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Abstract—Many current and future multimedia and industrial
applications, like video streaming, eXtended Reality or remote
robot control, are characterized by periodic data transmissions
with strict latency and reliability constraints. In an effort to
meet the stringent demand of such traffic sources, the WiGig
standards support a contention-free channel access mechanism,
named Service Period, that makes it possible to allocate dedicated
time intervals to certain wireless stations. However, the standard
only covers the fundamental aspects that ensure interoperability,
while the actual schedule logic is left to vendors.

In this paper, we propose two algorithms for joint admission
control and scheduling of periodic traffic streams with contrast-
ing performance objectives, specifically a simple scheduler and
a max-min fair scheduler. The schemes are compared in two
different scenarios, in order to characterize and highlight some
fundamental trade-offs. As expected from their design principles,
the simple scheduler tends to trade acceptance rate for resource
availability, contrary to the max-min fair scheduler, giving to im-
plementers a clear performance trade-off, although performance
cannot be balanced by means of a tunable parameter.

Index Terms—WiGig, 802.11ad, 802.11ay, periodic, scheduling,
QoS
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I. INTRODUCTION

The always-increasing capacity of wireless systems is pro-

moting the design of applications and services with in-

creasingly challenging demands, such as video streaming,

teleconference, telepresence, eXtended Reality (XR), among

others [1]. In order to meet the demand in terms of data rate

of such applications, the latest versions of the Wi-Fi standard,

i.e., IEEE 802.11ad and 802.11ay, also known as Wireless

Gigabit (WiGig), offer the possibility to communicate over

the mmWave band at 60 GHz, where multiple 2.16 GHz

channels are available. By taking advantage of techniques

such as channel bonding and Multiple Input, Multiple Output

(MIMO), and by introducing novel features to the protocol

stack, these standards can provide data rates over 100 Gbps [2].

However, many applications also have very stringent Quality

of Service (QoS) requirements, in particular in terms of delay

and jitter, which may be incompatible with the stochastic na-

ture of contention-based channel access mechanisms generally

supported by legacy Wireless Local Area Networks (WLANs).

To address this problem, the WiGig standards introduced a
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60NANB19D122. Mattia Lecci’s activities were supported by Fondazione
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contention-free access mechanism that allows a Station (STA)

to reserve radio resources at regular time intervals. These

resources are organized in blocks, called Service Periods

(SPs), and the standards only specify the basic procedures to

ensure inter-vendor compatibility, leaving the design and the

implementation of the scheduler to the manufacturers.

Regarding the practical design, handling multiple periodic

traffic streams can be problematic, especially when traffic

flows with different periodicities coexist. In this case, it is

necessary to anticipate collisions among different periodic

allocations and either adjust them or, in the worst case, reject

new incompatible requests. Furthermore, even if a collection

of requests with identical traffic requirements is considered,

upon receiving a new request, the scheduler needs to decide

whether to rearrange the previously allocated resources to

improve fairness and efficiency, or to maintain the original

schedule and then best accommodate the new request, in order

not to perturb the pre-existing streams but potentially reaching

suboptimal resource allocation. Moreover, SPs are subject to

a number of constraints, described in Sec. II, which need to

be accounted for when designing and optimizing scheduling

algorithms.

With these challenges in mind, in this work we address

both admission control and resource allocation for multiple

periodic traffic sources, following the constraints given by the

WiGig standards. Specifically, we cast the periodic scheduling

problem within the WiGig allocation framework and design a

simple and efficient algorithm to check for the feasibility of

a new request. We then propose a simple admission control

algorithm with limited scheduling capabilities, as well as a

more elaborate and optimized strategy to increase the admis-

sion rate and, possibly, the fairness among independent flows.

Finally, we compare these two policies and shed some light

on basic trade-offs.

The rest of the paper is organized as follows. The resource

allocation framework is described in Sec. II, while Sec. III

provides an overview of the State of the Art on related

problems, and motivates our need to fill the gap of the

current literature in this topic. Then, we present the proposed

algorithms in Sec. IV. Performance analysis is presented in

Sec. V. Finally, in Sec. VI we draw our conclusions and

propose possible extensions of this work.
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Fig. 1: Example of allocations A1 (orange) and A2 (blue), with p2 = 2p1.

