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Abstract—In this paper we provide an approximate analysis
that synthesizes results on the throughput and the delay of S-
Aloha under a variety of backoff laws with an unlimited number
of backoff stages. Past results, common to those about IEEE
802.11 protocols, show that, with the exponential backoff, the
access-delay distribution is heavy tailed, and that, in order to
alleviate the delay, throughput and number of users must be
sacrificed. This paper uses an approximated and simple model
recently introduced to produce results that are usually derived in
a more complex framework. Here the model is extended to gen-
eral backoff laws, including polynomial laws of type (a+ i

ν)−1.
We find that, when considering all performance factors, i.e.,
throughput, variance, access flexibility, and maximum number
of users allowed, the polynomial law is to be preferred, with a
degree ν that increases with the number of users that can be
accommodated.

Index Terms—Slotted-Aloha, Backoff, Throughput, Delay, Un-
fairness, Decoupling Assumption, Random Access.

I. INTRODUCTION

In this paper we provide an approximate analysis that

synthesizes results on the throughput and the delay of S-Aloha

[1], [2] under a variety of backoff laws with an unlimited

number of backoff stages. The goal is to get insights into

a backoff scheme able to conjugate high throughput and

bounded delay variance, even when the number of users N
is unknown and possibly very large, as it can be the case in

future applications.

Starting with [3], the analysis of backoff schemes has been

undertaken mainly with respect to IEEE 802.11, which, in fact,

uses some form of S-Aloha embedded in its random access

scheme, together with the Binary Exponential Backoff (BEB).

In BEB the transmission slot of a packet that has suffered i
collisions, the backoff index, is taken as a uniform variable

in a window of length 2i+i0 , where i0 determines the initial

length W0 = 2i0 . Many studies (a detailed reference list can

be found, for example in [4]) have appeared on the throughput

performance of this protocol with respect to its parameter

settings. Results show that BEB can provide some relevant

throughput even when the number of users goes to infinity.

This is possible because the Exponential Backoff (EB) deals

with the congestion by pushing a large part of users toward

large backoff stages. Such effect, in turn, causes very large

delays, resulting in an access-delay probability distribution

that presents a heavy-tail behavior, to the point that, in many

cases, the delay variance does not exist. To face this problem

many authors have suggested new backoff schemes (see [5] for

a comprehensive reference list), although the delay problem

does appear still unsolved.

Due to the complexity of a thorough analysis, most of the

works cited above use reduced and approximated mathematical

models, many of them considering the saturation model, first

introduced in [3], and based on the assumption that queues

are always full, such that as soon as a packet is successfully

transmitted at a station, immediately a new one is available for

transmission. This model is somewhat simpler and pessimistic

with respect to the one with real queues, and has been adopted

in the hope that it presented a stable behavior and positive

throughput, thus guaranteeing the stable behavior and the

throughput of the more realistic one.

A further simplifying assumption, introduced in [3] and

known as the decoupling assumption, has been largely used

[6]–[9]. This assumption considers the behavior of different

transmitters to be stationary in time and independent from

station to station. Using both the above assumptions leads

to a mean value analysis (MVA) and a fixed point equation

[3], that provides in a simple way the (approximated) basic

performance figures of the protocol.

Only a few authors have used the above models with respect

to S-Aloha. In other cases throughput results are provided with

respect to IEEE 802.11, so that their values strongly depends

on the choice of the specific parameters of this protocol, such

as the packet transmission time, the RTS-CTS time, the slot

time and so on, making it difficult to extract information about

the underlying S-Aloha. Furthermore, the elaborate passages

required by the MVA, and the lack of close-from results, often

obscure the role of parameters.

Recently, an analysis of EB for S-Aloha has appeared in

[10] where the results for the decoupling assumption have

been compared with more realistic ones, attained by the Semi-

Poisson Model (SPM), based on a reduced Markov Chain. It

is shown that, although the decoupling assumption provides

good throughput results for large values of the initial backoff

window W0, and a large number of users, it behaves fairly

worse when considering a small W0, as it is more suitable

to S-Aloha. In fact, the initial window W0 determines the

bandwidth a user can grab when alone on the channel. The

larger W0 is, the smaller is the bandwidth it can use. The same

is true for the access delay.

