
Self-stabilizing TDMA Algorithms for Wireless
Ad-hoc Networks without External Reference ∗

Thomas Petig †
petig@chalmers.se

Elad M. Schiller†
elad@chalmers.se

Philippas Tsigas†
tsigas@chalmers.se

Abstract

Time division multiple access (TDMA) is a method for sharing com-
munication media. In wireless communications, TDMA algorithms often
divide the radio time into timeslots of uniform size, ξ, and then com-
bine them into frames of uniform size, τ . We consider TDMA algorithms
that allocate at least one timeslot in every frame to every node. Given
a maximal node degree, δ, and no access to external references for colli-
sion detection, time or position, we consider the problem of collision-free
self-stabilizing TDMA algorithms that use constant frame size.

We demonstrate that this problem has no solution when the frame
size is τ < max{2δ, χ2}, where χ2 is the chromatic number for distance-2
vertex coloring. As a complement to this lower bound, we focus on
proving the existence of collision-free self-stabilizing TDMA algorithms
that use constant frame size of τ . We consider basic settings (no hardware
support for collision detection and no prior clock synchronization), and
the collision of concurrent transmissions from transmitters that are at
most two hops apart. In the context of self-stabilizing systems that have
no external reference, we are the first to study this problem (to the best
of our knowledge), and use simulations to show convergence even with
computation time uncertainties.

1 Introduction
Autonomous and cooperative systems will ultimately carry out risk-related
tasks, such as piloting driverless cars, and liberate mankind from mundane
labor, such as factory and production work. Note that the implementation of
∗The work of this author was partially supported by the EC, through project FP7-STREP-

288195, KARYON (Kernel-based ARchitecture for safetY-critical cONtrol). This work ap-
pears as a brief announcement [24].
†Computer Science and Engineering, Chalmers University of Technology, Sweden.

1

ar
X

iv
:1

30
8.

64
75

v2
 [

cs
.D

C
]

 2
5

M
ar

 2
01

4

these cooperative systems implies the use of wireless ad hoc networks and their
critical component – the medium access control (MAC) layer. Since coopera-
tive systems operate in the presence of people, their safety requirements include
the provision of real-time guarantees, such as constant communication delay.
Infrastructure-based wireless networks successfully provide high bandwidth uti-
lization and constant communication delay. They divide the radio into timeslots
of uniform size, ξ, that are then combined into frames of uniform size, τ . Base-
stations, access points or wireless network coordinators can schedule the frame
in a way that enables each node to transmit during its own timeslot, and arbi-
trate between nearby nodes that wish to communicate concurrently. We strive
to provide the needed MAC protocol properties, using limited radio and clock
settings, i.e., no external reference for collision detection, time or position. Note
that ad hoc networks often do not consider collision detection mechanisms, and
external references are subject to signal loss. For these settings, we demon-
strate that there is no solution for the studied problem when the frame size is
τ < max{2δ, χ2}, where δ is a bound on the node degree, and χ2 is the chro-
matic number for distance-2 vertex coloring. The main result is the existence of
collision-free self-stabilizing TDMA algorithms that use constant frame size of
τ > max{4δ,X2}+ 1, where X2 ≥ χ2 is a number that depends on the coloring
algorithm in use. To the best of our knowledge, we are the first to study the
problem of self-stabilizing TDMA timeslot allocation without external reference.
The algorithm simulations demonstrate feasibility in a way that is close to the
practical realm.

Wireless ad hoc networks have a dynamic nature that is difficult to predict.
This gives rise to many fault-tolerance issues and requires efficient solutions.
These networks are also subject to transient faults due to temporal malfunctions
in hardware, software and other short-lived violations of the assumed system
settings, such as changes to the communication graph topology. We focus on
fault-tolerant systems that recover after the occurrence of transient faults, which
can cause an arbitrary corruption of the system state (so long as the program’s
code is still intact). These self-stabilizing [8] design criteria simplify the task of
the application designer when dealing with low-level complications, and provide
an essential level of abstraction. Consequently, the application design can easily
focus on its task – and knowledge-driven aspects.