II. FRAMEWORK DESCRIPTION

Based on [3], STAs can request the Access Point (AP) to

reserve periodic transmission intervals by sending a control

frame containing the required periodicity (p) and the minimum

and maximum duration of each allocation ([Tmin, Tmax]).
The AP advertises the allocated SPs to the STAs at each

Beacon Interval (BI), specifying the starting time, duration,

and periodicity of each block. The allocation needs to comply

with a number of constraints:

1) Periodicity (p) can only be an integer multiple (p ∈ N)

or an integer fraction (p−1 ∈ N) of a BI (TBI), thus the

block periodicity interval will be Tp = p TBI;

2) Allocation blocks cannot be scheduled across the BI

boundaries;

3) The allocated block duration Tblk should fall in the range

[Tmin, Tmax] specified in the resource request.

A more detailed description of the constraints imposed by the

standard can be found in [3] and [4].

Since this work is focused on allocation algorithms for

periodic traffic sources, we neglect the Contention-Based

Access Periods (CBAPs), which is present in each BI for

asynchronous traffic. In addition, to compare the scheduling

algorithms in challenging conditions, we assume that the

allocated resources will be maintained indefinitely, so that the

channel load increases progressively as new resource reser-

vations are accepted. For the sake of simplicity and clarity,

we also assume that the allocation blocks of a given accepted

request are not fractioned into multiple disjoint intervals (i.e.,

each SP will consist of a single time interval of duration

Tblk). Furthermore, we consider a strict periodicity constraint,

which prevents the scheduler from changing the starting time

of already allocated blocks, while the block duration Tblk can

be freely changed within the interval [Tmin, Tmax].

III. STATE OF THE ART

Many works analyzing the Medium Access Control (MAC)

layer of the WiGig standards focus mostly on CBAPs, which

extend the traditional WiFi access to cope with directional

communications, either neglecting SP allocations or consider-

ing extremely simple allocation schemes. In [5], the authors

proposed a mathematical framework for the analysis of End-

to-End (E2E) metrics in 802.11-based systems, comparing

throughput and average packet delay in scenarios where the

nodes are equipped with advanced antenna systems. The

characteristics of the Distributed Coordination Function (DCF)

were taken into account, for which a theoretical performance

analysis was carried out in [6]. Instead, the authors in [7]

present a model to assess the performance of CBAPs for

the IEEE 802.11ad standard, taking into account a directional

channel model and the presence of scheduled SPs, but they do

not focus on how to assign such SPs.

To the best of our knowledge, little work has been done on

contention-free scheduling for WiGig networks. In [8], [9], the

authors analyze the case where all contention-free allocations

occupy the beginning of each BI, while the rest of the interval

is left for a single CBAP. This allocation strategy, however,

cannot support requests for periodic resource allocations with

time period shorter than TBI. The authors of [10], instead,

propose an accurate mathematical analysis of the performance

of a realistic Variable Bit Rate (VBR) traffic source in the

presence of channel errors, when using a periodic resource

allocation scheme, but do not tackle the problem of scheduling

multiple periodic allocations at once.

On the other hand, the problem of periodic scheduling has

been widely studied in other areas, such as real-time compu-

tation and task scheduling, where the objective is to complete

tasks within a given time, while minimizing the resource uti-

lization. For example, the authors of [11] develop and compare

heuristic algorithms for scheduling tasks with hard periodic

deadlines and constant resource utilization, showing that a

deadline-first approach ensures maximum resource utilization.

In [12], the authors try to schedule safety-critical periodic tasks

with precedence constraints, distributed over multi-processor

systems using an adapted deadline-first approach, while the

authors of [13] use simulated annealing to optimize a similar

problem. Finally, [14] finds a low-overhead optimal solution

(from a resource utilization point of view) assuming that tasks

have a fixed resource requirement.

All these approaches, however, cannot be directly used in

WiGig systems, either because they are not compliant with

the constraints imposed by the resource allocation procedures

(i.e., granularity of the allocation periods, BI boundaries), or

because they cannot exploit the WiGig standards’ flexibility

(e.g., the dynamic allocation of Tblk). This work contributes

to fill the gap by proposing admission control and scheduling

algorithms that account for the specific features of Millimeter

Wave (mmW) WLANs.