Unfortunately, the Markov Chain of SPM is numerically



solvable for some specific parameters setting, such as those

found in commercial applications, being its complexity too

high in other cases, as some relevant to this paper. In these

same cases, simulation does not help, since the convergence

times are very long. The decoupling assumption presently

remains, then, the only available tool able to catch the behavior

of the throughput when the system parameters change.

We, therefore, in our investigations on the best parameters

setting and the best backoff law, resort to the decoupling

assumption model, knowing that our results can be mere

indicative of an optimality, rather than providing exact quan-

titative results. More precisely, we adopt the Poisson Model

(PM) introduced in [10], [11], which has been shown to be

equivalent to decoupling assumption, but appears to be much

simpler. We generalize this model to enclose any backoff law

with increasing backoff window. To this respect, we prove

some general properties about throughput that have already

appeared, in part, in [5], although with a different technique.

Our PM approach provides a simpler analysis and results when

compared to those in [5], yielding in some cases close-form

results.

In the access-delay analysis we adopt the approach in [11],

[12], introducing additional theorems that allow to derive the

tail of the probability distribution. We show conditions for the

existence of delay moments of any order, generalizing those

on the delay variance derived in [5]. These tools are used to

investigate the optimal parameters setting and the backoff law

to be preferred among EB and polynomial (POL) schemes,

taking into account constraints on the delay variance and the

flexibility of the protocol, i.e., the ability of providing a good

balanced bandwidth on the entire range of N , from 2 up to a

maximum number of users.

Our results indicate that POL is a good candidate law,

able to provide throughput performance comparable or better

than EB, and with more favorable delay distribution and

flexibility. Similar results have been noted in [5], where a

polynomial degree equal to 2 is suggested. Here we find that

the polynomial degree must be increased as the number of

users to be served enlarges.

The paper is organized as follows. In Sec. II we set the

system parameters and derive some basic relations and results

about the model. Section III is devoted to the Poisson model,

and provide throughput numerical results. In Sec. IV we

characterize the access-delay distribution results, while in

Sec. V we evaluate the delay variance and provide numerical

results about the maximum number of users Nmax that can

be accommodated under throughput and access-delay variance

constraints. The validation of theoretical results is provided by

simulation in Sec. VI. Conclusions are given in Sec. VII.

II. PRELIMINARY RESULTS

In this paper we investigate general backoff laws, where at

each time a transmission occurs with probability βi. Numerical

results are attained for the following EB law

βi = b−i−i0 , (1)

and the POL law

βi = (a+ iν)−1. (2)

The above laws are of the memoryless type, slightly dif-

ferent from the Window type as considered, for BEB, in the

IEEE 801.11. However, we can prove that, when used with the

decoupling assumption, they provide exactly the same results

of the window type. The reason is that, decoupling assumption

only deals with mean values, which can be made equal in the

two cases.

In [13] it has been proven that the exponential law (1)

provides ergodic behavior and fair throughput for b > 1 and

i0 > 1. The very same arguments can be used to show that

the same holds for law (2) with a > 1 and ν > 1.

We note that, when changing parameter i0, or b, in (1), or

parameter a in (2), we change the bandwidth that is taken

when only a single user is present, that is equal to b−i0 and

1/a in the two cases, and that we dub protocol flexibility.

Since the appealing feature of Aloha is the ability to provide,

more or less, the same bandwidth whichever the number of

users is, in the following we compare the protocols and their

different settings by fixing the flexibility parameter. Since the

case i0 = 1 is the boundary for stable operation of EB, we

safely assume i0 ≥ 2. On the other side, it is well known, as

we show below, that with b = 2 the protocol is overreacting,

i.e., users refrain too much from transmission when the backoff

index increases. As a consequence the traffic on the channel is

chocked, and the throughput is less than what can be obtained

with smaller b values. It has also been shown in [11] that

increasing b increases the delay and makes the tail of the delay

distribution more unfavorable. Therefore, we will not consider

values of b greater than 2. This leads to a reasonable flexibility

parameter equal to 1/4.