ALOHAnet protocols [1] are pioneering MAC algorithms that let each node
select one timeslot per TDMA frame at random. In the Pure Aloha proto-
col, nodes may transmit at any point in time, whereas in the Slotted Aloha
version, the transmissions start at the timeslot beginning. The latter protocol
has a shorter period during which packets may collide, because each transmis-
sion can collide only with transmissions that occur within its timeslot, rather
than with two consecutive timeslots as in the Pure Aloha case. Note that
the random access approach of ALOHAnet cannot provide constant commu-
nication delay. Distinguished nodes are often used when the application re-
quires bounded communication delays, e.g., IEEE 802.15.4 and deterministic
self-stabilizing TDMA [2, 14]. Without such external references, the TDMA
algorithms have to align the timeslots while allocating them. Existing algo-

2

rithms [4] circumvent this challenge by assuming that τ/(∆ + 1) ≥ 2, where ∆
is an upper bound on the number of nodes with whom any node can commu-
nicate with using at most one intermediate node for relaying messages. This
guarantees that every node can transmit during at least one timeslot, s, such
that no other transmitter that is at most two hops away, also transmits during
s. However, the τ/(∆ + 1) ≥ 2 assumption implies bandwidth utilization that
is up to O(δ) times lower than the proposed algorithm, because ∆ ∈ O(δ2).

As a basic result, we show that τ/δ ≥ 2, and as a complement to this lower
bound, we focus on considering the case of τ/δ ≥ 4. We present a collision-free
self-stabilizing TDMA algorithm that use constant frame size of τ . We show that
it is sufficient to guarantee that collision freedom for a single timeslot, s, and
a single receiver, rather than all neighbors. This narrow opportunity window
allows control packet exchange, and timeslot alignment. After convergence,
there are no collisions of any kind, and each frame includes at most one control
packet.
Related work Herman and Zhang [11] assume constant bounds on the com-
munication delay and present self-stabilizing clock synchronization algorithms
for wireless ad hoc networks. Herman and Tixeuil [10] assume access to synchro-
nized clocks and present the first self-stabilizing TDMA algorithm for wireless
ad hoc networks. They use external reference for dividing the radio time into
timeslots and assign them according to the neighborhood topology. The self-
stabilization literature often does not answer the causality dilemma of “which
came first, synchronization or communication” that resembles Aristotle’s ‘which
came first, the chicken or the egg?’ dilemma. On one hand, existing clock
synchronization algorithms often assume the existence of MAC algorithms that
offer bounded communication delay, e.g. [11], but on the other hand, existing
MAC algorithms that provide bounded communication delay, often assume ac-
cess to synchronized clocks, e.g. [10]. We propose a bootstrapping solution to
the causality dilemma of “which came first, synchronization or communication”,
and discover convergence criteria that depend on τ/δ.

The converge-to-the-max synchronization principle assumes that nodes pe-
riodically transmit their clock value, ownClock. Whenever they receive clock
values, receivedClock > ownClock, that are greater than their own, they ad-
just their clocks accordingly, i.e., ownClock ← receivedClock. Herman and
Zhang [11] assume constant bounds on the communication delay and demon-
strate convergence. Basic radio settings do not include constant bounds on the
communication delay. We show that the converge-to-the-max principle works
when given bounds on the expected communication delay, rather than constant
delay bounds, as in [11].

The proposal in [9] considers shared variable emulation. Several self-
stabilizing algorithms adopt this abstraction, e.g., a generalized version of the
dining philosophers problem for wireless networks in [6], topology discovery in
anonymous networks [19], random distance-k vertex coloring [20], deterministic
distance-2 vertex coloring [3], two-hop conflict resolution [25], a transformation
from central demon models to distributed scheduler ones [27], to name a few.
The aforementioned algorithms assume that if a node transmits infinitely many

3

messages, all of its communication neighbors will receive infinitely many of
them. We do not make such assumptions about (underlying) transmission
fairness. We assume that packets, from transmitters that are at most two hops
apart, can collide every time.