IV. SCHEDULING ALGORITHMS

We denote by An = (tn0,start, T
n
p , T

n
blk) the allocation for the

n-th traffic stream, where tn0,start is the starting epoch, T n
p is

the period, and T n
blk is the allocated duration of each individual

block. Therefore, the allocation consists of a sequence of
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Fig. 2: Feasibility check for an infeasible pair of allocations, where A1 (blue)
was a pre-existing allocation with p1 = 1

2
, and the algorithm is checking

whether a new allocation A2 (orange) with p2 = 1
3

is compatible.

Algorithm 1 Feasibility check under strong periodicity con-

ditions (see Figs. 2 and 3).

Require: {A1, . . . , AN−1} (fixed), AN (new allocation), [tmin, tmax]

1: Compute T
1,...,N
p

2: tN0,start = tN0,start ← tmin {Fig. 2a}

3: while tN
0,end

< tmax do

4: Check for collisions in
[

tmin, tmin + T
1,...,N
p

)

5: if no collisions then

6: tfeas ← tN0,start
7: return AN is feasible with starting time tfeas {Fig. 3}
8: else

9: Allocation block h ∈ AN collides with allocation block k ∈ Ai,
for some i ∈ 1, . . . , N − 1

10: ∆t← ti
k,end

− tN
h,start

11: tN0,start ← tN0,start +∆t

12: end if

13: end while

14: return AN is not a feasible allocation {Fig. 2}

blocks, where the k-th block of the n-th traffic stream takes

the interval bnk =
(

tnk,start, t
n
k,end

)

, where

tnk,start = tn0,start + kT n
p ;

tnk,end = tn0,start + kT n
p + T n

blk ;
(1)

for k = 0, 1, 2, . . . . A graphical example is shown in Fig. 1.

Following this definition we can say that, given N distinct

allocations A1, . . . , AN , they are jointly periodic over a period

T 1,...,N
p = lcm

(

T i
p, . . . , T

N
p

)

, (2)

where lcm indicates the least common multiple of the periods.

Note that, since all block periods are integer multiples or

fractions of TBI, the least common multiple (lcm) can always

tmax

∆t

T
1,2
p

t20,start = tmin

(a) Scheduling step 0.

tfeas tlim

t20,start

(b) Scheduling step 1.

I21 I22

(c) Feasible intervals.

Fig. 3: Feasibility check for a feasible pair of allocations, where A1 (blue)
was a pre-existing allocation with p1 = 1

4
, and the algorithm is checking

whether a new allocation A2 (orange) with p2 = 1
2

is compatible.

be properly defined [15] as

lcm
(a

b
,
c

d

)

=
lcm(a, c)

gcf(b, d)
, (3)

where gfc is the greatest common factor.

Given the periodicity of the allocation patterns, a new

allocation AN should start within a time interval TN
p since

the beginning of the BI. Moreover, a necessary requirement

for admission is that in an interval of duration T 1,...,N
P , no

block bNh overlaps with any block bnk , n ∈ {1, , . . . , N − 1},

∀h, k ≥ 0.

The remainder of this section is structured as follows: in

Sec. IV-A we will illustrate an algorithm to efficiently check

whether a new allocation is compatible with a pre-existing

schedule, in Sec. IV-B we will present a simple scheduling

algorithm, and finally in Sec. IV-C we will describe in detail a

more complex algorithm that aims at minimizing the rejection

of new allocations under the strict periodicity assumption.

A. Feasibility Check Algorithm

This feasibility check can be performed as described in Al-

gorithm 1, whose arguments consist of the existing allocations

A1, . . . , AN−1, the new request AN and a search interval

[tmin, tmax]. For reasons that will be clear later, we assume

that the existing allocations cannot be changed, while for AN

only tN0,start can be modified, keeping the period TN
p and the

block duration TN
blk fixed. Based on these input values, the

aim of the procedure is to find the earliest feasible starting

time tNfeas such that a block of duration TN
blk fits in the search

interval.