The system is described by a Markov chain whose Marko-

vian state is (N0, N1, . . . , Ni, . . .), where Ni represents the

number of users with backoff index i, whose expectation

is denoted by ni. The solution of the chain provides the

joint distribution of the above variables, from which all the

performance figures can be derived. Unfortunately, this is a

too complex task to be attempted in a general setting. In [11],

the complexity of the above chain is reduced by means of

some approximations, so that in some cases, results can be

derived with a precision that is increasing with complexity.

Unfortunately, this approximation, which provides practically

exact results for b = 2, does not work well with smaller values

of b, and with the POL model.

On the other side, the Poisson model introduced in [10],

[11], does provide approximate results, even in the order of

10% in some cases. However, the behavior of the model, with

respect to parameter changes, well reflects the behavior of the

real system, and therefore can be usefully used to attain good

insights and suggestions for optimal choices.

A. General Setting

The whole system can be conveniently represented by a

network of stages, as shown in Fig. 1, where λi, the overall

transmission rate at stage i, and si, the throughput of stage

i, represent respectively the rates of user flows into and out

stage i.



Figure 1. Scheme of the backoff mechanism as a network of stages.

The throughput of stage i can be expressed as

si = E



γi(1, Ni)

∞
∏

k=0,k 6=i

γk(0, Nk)



 , (3)

where the average is taken over the joint distribution of the

Ni’s, and

γi(k,Ni) =

(

Ni

k

)

(βi)
k
(1− βi)

Ni−k

is the probability of having k transmissions in stage i. The

throughput is evaluated as

λ0 =

∞
∑

i=0

si.

The “routing” probability out of stage i, defined as αi =
λi+1

λi
, is given by:

1− αi =
si
λi

=
si
ni

ti, (4)

where the last passage comes from Little’s result [14], being

ti the average time the user spends in stage i, and equal to

β−1
i . We also have

λi = λ0α0α1 . . . αi−1, i ≥ 1, (5)

and again using Little’s result, we can express N as

N =

∞
∑

i=0

ni =

∞
∑

i=0

λiti =

∞
∑

i=0

λiβ
−1
i . (6)

In the following we make use of the Poisson model,

introduced in [10], that we generalize below.

III. POISSON MODEL

The Poisson model assumes that the stationary distribution

of (N0, N1, . . . , Ni, . . .) is a joint Poisson distribution, inde-

pendent from stage to stage. Since a user with index i transmits

independently of others with probability βi, the distribution of

transmitting users Ni at stage i is still Poisson, independent

of Nj , j 6= i, with average λi = niβi. Since the sum of

independent Poisson variables is still Poisson distributed, the

traffic on the channel is as such, with average Λ =
∑∞

k=0 λk .

We then have

αi = 1− e−Λ, (7)

λ0 = Λe−Λ, (8)

and, by (5), (6), (7) and (8), being λi = λ0α
i, we get

N = Λe−Λ
∞
∑

i=0

(1− e−Λ)i/βi. (9)

We note that the above summation must converge since the

system is known to work in stationary conditions and N is a

given finite number.

In the two considered backoff cases, equation (9) has a

close-form expression that is derived next. By inspecting those

expressions, we can state

Property 1. The RHS of (9) is a monotonically increasing

function of N .

Therefore, equation (9) can be solved to get a unique Λ,

given N , and all other metrics. Furthermore we have:

Property 2. For any given parameters setting, if N increases,

then traffic Λ increases. The maximum channel traffic Λ∗ is

reached for N = ∞.

Property 3. The maximum throughput in (8) is e−1 and is

attained in Λ = 1.

However, in order the maximum throughput to be reached,

the protocol parameters must be tuned, if possible, in order

that we get Λ = 1. The maximum channel traffic Λ∗, reached

when N = ∞, is attained when (9) diverges in Λ = Λ∗,

while converging for Λ < Λ∗. Using the ratio test for the

convergence, we can easily prove the following

Property 4. A finite maximum channel traffic, Λ∗ < ∞, is

reached only if

lim
i→∞

βi+1

βi
= 1− e−Λ∗

,

and the system provides positive throughput. Otherwise, if

lim
i→∞

βi+1

βi
≥ 1

(9) diverges when Λ∗ = ∞, and the throughput is zero.

Therefore, in order to reach the maximum throughput in

Λ∗ = 1 with N = ∞, we must have

lim
i→∞

βi+1

βi
= 1− e−1.