The authors of [15] present a MAC algorithm that uses convergence from a
random starting state (inspired by self-stabilization). In [16, 22], the authors
use computer network simulators for evaluating self-? MAC algorithms. A self-
stabilizing TDMA algorithm, that accesses external time references, is presented
in [17]. Simulations are used for evaluating the heuristics of MS-ALOHA [26] for
dealing with timeslot exhaustion by adjusting the nodes’ individual transmission
signal strength. We provide analytical proofs and consider basic radio settings.
The results presented in [7, 13] do not consider the time it takes the algorithm
to converge, as we do. We mention a number of MAC algorithms that consider
onboard hardware support, such as receiver-side collision detection [4, 5, 7, 26,
29]. We consider merely basic radio technology that is commonly used in wireless
ad hoc networks. The MAC algorithms in [28, 29] assumes the accessibility of
an external time or geographical references or the node trajectories, e.g., Global
Navigation Satellite System (GNSS). We instead integrate the TDMA timeslot
alignment with clock synchronization.
Our contribution Given a maximal node degree, δ, we consider the prob-
lem of the existence of collision-free self-stabilizing TDMA algorithms that use
constant frame size of τ . In the context of self-stabilizing systems that have
no external reference, we are the first to study this problem (to the best of our
knowledge). The proposed self-stabilizing and bootstrapping algorithm answers
the causality dilemma of synchronization and communication.

For settings that have no assumptions about fairness and external reference
existence, we establish a basic limit on the bandwidth utilization of TDMA
algorithms in wireless ad hoc networks (Section 3). Namely, τ < max{2δ, χ2},
where χ2 is the chromatic number for distance-2 vertex coloring. We note
that the result holds for general graphs with a clearer connection to bandwidth
utilization for the cases of tree graphs (χ2 = δ + 1) and planar graphs [21]
(χ2 = 5δ/3 +O(1)).

We prove the existence of collision-free self-stabilizing TDMA algorithms
that use constant frame size of τ without assuming the availability of external
references (Section 4). The convergence period is within O(diam · τ2δ + τ4δ2)
steps starting from an arbitrary configuration, where diam is the network diam-
eter. We note that in case the system happens to have access to external time
references, i.e., start from a configuration in which clocks are synchronized, the
convergence time is within O(τ3), and O(τ3δ) steps when τ > 2∆, and respec-
tively, τ > max{4δ,∆ + 1}. We also demonstrate convergence via simulations
that take uncertainties into account, such as (local) computation time.

4

2 System Settings
The system consists of a set, P := {pi}, of communicating entities, which we
call nodes. An upper bound, ν > |P |, on the number of nodes in the system is
known. Subscript font is used to point out that Xi is pi’s variable (or constant)
X. Node pi has a unique identifier, idi, that is known to pi but not necessarily
by pj ∈ P \ {pi}.
Communication graphs At any instance of time, the ability of any pair of
nodes to communicate, is defined by the set, δi ⊆ P , of (direct) neighbors that
node pi ∈ P can communicate with directly. The system can be represented by
an undirected network of directly communicating nodes, G := (P,E), named
the communication graph, where E := {{pi, pj} ∈ P × P : pj ∈ δi}. We assume
that G is connected. For pi, pj ∈ P , we define the distance, d(pi, pj), as the
number of edges in an edge minimum path connecting pi and pj . We denote
by ∆i := {pj ∈ P : 0 < d(pi, pj) ≤ 2} the 2-neighborhood of pi, and the
upper bounds on the sizes of δi and ∆i are denoted by δ ≥ maxpi∈P (|δi|), and
respectively, ∆ ≥ maxpi∈P (|∆i|). We assume that diam ≥ maxpi,pj∈P d(pi, pj)
is an upper bound on the network diameter.
Synchronization The nodes have fine-grained clock hardware (with arbi-
trary clock offset upon system start). For the sake of presentation simplicity, our
work considers zero clock skews. We assume that the clock value, C ∈ [0, c− 1],
and any timestamp in the system have c states. The pseudo-code uses the
GetClock() function that returns a timestamp of C’s current value. Since the
clock value can overflow at its maximum, and wrap to the zero value, arith-
metic expressions that include timestamp values are module c, e.g., the function
AdvanceClock(x) := C ← (C + x) mod c adds x time units to clock value, C,
modulo its number of states, c. We assume that the maximum clock value is
sufficiently large, c � diamτ2, to guarantee convergence of the clock synchro-
nization algorithm, before the clock wrap around. We say that the clocks are
synchronized when ∀pi, pj ∈ P : Ci = Cj , where Ci is pi’s clock value.