To do so, starting from tmin, the algorithm progressively

shifts the starting time by an interval ∆t (described in Al-



gorithm 1) until either all feasibility conditions are met, or

tN0,end > tmax, in which case the allocation AN with block

duration TN
blk is rejected.

A trivial example involves A1, i.e., the first received al-

location request from a STA. In this case, tmin will be set

to the start time of the first BI following the reception of

the request, while tmax = TN
p to guarantee the periodicity.

Since no previous allocated SPs exist, A1 is immediately

accepted with tfeas = tmin. It is important to highlight

that, however, by choosing specific combinations of input

parameters, Algorithm 1 can be used also by more advanced

scheduling schemes, as explained later.

Given any feasible starting time tfeas, it is useful to compute

the rightmost boundary of the allocation, i.e., the largest

interval [tfeas, tlim] that would still make bN0 ∈ [tfeas, tlim]
and, in turn, AN feasible, even for larger values tN0,start and

TN
blk. This boundary can be computed by finding the minimum

distance between each bh ∈ AN and each bk ∈ An, n 6= N .

The final results will be the minimum measured distance. A

graphical illustration of how the algorithm behaves when the

new request is infeasible is shown in Fig. 2, while a new

feasible request is shown in Fig. 3.

Following this definition and the above numerical example,

the first allocation request to be generated, i.e., A1, will find

itself in the optimal condition where tfeas = tmin and tlim =
tmax.

In general, multiple feasible intervals exist. To find an ex-

haustive list, we can iterate Algorithm 1 with tN0,start initialized

to the start time of the BI, and progressively updated at each

iteration with the value of tlim found in the previous execution.

This procedure continues until the shift of tN0,start leads to an

infeasible allocation. We define the list of feasible intervals

(which depend on TN
blk) as IN =

{

IN1 , . . . , INM
}

, where

INm =
[

tNm,feas, t
N
m,lim

]

, m = 1, . . . ,M (see Fig. 3c). Hence,

each of these intervals delimits the finite number of intervals

in which the new allocation AN can be fitted, considering

all previous allocations. A good scheduling algorithm should

then assess which interval yields the best overall performance,

possibly trying to optimize a target Key Performance Indicator

(KPI).

B. Simple Scheduler

The first scheduler that we propose assumes that the block

duration and periodicity of already accepted traffic streams

cannot be varied. Then, a new request AN with a block

duration of TN
blk ∈ [TN

min, T
N
max] can be accepted only if there

exists a feasible interval in IN with a duration of at least TN
min.

Therefore, the maximum amount of available resources that

can be allocated to AN is determined by the longest feasible

interval, or by TN
max, whichever is smaller; tN0,start and TN

blk

need to be set accordingly. We can already notice that, using

this simple first-come-first-served approach, the latest requests

are highly disadvantaged if the first ones require big slices of

time resources. In the long term, as we will see in Sec. V, this

could lead not only to poor performance in terms of fairness,

but also to a very low admission rate.

C. Max-Min Fair Scheduler

A more flexible approach consists in dynamically adapting

the duration of the allocated intervals within the admissible

range, T n
blk ∈ [T n

min, T
n
max], ∀n = 1, . . . , N , in order to

distribute time resources among all traffic streams in a fairer

manner.

Consider the following parameterized block duration:

T n
blk(r) = T n

min + rn(T
n
max − T n

min), rn ∈ [0, 1] . (4)

We consider a scheduler to be fair if rmin = minn{rn}
cannot be increased without breaking the limits imposed by

some allocation under the strict periodicity constraint (see

Sec. II). The scheduling algorithm, then, should assign the

largest possible SP to each allocation, while respecting all the

constraints.1

To fit a new traffic stream, the pre-existing allocations will

thus have to either maintain or reduce their block duration,

depending on whether and how the new allocation collides

with them. This will lead to a lower rejection rate with respect

to the Simple Scheduler (Sec. IV-B), and more fairness among

requests distributed in time.

The proposed algorithm is here presented in two parts:

the first part describes how the allocation scheme works

(Sec. IV-C1), while the second part describes the fairness

paradigm (Sec. IV-C2).