To end this part, we must note that many of the result and

properties above have already been derived in equivalent form

in [5], although in a quite more complex context that uses the

decoupling assumption.

A. EB case

Using (1), we get immediately

N = bi0
Λe−Λ

1− b(1− e−Λ)
. (10)

We also get

Λ < ln
b

b− 1
= Λ∗ (11)

λ0 <
b− 1

b
ln

b

b− 1
.

The model works up to Λ = Λ∗ = ln b
b−1 , approxi-

mately equal to 0.7 for b = 2, where the throughput is

λ0 = ln(2)/2 ≈ 0.34. This clearly shows that BEB is



unable to provide maximum throughput. The throughput of

this model reaches maximum when ln b
b−1 = 1, which implies

b = 1
1−e−1 ≈ 1.58, according to Proposition 4, regardless of

i0. These latter results were already derived in [6] with the

decoupling assumption, again in a more complex framework.

From inspection of (10) we further have:

Property 5. For given N and i0, if we increase b, then traffic

Λ decreases.

Property 6. For given b and Λ, if we increase i0, then N is

increased, and the throughput curve λ0(N) is merely shifted.

B. POL case

Here we have

N = Λ

(

a+ e−Λ
∞
∑

i=0

(1− e−Λ)iiν

)

, (12)

which, for example, for ν = 1, 2, 3, 4, provides the closed

forms:

N = Λ

(

a+
u(Λ)

e−Λ

)

, (13)

N = Λ

(

a+
u(Λ)2 + u(Λ)

e−2Λ

)

, (14)

N = Λ

(

a+
u(Λ)3 + 4u(Λ)2 + u(Λ)

e−3Λ

)

, (15)

N = Λ

(

a+
u(Λ)4 + 11u(Λ)3 + 11u(Λ)2 + u(Λ)

e−4Λ

)

, (16)

where u(Λ) = 1− e−Λ. Since with this law it is

lim
i→∞

βi+1

βi
= 1,

POL can not provide positive throughput (9) as N diverges.

Furthermore we have

Property 7. If we increase the flexibility parameter a by step

∆a, then N is increased by Λ∆a, the throughput curve λ0(N)
is shifted to the right and scaled with N .

C. Throughput with Constant Flexibility

With the PM, we have derived the throughput curves for

EB (10) and POL (12) shown respectively in Fig. 2 and 3 for

different values of the parameters, keeping the flexibility b−i0

and 1/a at the constant value 0.25.

The curve for b = 1.6 is practically the one that reaches

throughput e−1 when N = ∞, as shown in Sec. III-A. For b <
1.6 the asymptotic throughput decreases while the maximum

is reached in N = 6, 5, 4 for respectively b = 1.2, 1.1, 1.05.

On the other side, the POL case in Fig. 3 shows a throughput

that asymptotically decreases to zero, as shown in Sec. III-B.

Therefore, such a law can be considered only when the

maximum value of N is bounded. For example, we see that

ν = 4 provides good throughput up to at least N = 10000.
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Figure 2. Throughput versus the number of users for EB and different
parameters value with constant flexibility b−i0 = 0.25.
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Figure 3. Throughput versus the number of users for POL and different
parameter value with constant flexibility 1/a = 0.25.

We must note that the advantage of EB in providing positive

throughput even for an infinite number of users is only

apparent since, as it is proved in the next section, a large part

of them is pushed toward high index stages in such a way that

the delay experienced can be hardly considered for practical

purposes.

To end this section, it is worth mentioning the lack of

accuracy of throughput values at low N , especially for N = 1,

where all curves are expected to converge to 0.25, and more

so with b−i0 = 2, where in N = 1 the throughput is

0.5. However, as explained in Sec. I this lack of accuracy

represents, for the moment, the price to be paid to get an

overall insight of the protocol performance.

IV. ACCESS-DELAY

The access delay is represented by the random variable (RV)

DR =
R
∑

k=0

Tk, (17)



where Tk is the geometric RV with average 1/βk, that repre-

sents the time spent in stage k by a user, and R is the random

index of the stage where the transmission is successful.