Periodic pulses invoke the MAC protocol, and divide the radio time into
(broadcasting) timeslots of ξ time units in a way that provides sufficient time for
the transmission of a single packet. We group τ timeslots into (broadcasting)
frames. The pseudo-code uses the event timeslot(s) that is triggered by the
event 0 = Ci mod ξ and s := Ci ÷ ξ mod τ is the timeslot number, where ÷ is
the integer division.
Operations The communication allows a message exchange between
the sender and the receiver. After the sender, pi, fetches message m ←
MAC_fetchi() from the upper layer, and before the receiver, pj , delivers it
to the upper layer in MAC_deliverj(m), they exchange m via the operations
transmiti(m), and respectively, m← receivej(). We model the communication
channel, qi,j (queue), from node pi to node pj ∈ δi as the most recent message
that pi has sent to pj and that pj is about to receive, i.e., |qi,j | ≤ 1. When
pi transmits message m, the operation transmiti(m) inserts a copy of m to
every qi,j , such that pj ∈ δi. Once m arrives, pj executes receive() and returns
the tuple 〈i, ti, tj ,m〉, where ti = Ci and tj = Cj are the clock values of the

5

associated transmiti(m), and respectively, m ← receivej() calls. We assume
zero propagation delay and efficient time-stamping mechanisms for ti and tj .
Moreover, the timeslot duration, ξ, allows the transmission and reception of at
least a single packet, see Property 1.

Property 1. Let pi ∈ P , pj ∈ δi. At any point in time ti in which node pi
transmits message m for duration of ξ, node pj receives m if there is no node
pk ∈ (δi ∪ δj) \ {pi} that transmits starting from time tk with duration ξ such
that [ti, ti + ξ) and [tk, tk + ξ) are intersecting.

This means a node can receive a message if no node in the neighborhood
of the sender and no node in the neighborhood of the receiver is transmitting
concurrently.
Interferences Wireless communications are subject to interferences when two
or more neighboring nodes transmit concurrently, i.e., the packet transmission
periods overlap or intersect. We model communication interferences, such as
unexpected peaks in ambient noise level and concurrent transmissions of neigh-
boring nodes, by letting the (communication) environment to selectively omit
messages from the communication channels. We note that we do not consider
any error (collision) indication from the environment.

The environment can use the operation omissioni,j(m) for removing message
m from the communication channel, qi,j , when pi’s transmission of m to pj ∈ δi
is concurrent with the one of pk ∈ ∆i. Immediately after transmiti(m), the
environment selects a subset of pi’s neighbors, Omitm ⊆ δi, removes m from
qi,j : pj ∈ Omitm and by that it prevents the execution of m ← receivej().
Note that Omitm = δi implies that no direct neighbor can receive message m.
Self-stabilization Every node, pi ∈ P , executes a program that is a sequence
of (atomic) steps, ai. The state, sti, of node pi ∈ P includes pi’s variables,
including the clocks and the program control variables, and the communication
channels, qi,j : pj ∈ δi. The (system) configuration is a tuple c := (st1, . . . , st|P |)
of node states. Given a system configuration, c, we define the set of applicable
steps, a = {ai}, for which pi’s state, sti, encodes a non-empty communication
channel or an expired timer. An execution is an unbounded alternating sequence
R := (c[0], a[0], c[1], a[1], . . .) (Run) of configurations c[k], and applicable steps
a[k] that are taken by the algorithm and the environment. The task T is a set
of specifications and LE (legal execution) is the set of all executions that satisfy
T . We say that configuration c is safe, when every execution that starts from it
is in LE. An algorithm is called self-stabilizing if it reaches a safe configuration
within a bounded number of steps.
Task definition We consider the task T