1) Allocation Algorithm: Differently from the simple

scheduler, this scheduler can change the block duration within

the range imposed by the requesting STA, i.e., T n
blk ∈

[T n
min, T

n
max]. To reduce the rejection rate, we check the

feasibility of a new allocation AN (Sec. IV-A) by assuming

all existing allocations are shrunk to their minimum, i.e.,

T n
blk = T n

min for n = 1, . . . , N . If AN is infeasible even

under these conditions, then the allocation cannot be granted

without disattending the requests of some previously accepted

flow. Therefore, AN is rejected. Conversely, if AN is feasible,

it gets accepted, and in a later step the algorithm will try to

increase the resource utilization of all allocations fairly.

From now on, we use the symbol ∗ to represent the

parameter values at the end of the execution of the algorithm.

We recall that, based on the strict periodicity assumption, the

starting times of the already allocated blocks cannot change

Note that, given a set of feasible allocations, reducing any

rn (and, in turn, the T n
blk) still yields a valid configuration.

Similarly, a valid configuration for AN with tN0,start and rN ≥
0 will remain valid if tN∗

0,start ≥ tN0,start and tN∗
end = tN∗

0,start +
TN
blk(r

∗
N ) ≤ tNend. We thus consider the following constraints:

r∗n ≤ rn, ∀n ≤ N ; (5a)

tN∗
0,start ≥ tN0,start; (5b)

tN∗
end ≤ tNlim. (5c)

The algorithm starts by considering the first feasible interval

IN1 , which ensures a valid configuration when rn = 0,

1Note that if Tn
min = Tn

max, rn has no meaning. For simplicity, this case
has not been included in this study.



Algorithm 2: Max-min fair scheduling.

Require: A1, . . . , AN , T
1,...,N
p

1: Compute IN considering Tn
blk

= Tn
min∀n = 1, . . . , N

2: for all INm = [tfeas, tlim]Nm ∈ IN do

3: tN0,start ← tfeas

4: Set rN such that TN
blk

= min
{

TN
max, tlim − tfeas

}

{Eq. (4)}
5: for all An, n = 1, . . . , N − 1 do

6: for all (block k ∈ An) ∈ T
1,...,N
p do

7: if block k collides with AN then

8: Update r∗n, r∗N , tN∗

0,start {Sec. IV-C2}
9: if r∗n < rn then

10: Add/update An to a list C of colliding allocations
11: Memorize rn,prev ← rn
12: end if

13: Update rn, rN , tN0,start
14: end if
15: end for

16: end for

17: for all An ∈ C do

18: Compute ∆t = tlim − tn0,start for An given AN {see Sec. IV}

19: Tn
blk
← min

{

Tn
blk

(rn,prev),∆t
}

{Try to improve the allocation
duration if AN has been further reduced}

20: end for
21: Compute allocation score sm ← minn=1,...,N rn
22: end for

23: return The configuration which maximizes the allocation score {sm}

∀n ≤ N . The new request is temporarily accepted with

tN0,start = tN1,feas and maximum possible rN , such that TN
blk =

min
{

TN
max, tlim − tfeas

}

.

Then, the algorithms try to re-balance the resource alloca-

tion by increasing all {rn, ∀n ≤ N} to their previous values.

Given that feasible intervals IN were computed considering all

allocations with minimum duration, though, setting tN0,start =
tN1,feas may (or may not) create a collision with a generic Ai

when setting ri ≥ 0 back to its previous value.

On the other hand, thanks to the information given by tlim,

we can always choose rN such that the new allocation does

not collide with a previous one, on the right.

Collisions can be found iteratively over each block of each

previous allocation in a joint period.

If for a certain block bnk ∈ An and a block bNh ∈ AN we

have

tnk,start + T n
blk(rn) ≥ tNh,start. (6)

then the two allocations are in conflict, as shown in Fig. 4.

In this case, tN∗
0,start, r

∗
N , and r∗n have to be updated following

the constraints in (5), as described in Sec. IV-C2.

The constraints from (5), the existence of a non-empty set

of feasible intervals, and the iterative nature of the problem

ensure that the algorithm will stop in a finite time with a valid

configuration. Since each feasible interval INm ∈ IN has one

locally fairest configuration, the exhaustive search described in

Algorithm 2 is able to find the globally fairest configuration

by exhaustive search.

