DL solution delivers a minimum level of 

performance when being trained on secured data, without being 

specifically designed for the given task. Our approach uses 

singular value decomposition (SVD) and principal component 

analysis (PCA) to obfuscate the medical images before 

employing them in the DL analysis. The capability of DL 

algorithms to extract relevant information from secured data is 

assessed on a task of angiographic view classification based on 

obfuscated frames. The security level is probed by simulated 

artificial intelligence (AI)-based reconstruction attacks, 

considering two threat actors with different prior knowledge of 

the targeted data. The degree of privacy is quantitatively 

measured using similarity indices. Although a trade-off between 

privacy and accuracy should be considered, the proposed 

technique allows for training the angiographic view classifier 

exclusively on secured data with satisfactory performance and 

with no computational overhead, model adaptation, or 

hyperparameter tuning. While the obfuscated medical image 

content is well protected against human perception, the 

hypothetical reconstruction attack proved that it is also difficult 

to recover the complete information of the original frames. 

Keywords—image obfuscation, singular value decomposition, 

principal component analysis, deep learning, medical imaging 

I. INTRODUCTION 

In recent years, more and more deep learning-based 
solutions have been employed for solving various tasks in our 
daily life. The healthcare domain is no exception, as DL has 
achieved promising results in automating tedious tasks and 
facilitating doctors' work from diagnosis to treatment [1]. Due 
to the demand for such solutions, DLaaS (Deep Learning as a 
Service) platforms gained popularity. They emerged to assist 
those lacking the necessary expertise and processing resources 
to develop and deploy reliable DL models. Many hospitals and 
clinics are inclined nowadays to externalize specific tasks to 
DLaaS providers, both in terms of model training and new 
sample inference. However, the considerable amount of 
high-quality data typically required to develop and validate 
reliable solutions continues to be one of the biggest 
challenges. Compared to other domains where acquiring 
training data involves relatively low costs, patients' 
health-related information is a special class of personal data 
whose usage is strictly regulated by the General Data 
Protection Regulation (GDPR) and Health Insurance 
Portability and Accountability Act (HIPAA) in Europe and the 

United States, respectively. Data collection and outsourcing 
for DL purposes must adhere to privacy and personal 
information protection laws, necessitating appropriate 
anonymization. To address the data confidentiality concerns, 
there is a growing demand for effective privacy-preserving 
strategies that would enable DL model training based solely 
on anonymized, encrypted, or obfuscated data.  

Fully homomorphic encryption (HE) is regarded as a 
straightforward method that enables a third party to process 
encrypted data without being aware of its content. Early 
attempts to incorporate HE into neural networks [2-4] showed 
promising achievements but also encountered roadblocks that 
limit their practical application. These obstacles included the 
constant requirement for communication between the model 
owner and the data provider, the impossibility of processing 
real numbers and the decreased prediction accuracy due to 
various approximations. Solutions to these problems have 
been proposed in numerous research papers, but none 
addressed the training phase of models on encrypted data. Due 
to the higher number of operations, and the longer runtime, the 
approaches focused on the inference phase. To overcome this 
shortcoming, we previously proposed a noise-free matrix-
based homomorphic encryption alternative, which however 
has a lower security than conventional methods [5]. To 
mitigate the security vulnerability, we also integrated a 
numerical optimization method that facilitates training with a 
fixed number of operations, with an HE scheme, and an 
encoding technique that allows for computations on rational 
numbers [6]. However, a key disadvantage of this approach is 
the computational overhead. A recent survey [7] summarizes 
the various privacy-preserving primitives, such as multi-party 
computation, differential privacy, and federated learning, that 
could potentially be integrated into deep learning solutions, 
emphasizing that almost always a trade-off between security, 
performance and computational load should be considered.  

Another approach focused on ensuring the confidentiality 
of image-type data consists of obfuscation. Various 
techniques have been proposed in past years, each with its own 
advantages and limitations. The most popular methods include 
mosaicking, blurring, and shuffling, which can obscure faces 
and numbers from human perception [8, 9]. Other innovative 
technique involves combining the pixels of two images or 
using a transformation generator [10, 11], the last being 
specifically designed for a medical application (MRI brain 
segmentation). The drawback of such methods is that they 
substantially impact the prediction performance. Some were 
also proven vulnerable to reconstruction attacks. Generative 
adversarial networks are typically the foundation of the 
techniques that aim to produce visually pleasing images [12, 
13]. These models can be used to generate face detection data 



while offering protection against face recognition. Our 
previous work on image obfuscation started with analyzing 
the effect of bijective and non-bijective functions, when pixel 
intensity shuffling is used to hide the content of an image [14]. 
The study proved that non-bijectivity increased security 
without significantly impacting classification performance. 
Then, we combined the encoding of a variational autoencoder 
with the non-bijective shuffling to increase both the accuracy 
and the privacy [15].  