TDMA
, that requires all nodes, pi,

to have timeslots, si, that are uniquely allocated to pi within ∆i. We define
LETDMA to be the set of legal executions, R, for which ∀pi ∈ P : (pj ∈ P ⇒ Ci =
Cj)∧ (((si ∈ [0, τ −1])∧ (pj ∈ ∆i))⇒ si 6= sj) holds in all of R’s configurations.
We note that for a given finite τ , there are communication graphs for which
T

TDMA
does not have a solution, e.g., the complete graph, Kτ+1, with τ + 1

nodes. In Section 3, we show that the task solution can depend on the (arbitrary)
starting configuration, rather then just the communication graph.

6

frame = 9 slots

Figure 1: The outer five nodes are covering nine timeslots. The top horizontal
line and its perpendicular marks depict the radio time division according to
the central node, pδ. The gray boxes depict the radio time covered by the leaf
nodes, pi ∈ L.

3 Basic Results
We establish a basic limitation of the bandwidth utilization for TDMA al-
gorithms in wireless ad hoc networks. Before generalizing the limitation, we
present an illustrative example (Lemma 1) of a starting configuration for which
τ < max{2δ, χ2}, where χ2 is the chromatic number for distance-2 vertex col-
oring.

Lemma 1. Let δ ∈ N and τ < 2δ. Suppose that the communication graph,
G := ({p0, . . . pδ}, E), has the topology of a star, where the node pδ is the center
(root) node and E := {pδ} × L, where L := {p0, . . . pδ−1} are the leaf nodes.
There is a starting configuration c[x], such that an execution R starting from
c[x] of any algorithm solves the task T

TDMA
does not converge.

Proof. We prove this Lemma by showing an example in which we assign times-
lots to a subset of nodes in a way, such that they block each other and, thus,
disconnect the communication graph.

Let τ = 2δ − 1. Let c[x] be such that: (1) Ci in c[x] has the properties
(Ci+(2ξ−1)i) mod ξ = 0 and (Ci+(2ξ−1)i)÷ξ mod τ = si for all pi ∈ L\{pδ},
(2) sδ = ⊥ and (3) there is no message in transit. Figure 1 shows such a graph
for δ = 5. This means the next timeslot of node pi ∈ L\{pδ} starts (2ξ−1)i clock
steps after c[x]. The gap between the time pi’s timeslot ends and pi+1’s timeslot
starts is (2ξ−1)(i+1)−((2ξ−1)i+ξ) = ξ−1 < ξ clock steps long and thus smaller
than a time slot. The gap between the next transmission of pδ−1 and the next
next transmission of p0 is (2δ−1)ξ+(2ξ−1)0− ((2ξ−1)(δ−1)+ξ) = δ−1 < ξ.
This pattern repeats, because only pδ receives these messages transmitted by
the leaves and pδ does not have a time slot assigned and according to Property 1

7

any attempt of pδ in transmitting can fail. Thus, no algorithm can establish
communication here.

The proof of Lemma 1 considers that case of τ < 2δ and the star topology
graph. We note that the same scenario can be demonstrated in every graph
that includes a node with the degree δ. Thus, we can establish a general proof
for τ < max{2δ, χ(G2)} using the arguments in the proof of Lemma 2, where
χ2 is the chromatic number when considering distance-2 coloring.

Lemma 2. Let ξ ∈ R, τ ∈ N and S := {[aξ, (a + 1)ξ): a ∈[0, τ − 1]} be a
partition of [0, ξτ). The intervals C := {[bi, bi+ξ): bi ∈R}i intersects maximum
2|C| elements of S.