2) Optimally fair allocation: In this section, we will dis-

cuss how fairness can be achieved given a pair of colliding

allocations An, n ∈ {1, . . . , N − 1}, and AN . In Sec. IV-C1

we explained how such a collision can be found, e.g, between

blocks bnk and bNh . For the sake of clarity, in this section we

Tn
min

Tn
blk

(rn)
TN
min

TN
blk

(rN )
tn
k,start tN

h,start
tlim

Fig. 4: Representation of a collision between An and AN .

will drop the notation for the specific colliding blocks.

In order to fully exploit the available resources, looking at

Fig. 4, we force tN0,start = tnend and tNend ≤ tlim. In this way

we make AN start right after An, still respecting the limits

imposed by tlim.

While possibly not being optimal, this is still a sensible

choice for a greedy approach that tries to maximize the fairness

of the current configuration. By doing so and imposing rn =
rN = r∗, what we call the fairness equation, and by noting

that r∗ ≤ 1 should hold, we have that

r∗ = min

{

1,
tlim − tn0,start − T n

min − TN
min

(T n
max − T n

min) +
(

TN
max − TN

min

)

}

. (7)

We call r∗ the fair allocation ratio, and note that if r∗ < 1,

it must be that tNend = tlim, whereas if r∗ = 1 in general

tNend ≤ tlim by construction.

Depending on the initial conditions of the problem, there is a

number of different cases which have to be properly managed

in order to obtain a fair distribution of resources.

First of all, if rn ≤ r∗, following Eq. (5a), it means that

previous adjustments do not make it possible for An to obtain

more resources while still ensuring a valid configuration, and

thus r∗n = rn. Furthermore, since we assume that a collision

happens between An and AN with this configuration, AN has

to be delayed setting tN∗
0,start = tn0,start + T n

blk(r
∗
n) > tN0,start.

In case also rN ≤ r∗, allocation AN cannot be extended

either. Since both allocations have rn, rN ≤ r∗, they will both

surely fit in the feasible interval. If, instead, rN > r∗, AN can

obtain r∗N ≥ r∗n, i.e., TN∗
blk = min

{

TN
blk(rN ), tlim − tN∗

0,start

}

.

On the other hand, if 1 ≥ rn > r∗, the block duration

must be reduced so that r∗n = r∗. Then, if also rN > r∗,

both allocations must be trimmed and are fairly allocated, i.e.,

r∗n = r∗N = r∗ < 1. It follows from the properties of Eq. (7)

that tN∗
end = tlim and tN∗

0,start > tN0,start.
Finally, if rN ≤ r∗ < rn ≤ 1, and therefore rN < 1, the

properties of Eq. (7) imply that tNend = tlim. Since AN cannot

be extended without possibly reducing the allocation ratio of

other allocations, tN∗
0,start = tN0,start and r∗N = rN . Since, by

assumption, tnend > tN0,start, the duration of An needs to be

reduced so that T n∗
blk = tN∗

0,start − tn0,start < T n
blk.

V. RESULTS

In this section, we evaluate the algorithms described in

Sec. IV. The proposed schedulers have been implemented

in Python, only focusing on their capabilities of allocating

communication resources to the different traffic streams. The
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Fig. 5: Results for Scenario 1.

simulations proposed here do not include full stack behaviors,

which will be investigated in future works, and their aim

is thus to highlight the fundamental characteristics of each

algorithm.

Based on their design criteria, we expected the two algo-

rithms to differ mainly with respect to three KPIs, namely the

acceptance rate of new requests, the fairness among accepted

allocations, and the average scheduled block duration. To

highlight these characteristics we shape the offered traffic

based on three parameters, namely: the average allocation

request

Tavg =
Tmin + Tmax

2
; (8)

the interval ratio

ρ =
Tmin

Tmax

∈ [0, 1]; (9)

and the load factor

λ =
Tavg

Tp

. (10)

Note that, for a given average allocation request Tavg, a low

interval ratio ρ corresponds to very flexible allocations, while

ρ = 1 corresponds to rigid allocations where Tmin = Tmax.