In this paper, we propose image obfuscation approaches 
based on singular value decomposition and on principal 
component analysis, respectively. This research aims to 
determine, for each of the proposed techniques, the degree to 
which they meet the following requirements: (i) obfuscate 
sensitive image content from human perception, (ii) hinder 
AI-based image recovery, and (iii) facilitate the usage of 
obfuscated images in DL model training. The same 
methodology and experimental setup as in our previous work 
are used to enable a fair comparison. The experiments are 
constructed to reflect the perspective of a clinical user that 
relies on an external party (i.e., the DLaaS provider) to 
develop a model that solves a basic but tedious task (in this 
case, angiographic view classification). The DLaaS provider 
can access, for this purpose, only obfuscated training data. The 
model is then made available to the hospital in the cloud, 
where new images will be sent for inference in their 
obfuscated state. On the other hand, a threat actor (e.g., 
another healthcare company, the DLaaS provider, or an 
interceptor) wants to access the non-obfuscated version of the 
patients' data. The threat actor conducts an AI-based 
reconstruction attack to recover the image's original state. 
Two different levels are assumed for the attacker's knowledge: 
the reconstruction attempts are performed with a model 
trained on generic medical images, and with a model trained 
on angiographies similar to the classification dataset (i.e., the 
data targeted by the threat actor). 

The rest of the manuscript is organized as follows. The 
obfuscation approaches and the methods and materials used to 
analyze their privacy-preserving properties in the context of 
DL-based solution development are presented in Section II. 
Section III describes the experiments performed from the 
utility and privacy perspectives, along with the findings. In 
Section IV, we compare the results with our previous work, 
propose subsequent research directions considering the 
limitations of the current experimental setup, and draw 
conclusions. 

II. METHODS AND MATERIALS 

A. Image Obfuscation based on Singular Value 

Decomposition 

Singular value decomposition (SVD) is a method for 
matrix factorization that generalizes eigendecomposition to 
matrices of arbitrary dimensions. Applying this factorization 
for image obfuscation consists of treating the entire image as 
a matrix and using the decomposition formula (1), where I is 
the image matrix, U is a square matrix containing the 
eigenvectors of I·IT, VH is the Hermitian transpose of V, 
including the eigenvectors of IT·I and S is a diagonal matrix 
that contains the singular values of I, uniquely determined by 
the image I. IT denotes the transpose of the image matrix.  

 I = U·S·VH () 

The intuition on which the obfuscation approach is based 
on is that discarding the S matrix would ensure image privacy 
by removing the underlying information up to a certain 
degree. At the same time, features of the original image are 
stored in U and VH enabling the successful development of 
DL-based solutions. Thus, the scenarios where the obfuscated 
image, IO, is computed as IO = U, IO = VH, and IO = U+VH are 
analyzed in terms of utility, privacy level and protection 
against AI-based reconstruction. A comparison between an 
angiographic frame and the obfuscated counterparts for the 
three SVD-based approaches is depicted in Fig. 1.   

  

Fig. 1. Comparison between an original angiographic frame and different 

SVD-based obfuscations. 

B. Image Obfuscation based on Principal Component 

Analysis 

The principal component analysis is a technique based on 
the singular value decomposition of a matrix. It is typically 
used to examine a large dataset, with a high number of features 
per sample, to reduce the dimensionality while conserving as 
much information as possible. To make use of this technique's 
properties for image obfuscation, the following steps are 
applied: 

1. The first N principal components are extracted based 
on the training set. 

2. The previously identified components are extracted 
from each image of the dataset. 

3. Each image's obfuscated counterpart is computed by 
reconstructing the frame from the extracted 
components, employing the inverse transformation.  

The intuition is that training a DL model with this type of 
data would lead to higher performance because more of the 
original information is stored in the obfuscated frames, as the 
matrix now consists of actual pixel intensities and not 
eigenvectors. However, it is expected that this will negatively 
impact the privacy level, hence an additional operation is 
inserted between steps 2 and 3: randomly shuffling the 
principal components. This approach will be abbreviated 
PCA-SC (shuffled components). 