The throughput λ0, evaluated as described in Sec. III,

immediately provides the first-order delay moment as

dR , E [DR] =
N

λ0
. (18)

As simple as it is, relation (18) has been overlooked in many

of the works appeared in the literature. It is readily proved by

Little’s Result and by observing that the throughput of each

user is λ0/N . On the other side, with the saturation model,

the average number of packets in the transmission buffer is

always one. This result shows that the setting that provides

the highest throughput also gives the smallest average access

delay.

The complementary cumulative distribution function

(CCDF) of DR can be expressed as

P (DR > d) =

∞
∑

r=0

P (R = r)P (Dr > d), (19)

where the probability mass function of R, by (4), (5) and (7),

is

P (R = i) = αi(1− α), i = 0, 1, · · · . (20)

Conditioned to R = r, the probability mass function of Dr

has average

dr = E [Dr] =

r
∑

k=0

1/βk. (21)

In the Appendix we prove the following

Theorem 1. The random variable Dr/dr converges in distri-

bution, for r → ∞, to a random variable ∆ with pdf

p∆(x) =

∞
∑

k=0

µke
−µkx

∞
∏

j 6=k, j=0

µj

µj − µk
, x > 0, (22)

where µ−1
k = limr→∞(βr−kdr)

−1 for k = 0, 1, . . . , provided

that the limits exist.

We now prove the following:

Theorem 2. For large values of i we have

P (DR > di) ≈ Aαi. (23)

Proof: Given r1 we have

lim
d→∞

P (Dr1 > d) = 0,

which means that given any ε > 0 we can always find d′(r1, ε)
such that for d > d′

r1−1
∑

r=0

P (R = r)P (Dr > d) ≤ ε.

Also, given d we have

lim
r→∞

P (Dr > d) = 1,

which shows that given any ε′ > 0 we can always find r2(d, ε
′)

such that for r > r2
∞
∑

r=r2+1

P (R = r) − ε′ ≤

∞
∑

r=r2+1

P (R = r)P (Dr > d) ≤
∞
∑

r=r2+1

P (R = r). (24)

Since ε and ε′ can be made as small as wanted, for d >
d′(r1, ε) and for a suitable r2 we can write

P (DR > d) ≈

r2
∑

r=r1

P (R = r)P (Dr > d)+
∞
∑

r=r2+1

P (R = r).

Then, by Theorem 1, we can always find an integer r1 so that

delay (19) can be written as

P (DR > d) ≈

r2
∑

r=r1

P (R = r)P

(

∆ >
d

dr

)

+ P (R > r2),

for d ≥ d′(r1), where the approximation becomes equality in

the limit d → ∞. For d = di, by (26), we have

P (DR > di) ≈

i+a2
∑

r=i−a1

P (R = r)P

(

∆ >
di
dr

)

+ P (R > r2),

(25)

having denoted r1 = i− a1 and r2 = i+ a2. For large values

of r1, r2 and i, r1 < i < r2, using (20) we get (23) where

A = (1− α)

a2
∑

k=−a1

αkP

(

∆ >
di

di+k

)

and P (R > r2) has been disregarded.

A. EB case

Here we have

di =

i
∑

k=0

bi0+k = bi0
bi+1 − 1

b− 1
≈ hbi, (26)

where the approximation holds for large i. Defining

α = b−ζ(N), (27)

and using (23) and (26) provides

P (DR > di) ≈ Ad−ζ
i , (28)

or

P (DR > d) ≈ Ad−ζ . (29)

By the definitions we can write

ζ = −
lnα

ln b
= −

ln(1− e−Λ)

ln b
, (30)

which shows that the slope ζ decreases as N increases since,

by Property 2, also Λ increases. With N = ∞, by Property 4,

we have 1 − e−Λ∗

= 1/b, which gives ζ = 1. Furthermore,

ζ reaches its maximum value when Λ is minimum, which

happens for N = 2.



Property 8. The slope ζ of the delay CCDF decreases as N
increases reaching 1 with an infinite number of users.

Since delay moments are given by

E
[

(DR)
k
]

=

∫ ∞

0

kdk−1P (DR > d) d d

≈ A

∫ ∞

0

kd−(ζ−k+1) d d, (31)

they only exist if

ζ > k, (32)

and the existence of moments is dictated by Property 8.