The proposed algorithms are compared in two different

simulation scenarios:

• Scenario 1: all traffic streams are homogeneous, i.e.,

all requests have the same parameters. Specifically, we

consider the case with periodicity Tp = TBI

3 , load factor

λ = 0.1, and ρ ∈ (0, 1). The impact of different

periodicities and load factors is also discussed.

• Scenario 2: multiple non-homogeneous applications co-

exist on the same network, thus generating traffic streams

with different characteristics. We analyze a scenario

where traffic streams can be of class C1 or C2, with

periodicity TC1

p = TBI

3 and TC2

p = TBI

5 , respectively.

Both classes have load factor λ = 0.1 and interval ratio

ρ = 0.1.

To evaluate the performance of the algorithms, we propose

three KPIs for Scenario 1, shown in Fig. 5. Note that, given the

discrete behavior of the problem and the lack of randomness

in the proposed algorithms, the plots cannot be smoothed by

running multiple repetitions.

The first metric is the acceptance rate (Fig. 5a), defined as

the ratio between the number of accepted allocation requests

and the maximum number of acceptable requests. To compute

this achievable upper bound, since all allocations share the

same parameters we ignore the strict periodicity assumption

and calculate how many allocations with minimum duration

Tblk = Tmin can fit in a period Tp, which is equal to

Nmax(ρ) =
⌊

Tp

T
min

(ρ)

⌋

and shown as a red, dashed line. The

acceptance rates can thus be normalized in the interval [0, 1],
where 1 means that the scheduler reaches the peak acceptance

rate. Since as ρ → 0, Tmin → 0 and thus Nmax(ρ) → ∞, we

consider at most 100 allocations.

As expected, the simple scheduler suffers from a lower ac-

ceptance rate than the max-min fair one, even though, starting

from ρ = 0.5, the two algorithms tend to behave similarly. In

fact, more rigid allocations do not give enough flexibility to

the max-min fair scheduler to perform its optimization, thus

yielding similar performance to the much simple scheduler.

The second metric is Jain’s Fairness Index (Fig. 5b), defined
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(a) First allocation is of class C1.
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(b) First allocation is of class C2.
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Fig. 6: Results for Scenario 2.

as:

J =
(
∑

n xn)
2

n ·
∑

n(xn)2
, (11)

where only accepted allocations are counted and xn can either

be the block duration T n
blk or the block duration ratio rn. If

the {xn} are all equal, then J (x) = 1. On the other hand, the

more unequal the values of {xn}, the closer the metric to its

minimum J (x) = 1
N .

Based on the results plotted in Fig. 5b, both algorithms

behave fairly with respect to the accepted allocations.

The third metric, shown in Fig. 5c, offers a different

perspective considering the average normalized block duration

Tblk/Tmax(ρ). As expected, the simple scheduler shows an

oscillating trend, due to the discrete behavior of the alloca-

tions. In fact, the last scheduled allocation will only reduce

Tblk down to Tmin(ρ), thus, if the portion of DTI left by

the previous allocations is less than Tmin(ρ), no additional

allocations can be fitted. On the other hand, the max-min fair

scheduler will try to reduce all allocations up to their minimum

duration in order to avoid rejecting new ones, granting more

accepted allocations at the cost of an overall lower block

duration.

Finally, the two most discriminating metrics, namely the

average normalized block duration and the acceptance rate, are

plotted against each other in Fig. 5d. In general, the simple

scheduler tends to favor higher average block duration for a

lower acceptance rate, while the max-min fair scheduler tends

to favor acceptance rate at the cost of a lower average block

duration, as expected. Both algorithms are able to ensure high

fairness to the accepted allocations, generally well above 0.85.

Similar behaviors were also observed for load factors λ ∈
{0.025, 0.4}, not shown here. As expected, higher loads tend

to have more pronounced variability in both the average block

duration and the fairness granted to the accepted allocations.

Curiously, regardless of the load factor, for values of the

interval ratio larger than ρ ≈ 0.5, the two algorithms tend to

have very similar performance due to the more rigid allocation

requests that do not allow the max-min fair scheduler to exploit

its agility.