 Nevertheless, since data from the same distribution is 
required to successfully train the DL model, the same 
principal components and shuffling must be applied to all the 
images in the dataset. Examples of images obfuscated with the 
PCA-based techniques for different numbers of principal 
components are shown in Fig. 2.  



  

Fig. 2. Comparison between different PCA-based obfuscations. 

A critical remark is that both SVD-based and PCA-based 
approaches are deterministic, meaning that a frame will 
always be obfuscated identically. This makes them vulnerable 
to re-identification attacks where the threat actor, who has a 
pair of original-obfuscated frames, wants to know if that 
particular image can be found in a dataset. Hence, the threat 
actor may compare all images against the available obfuscated 
sample. The solution would be to add some randomness 
during obfuscation, which will always lead to a different 
result. To achieve this behavior, one-third of the original 
image rows are randomly selected, and one pixel is replaced 
on each row. The pixel's position and its new value are also 
randomly chosen for each image. 

C. Utility and Privacy Evaluations 

The utility of the images obfuscated with the approaches 
described above must be assessed since these techniques lead 
to the partial loss of content from the original sample. The 
evaluation is carried out by training the same DL architecture 
with samples that have been altered using each of the methods 
discussed above and with the original data separately. The 
presumed scenario is that of a hospital planning to automate 
the X-ray coronary angiography view classification. We 
employ a collection of frames from an internal dataset that 
displays either the right coronary artery (RCA) or the left 
coronary artery (LCA). The dataset totals 3280 coronary 
angiographies resized to 128 x 128 resolution and has an equal 
number of samples for each class. The min-max scaling 
technique is used to normalize the pixel intensities in the [0, 
1] interval. The training phase is based on 1980 angiographic 
frames, augmented through shifting, flipping, zooming and 
rotation. A subset of 600 images is used for validation, while 
a separate subset of 700 test images is kept for evaluation. A 
network composed of convolutional and fully connected 
layers is used to solve the task. A particularity of the 
architecture is the use of local normalization layers [16] to 
increase the robustness of the model to image alteration.   
More details regarding the dataset, the architecture and the 
training process are described in [15].  

To assess the security against human perception, the 
structural similarity metric (SSIM) and peak signal-to-noise 
ratio (PSNR) between the original and the obfuscated 
angiographies of the testing subset are computed. SSIM can 
range from 0 to 1, with 0 denoting no structural similarity and 
1 denoting identical frames. According to [10], it can quantify 
image privacy; thus, lower values will be interpreted as 
increased security. The PSNR is expressed in decibels, good 
quality images (with an 8-bit bit depth) often having values 
between 30 and 50 dB. Values below the lower threshold 
signify that the image's content is successfully masked.  

Two scenarios are simulated to measure the security 
against AI-based reconstruction attacks. The following steps 
describe the method that the threat actor is adopting to obtain 
access to the data sent by the hospital: (i) apply the same 
obfuscation technique as the hospital on his own dataset; (ii) 
train a DL model to recover the original images from the 
obfuscated counterparts; (iii) use the model to reconstruct the 
original content of the intercepted frames originating from the 
hospital. Firstly, it is assumed that the threat actor is aware that 
the targeted data consists of medical image acquisitions but 
does not know that they are angiographic frames (S1). In this 
case, the reconstruction model is trained using a generic 
dataset containing six different classes of medical images 
(abdomen CT, breast MRI, CXR, chest CT, hand radiography, 
head CT). The more vulnerable scenario is the one where the 
threat actor trains the network using his own dataset of 
coronary angiographies, i.e., the actor is aware that the target 
data consists of such images (S2). Regardless of the scenario, 
the images are resized to 128 x 128 pixels and normalized to 
the [0, 1] range before being utilized in training. The test 
subset of the hospital data is also employed here to evaluate 
the reconstruction. SSIM and PSNR are computed between 
the original and reconstructed frames for a quantifiable 
evaluation. A U-net [17] architecture is employed for 
reconstruction. The model and the datasets are described in 
detail in [15]. 