B. POL case

Here we have

di = E [Di] =

i
∑

k=0

1

a+ kν
≈ h′iν , (33)

and

i = h′′d
1/ν
i , (34)

which used into (23) provides

P (DR > di) ≈ Aαh′′d
1/ν
i , (35)

or

P (DR > d) ≈ Aαh′′d1/ν

. (36)

As the tail of the distribution decreases exponentially, we have:

Property 9. With the polynomial law, and finite N , moments

of any order exist, and their values increase with ν.

V. DELAY-VARIANCE

Since the value of the access-delay variance is a key param-

eter in designing a practical system, and since such variance

increases with the number of users N , in this section we

investigate, for a given flexibility parameter and throughput,

the upper bound on N as the delay variance changes. To this

purpose we derive the expression of the second order moment

as

E
[

D2
R

]

=

∞
∑

r=0

E
[

(Dr)
2
]

pR(r)

=
∞
∑

r=0





r
∑

k=0

2− βk

β2
k

+ 2
r−1
∑

i=0

r
∑

j=i+1

1

βiβj



αr(1− α),

(37)

where we have used the second order moment of the geometric

RV Dr. This expression can be used to prove the following

Theorem 3. If

lim
i→∞

βi+1

βi
= 1,

then (37) exists for any N . Otherwise, if

lim
i→∞

βi+1

βi
< 1,

(37) exists for N up to some finite limit.

The above theorem, and its proof, can be found in [5], with

a suitable change of variables. It generalizes the results on

second moments found in Sec. IV.
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A. EB case

From Theorem 3 we see that the second delay moment

exists up to some Nmax. For the second moment of DR in

few passages we get

E
[

(Dr)
2
]

= bi0
r
∑

k=0

(2b2k+i0 − bk) + 2b2i0
r−1
∑

i=0

bi
r
∑

j=i+1

bj

= bi0
(

2bi0
b2(r+1) − 1

b2 − 1
−

br+1 − 1

b− 1

)

+
2b2i0

b− 1

(

br+1 b
r − 1

b− 1
− b

b2r − 1

b2 − 1

)

. (38)

Using (38) in (37), we see that if we want the second moment

to exist we must require b2α = b2(1 − e−Λ) < 1 or,

equivalently, Λ < ln(b2/(b2 − 1)). By (10) the latter can be

used to get Nmax, which represent the asymptotes of the curves

in Fig. 4 (the case b = 2 is not reported being Nmax = 1.73).

Under this constraint, the second moment of DR is

E
[

(DR)
2
]

= bi0

(

2bi0
b2E

[

b2R
]

− 1

b2 − 1
−

bE
[

bR
]

− 1

b− 1

)

+
2b2i0

b− 1

(

b
E
[

b2R
]

− E
[

bR
]

b− 1
− b

E
[

b2R
]

− 1

b2 − 1

)

= bi0
2bi0 − 1 + αb2

(1− αb2)(1− αb)
. (39)

The expected value of DR is, by (18)

E [DR] = bi0
1

1− αb
, (40)

and the variance is

Var [DR] = bi0
2bi0 − 1 + αb2

(1− αb2)(1− αb)
− b2i0

1

(1− αb)2
. (41)

In Fig. 4 we show the standard deviation normalized to the

mean, Dev[DR]/E [DR], of the access delay, versus N , for

different parameters values with the same access flexibility

b−i0 = 0.25. This metrics do not exist for i0 = 2, b = 2,
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Figure 5. Normalized standard deviation of the access delay for POL versus
N for different parameters values with constant flexibility 1/a = 0.25.
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Figure 6. Normalized standard deviation of the access delay for POL versus
the channel traffic Λ for different parameters values with constant flexibility
1/a = 0.25. The throughput curve is also reported as a dashed line and refers
to the axis shown on the right.

then exists and improves for larger i0. In the best case, b =
1.05, i0 = 28.4, we have Nmax = 18, which shows that EB is

not practicable when N is beyond this point.

B. POL case

Here Theorem 3 shows that the second delay moment

always exists. Unfortunately, we can not get a close-form

expression and, therefore, we resorted to numerical evaluations

of (37).

In Fig. 5 we show the normalized standard deviation (NSD),

as in Fig. 4, for the POL case and the same access flexibility

1/a = 0.25 as with EB. Here the variance is much more

favorable than with EB although the ratio Dev[DR]/E [DR]
greatly increases with ν.