Scenario 2 allows us to analyze the impact of allocations

with different periodicities on the overall network perfor-

mance, as a function of the probability P (C1) that a request

C1 is offered to the system.

Since allocations with different periods coexist, it is manda-

tory to decide how many allocations should be offered to

the schedulers, as this will affect how the acceptance rate

is normalized. We define the minimum occupancy as the

minimum BI occupancy ratio of the allocation of category

Ci, namely Oi
min = T i

min/T
i
p. Allocations are offered to

the schedulers as long as the cumulative minimum offered

occupancy does not exceed the value of 1.

In Figs. 6a and 6b we show the biasing effect of the first

accepted allocation on the proposed schedulers. Clearly, the

simple scheduler suffers a strong and symmetric effect, mean-

ing that once the first allocation is scheduled with maximum

duration, it will be harder for subsequent allocations with a

different period to fit the constrained BI, making the scheduler

favor allocations with the same period. On the other hand, it

is significantly harder to interpret the behavior of the more

complex max-min fair scheduler. From further results, not



shown here for lack of space, it is possible to notice that

allocations with a lower average BI occupancy are favored,

with a slight preference towards those with lower values of

Tp and Tmin. As also shown here, in fact, allocations with

lower values of Tp, such as C2 with respect to C1, tend to

fragment the BI more, making it harder to then fit allocations

with different periodicity and higher Tmin.

To further confirm this biasing behavior, we show the

variability ν among the scheduled allocations, defined as

ν1,2 =
min{|C1|, |C2|}

max{|C1|, |C2|}
, (12)

where |Ci| represents the number of accepted allocations of

category Ci. This metric takes values in [0, 1], where a value

of 0 means that only allocations of a single type have been

accepted, while a value of 1 means that the same number of

allocations of both categories have been accepted. Results are

shown in Fig. 6c, which confirms that the simple scheduler

favors a more homogeneous BI allocation, while the max-min

fair scheduler shows once again more flexibility, being able to

accommodate fairly requests from different classes, as shown

by the higher variability of the accepted allocations.

Finally, we studied how efficiently the two algorithms are

able to use the radio resources by measuring the BI occupancy

ratio, i.e., the ratio between scheduled and unscheduled air

time. It can be noticed that, while the simple scheduler accepts

fewer requests, it is able to use almost all available resources.

This is due to the fact that the scheduler tends to accept

homogeneous allocations, allowing them to be packed more

efficiently in the BI. On the other hand, the max-min fair

scheduler successfully fits multiple allocations of both types,

but the constraints on the periodicity and the minimum block

duration Tmin prevent it from fully utilizing the whole BI

when a mixture of the two types of sources is presented.

Nonetheless, it ensures very high occupancy ratios, always

above 95% for the shown example.

VI. CONCLUSIONS

In this paper, we presented a framework for periodic

scheduling in WiGig-compatible devices. We proposed two

heuristic algorithms, simple and max-min fair schedulers, and

accurately described their inner workings. Finally, we assessed

their performance in two different scenarios, showing that the

max-min fair scheduler tends to trade resource availability

for a much higher acceptance rate, contrary to the simple

scheduler’s behavior, while both schedulers obtained a high

Jain’s fairness index for the accepted allocations.

Even working in a simplified settings without considering

further sources of complexity from other parts of the commu-

nication stack, it was possible to notice that both the design

and the evaluation of WiGig-specific scheduling algorithms for

periodic sources is highly non-trivial and can show surprising

results. In fact, while the formalization of the problem is

straightforward, scheduling algorithms often have to deal with

many hard-to-predict edge cases, which greatly increases the

difficulty of designing a general algorithm.

Future works will focus on multiple objectives. A first

objective is to implement these algorithms in a full-stack sim-

ulator, allowing the study of APP-layer performance metrics

for a range of possible applications. A second objective is

to extend the framework by relaxing some of the assumptions

made in Sec. II and test the impact of each one of them on the

overall performance of a WiGig system. A third objective is to

extend the study for scheduling multiple allocations at once,

a possibility given by MIMO techniques. To further achieve

a realistic evaluation, the impact of accurate wireless channel

simulations, physical layer design, as well as user mobility

will also be studied.
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