III. EXPERIMENTS AND RESULTS 

A. Benchmark 

Before training the classifier with obfuscated images, the 
model is evaluated on the original data. The accuracy on the 
test subset, also reported in [15], is 97.57%. To measure the 
information loss due to random pixels' replacement as a 
solution for determinism, an experiment with the original data 
where one-third of the rows had one pixel randomly changed 
was run. This model's accuracy was 96.71%. Hence, this step 
does not significantly impact the performance as the less than 
1% difference could be considered originating also from other 
random processes during the training (random initialization). 
We consider this value to be the comparison benchmark. 

B. Utility and Privacy Assessment of the Approach based 

on Singular Value Decomposition 

As described above, three possible obfuscation approaches 
are derived from the singular value decomposition. The 
classification results for each of them are shown in Table I.  

TABLE I.  CLASSIFICATION PERFORMANCE FOR SVD OBFUSCATION 

Obfuscation  IO = U IO = VH IO = U+VH 

Accuracy [%] 87.00 85.71 91.85 

 

The U and VH components preserve a similar amount of 
information, and the models trained with this type of data 
achieve satisfactory results. They are, however, outperformed 
by the model trained with images that are obfuscated by 
summing the two matrices, for which the accuracy dropped by 
less than 5% compared to the benchmark. The corresponding 
similarity metrics are shown in the first two rows of Table II. 
As expected, the numbers are higher when both matrices are 
used, but they still indicate that it is impossible to distinguish 
the image's content through visual inspection. The 
reconstruction results are also synthesized in Table II.  



TABLE II.  SIMILARITY METRICS FOR SVD OBFUSCATION 

Obfuscation  IO = U IO = VH IO = U+VH 

SSIM Obfuscation 0.2767 0.2740 0.3155 

PSNR Obfuscation [dB] 19.89 19.88 20.13 

SSIM Reconstruction S1 0.6930 0.6850 0.6935 

PSNR Reconstruction S1 [dB] 18.99 18.45 19.31 

SSIM Reconstruction S2 0.7138 0.7126 0.7121 

PSNR Reconstruction S2 [dB] 22.00 22.11 21.46 

 

The SSIM is higher than when computed for the 
obfuscated samples, indicating that some structural 
information is recovered through reconstruction. As expected, 
it is higher for S2, where the data used to train the 
reconstructed model stems from a distribution similar to that 
of the inferred samples. However, the PSNR remains low, 
confirming that the content of the reconstructed images is 
indistinguishable. The U-net architecture cannot map the 
eigenvectors to the actual pixel intensities of the original 
image in either of the scenarios. Fig. 3 depicts the images 
reconstructed in the S2 scenario. Those corresponding to S1 
looked very similar and thus were omitted. 

  

Fig. 3. Reconstruction attempts for different SVD-based obfuscations. 

C. Utility and Privacy Assessment of the approach based on 

Principal Component Analysis 

The PCA-based methods allow the user to adjust the 
privacy-accuracy trade-off. By selecting an appropriate 
number of principal components, N, one can opt for a higher 
level of security while ensuring a satisfactory performance. 
The maximum number of components is represented by the 
total number of pixels, which for a 128 x 128 image is 16,384. 
We performed multiple experiments reducing the number of 
components from 500 to 100 by 50 and from 100 to 25 by 25. 
The classification results for the PCA and the PCA-SC 
approaches are compared in Fig. 4.  

The highest accuracy is 94.71%, only 2% lower than the 
benchmark, but it is achieved for the PCA approach using 500 
components, which only partially blurs the vessels in the 
angiography. A compromise value of N=100 can be selected, 
considering that the accuracy is still greater than 90% while 
the privacy level is satisfactory. For the PCA-SC technique, 
the best performance was 89.57% accuracy when 450 
components were used in obfuscation. This case also led to a 
high privacy level, with the vessels in the image being 
completely hidden. It can be noticed that fewer components 
do not automatically imply a lower accuracy. However, a 
descending trend can be noticed when the obfuscated image is 
obtained directly from the extracted components. This 
tendency is less evident when the components are shuffled 
before using the inverse transformation. This behavior is 
expected because fewer components reduce entropy while 
providing less relevant information.  

   

Fig. 4. Comparison between classification performance achieved when 

PCA and PCA-SC techniques are employed for image obfuscation.  

   

Fig. 5. Comparison between PCA and PCA-SC obfuscation techniques 

with respect to the SSIM between original and obfuscated angiographies.  