In Fig. 6 we show the NSD as in Fig 5, plotted against Λ.

This figure also reports the throughput curve Λe−Λ, which
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Figure 7. Normalized standard deviation of the access delay for POL versus
the maximum number of users Nmax that can be accommodated with a
throughput no less than 0.3, and with constant flexibility 1/a = 0.25. The
corresponding polynomial degree, from 1 to 4, is also reported at the different
points of the curve.

is used to evaluate Fig. 7. The latter figure provides the

maximum NSD that is achieved while accommodating up to

Nmax users with the requirement of a minimum throughput

equal to 0.3, and flexibility equal to 0.25. To do so, we

consider the rightmost point at which the horizontal line in

Fig. 6, that corresponds to throughput equal to 0.3, crosses

the throughput curve. A vertical line from this point crosses

the NSD curves at four points, that we have reported in Fig. 7

versus N , as obtained by (10). We can not provide a similar

curve for EB since Fig. 4 shows that EB has no variance for

N > 18.

From the results of this section we can conclude that, taking

into account the delay as expressed by Fig. 7, the POL backoff

is to be preferred to EB. In any cases, we must pay for a larger

number of users with a great increase in the delay variance,

since a higher degree of the polynomial backoff is required.

VI. VALIDATION

The results so far exposed, show that the POL with ν = 2 is

a good candidate for a system that can accommodate up to 100
users. However, in order to definitely assess this conclusion,

we need to validate the analytical results derived with the

Poisson model. In [10], [11] we have derived practically exact

throughput and delay values for the BEB case, i.e., EB with

b = 2, i0 = 2, and validation is attained by comparing those

results with the ones in Fig. 2. In Fig. 8 we compare, for ν = 2,

the theoretical throughput and the standard deviation that we

have already seen in Fig. 3 and 5, with those attained by

simulation. Similar results hold with different parameters. As

expected, discrepancies are present, especially for low values

of N ; however, the overall error and behavior of the model

are such that the conclusions of the analysis are confirmed.

Since the POL backoff with ν = 2 presents a less reactive

probability law with respect to EB with b = 2, i0 = 2, one

might suspect that the POL mechanism is far less prompt than

EB in following changes in N . To investigate such a dynamic
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Figure 8. Throughput and normalized standard deviation of the access delay
for POL with ν = 2 and 1/a = 0.25 versus of the number of users N .
Simulation results are reported as dots.
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Figure 9. Average time to the complete transmission of N packets starting
with zero indexes using BEB and POL with ν = 2 and flexibility 0.25.

behavior, we have considered the average time it takes to N
users to correctly transmit just one packet each, starting at time

zero with zeros backoff indexes. In Fig. 9 we have reported

the measure of such a time attained by simulation, using BEB

and POL. As we can see, the suspect has no ground since,

even here, POL performs slightly better than EB.

VII. CONCLUSIONS

In this paper we have produced an analytical and numerical

investigation that synthesizes throughput and delay results over

a wide range of backoff laws. Our analytical investigations

have used an approximated model that produces in a simple

way many properties concerning some general backoff laws,

some of them already derived in the literature in a more

complex framework. Numerical investigations has aimed at

determine optimal settings and optimal backoff laws, that can

produce a finite variance for the access delay, still providing

a comparable bandwidth over an entire range for the number

of users. Our results indicate that the polynomial backoff law

is by far preferable with respect to the traditional exponential

law, and, if no more than 100 users are considered, a good

candidate law is the polynomial law of second degree.

APPENDIX

PROOF OF TH. 1

For large r, it is standard to show that the scaled Ge-

ometric random variable Tr/E [Dr] = Tr/dr converges in

distribution to an Exponential random variable with average

µ−1
0 = limr→∞(βrdr)

−1, provided that µ−1
0 < ∞. Pretty

much in the same way, one can proceed backwards to show

that Tr−k/E [Dr] converges in distribution to an Exponential

random variable with average µ−1
k = limr→∞(βr−kdr)

−1,

for any finite k = 1, 2, · · · . The sum of all random variables

Tr−k/dr for k = 0, 1, . . . gives rise to the convolution of

exponential random variables with different averages, whose

result is (22) [15].
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