Thus, PCA-SC is more security-oriented than PCA, which 
is more focused on the performance. For the PCA-based 
approach, the structural similarity and the image quality 
decrease as the number of components decreases (Fig. 5, 
Fig. 6). On the contrary, the direct proportionality between the 
number of components and the randomness in the PCA-SC 
scenario can explain the similarity's increase for fewer 
components. Although the SSIM is more sensitive to any 
structural change, the PSNR provides an overall quantification 
for the image quality, which, for N under 250, is low 
regardless of the method.  

   

Fig. 6. Comparison between PCA and PCA-SC obfuscation techniques 

with respect to the PSNR between original and obfuscated angiographies.  

The same reconstruction attack scenarios were simulated, 
Fig. 7 depicting samples of recovered frames, starting from 
different levels of obfuscation. While the model can improve 



to some extent the image quality, starting from the details that 
are still present in the angiographies obfuscated with PCA, the 
PCA-SC protects the model against this attack.  

The privacy metrics shown in Fig. 8 and Fig. 9 corroborate 
the idea that the threat actor's awareness of the content of the 
targeted images can increase the likelihood of successful data 
recovery since higher values were registered for nearly all 
experiments under scenario S2. 

IV. DISCUSSION AND CONCLUSIONS 

Since it is challenging to compare the outcomes of this 
research with other similar works in the literature because of 
the differences in the datasets and methodologies employed, 
we briefly compare the results with what we achieved in our 
prior work [14,15].  

  

Fig. 7. Reconstruction attempts for different PCA-based obfuscations in 

two attack scenarios.  

Previously, the best classification accuracy obtained for 
obfuscated images on this dataset was 93.71% when the 
angiographies were altered using a variational autoencoder. 
However, to some extent, the vessels were distinguishable in 
the obfuscated frame and could also be recovered, when 
employing the same reconstruction architecture as the one in 
the current experiments. The highest accuracy on the frames 
obfuscated with the methods described above was 94.71% 
(PCA, 500 components), but this is again the case of a low 
level of alteration, where many details are still visible in the 
image. Nevertheless, the highest performance achieved in this 
work when the image's content is entirely undistinguishable 
was 91.85% (SVD, IO = U+VH) which is almost 10% higher 
than the accuracy obtained with the secure algorithm that we 
previously proposed (that combined VAE with non-bijective 
pixel intensities shuffling). The overall privacy and 
reconstruction metrics were lower in the current work, 
indicating that the methods based on SVD and PCA provide 
better security than previously analyzed approaches.  

 

Fig. 8. Comparison between PCA and PCA-SC obfuscation techniques 

with respect to the SSIM between original and reconstructed angiographies 

in two attack scenarios. 

It is important to note that the purpose of the experiments 
is not to achieve state-of-the-art performance in angiographic 
view classification on obfuscated data, which is why the same 
architecture was employed for all types of input data. Future 
research should explore how much performance can be 
improved by adjusting the network specifically for obfuscated 
images, and what deep learning techniques are the most 
suitable for building models using input undistinguishable to 
humans. From our experiments, for the SVD approach, using 
in conjunction the U and VH component, either in a two inputs 
model where parallel networks analyze the components, or as 
a two-channel input in a one-branch network, increases the 
performance by ~2%, when compared to the setting where U 
and VH are summed. 

On the other hand, the fact that the reconstruction failed in 
most of the cases does not imply that the method is perfectly 
secure against any reconstruction attack but just that the 
employed architecture (that previously managed to partially 
decode images obfuscated with other methods) cannot recover 
this specific dataset when it is obfuscated using the methods 
presented in this manuscript. As a future step, an analysis 
across multiple datasets and multiple attack configurations 
(threat actor’s knowledge level, attack techniques, 
architectures employed) would be beneficial for assessing the 
true strength of these obfuscation techniques against AI-based 
reconstruction attempts.  

Although some of the accuracy scores are 10% below the 
benchmark, as the dataset is balanced and the two classes are 
predicted equally, the performance can still be considered 
satisfactory. Even though data security was ensured during 
most experiments, the few cases where the classification 
results were very close to the benchmark with the cost of poor 
obfuscation emphasized the need for careful consideration of 
the privacy-accuracy trade-off. Thus, the analyzed techniques 
keep image content confidential and protect it against human 
and AI perception, while ensuring its utility in developing 
deep learning solutions. 



 

Fig. 9. Comparison between PCA and PCA-SC obfuscation techniques 

with respect to the PSNR between original and reconstructed angiographies 

in two attack scenarios. 
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