Proof. Suppose that [b, b+ ξ) ∈ C intersects I := [aξ, (a+ 1)ξ) ∈ S for some a.
Either I = [b, b+ ξ), b ∈ I or b+ ξ ∈ I. Therefore, any element [bi, bi + ξ) of C
intersects maximum 2 elements of S, one that contains bi and one that contains
bi + ξ.

4 Self-stabilizing TDMA Allocation and Align-
ment Algorithm

We propose Algorithm 1 as a self-stabilizing algorithm for the T
TDMA

task. The
nodes transmit data packets, as well as control packets. Data packets are sent
by active nodes during their data packet timeslots. The passive nodes listen to
the active ones and do not send data packets. Both active and passive nodes
use control packets, which include the reception time and the sender of recently
received packets from direct neighbors. Each node aggregates the frame infor-
mation it receives. It uses this information for avoiding collisions, acknowledging
packet transmission and resolving hidden node problems. A passive node, pi,
can become active by selecting random timeslots, si, that are not used by active
nodes. Then pi sends a control packet in si and waiting for confirmation. Once
pi succeeds, it becomes an active node that uses timeslot si for transmitting
data packets. Node pi becomes passive whenever it learns about conflicts with
nearby nodes, e.g., due to a transmission failure.

The hidden node problem refers to cases in which node pi has two neighbors,
pj , pk ∈ δi, that use intersecting timeslots. The algorithm uses random back off
techniques for resolving this problem in a way that assures at least one successful
transmission from all active and passive nodes within O(τ), and respectively,
O(1) frames in expectation. The passive nodes count a random number of
unused timeslots before transmitting a control packet. The active nodes use
their clocks for defining frame numbers. They count down only during TDMA
frames whose numbers are equal to si, where si ∈ [0, τ − 1] is pi’s data packet
timeslot. These back off processes connect all direct neighbors and facilitate
clock synchronization, timeslot alignment and timeslot assignment. During legal
executions, in which all nodes are active, there are no collisions and each node
transmits one control packet once every τ frames.

8

Algorithm 1: Self-stabilizing TDMA Allocation, code for node pi
statusi ∈ {active, passive}; /* current node status */
si ∈ [0, τ − 1]; /* current data packet timeslot */
waiti, waitAddi ∈ [0,maxWait]; /* current back off countdown */
FIi := {idk, typek, occurrencek, rxT imek}k ⊂ FI; /* frame information */
timeOut; /* constant, age limit of elements in FIi */
BackOff() := let (tmp, r) ← (waitAddi, random([1, 3∆])); return (r + tmp,
3∆− r); /* reset backoff counter */
frame() := (GetClock()÷ ξτ) mod τ,; /* the current frame number */
Slot(t) := (t÷ ξ mod τ), s() := Slot(GetClock()); /* slot number of time t */
Local(set) := {〈•, local, •〉 ∈ set}; /* dist-1 neighbors in set */
Used(set) :=

⋃
〈•,tk〉∈set[Slot(tk), Slot(tk + ξ − 1)];

Unused(set) := [0, τ − 1] \ Used(set); /* set of (un)used slots */
ConflictWithNeighbors(set) := (@〈idi•〉∈set∨ si ∈ [Slot(ti), Slot(ti + ξ)]∨
∃〈k,•,rxTime〉∈set,k 6=idi

: si ∈ [Slot(rxT ime− tj + ti), Slot(rxT ime− tj + ti + ξ)]);
/* check for conflicts */
AddToFI(set, o) := FIi ← FIi ∪ {〈x, y, remote, z′〉 : 〈x, y, •, z〉 ∈ set, z′ :=
(z + max{0, o}) mod c, z′ ≤timeOut Ci}; /* set+ FIi */
IsUnused(s) := s ∈ Unused(FIi) ∨ (Unused(FIi) = ∅ ∧ s ∈ Unused(Local(FIi)));
/* is s an unused slot? */

1 upon timeslot() do
2 if s() = si ∧ statusi = active then /* send data packet */

transmit(〈statusi, Local(FIi),MAC_fetch()〉)
3 else if ¬(statusi = active ∧ frame() 6= si) then /* check if our frame */
4 if IsUnused(s()) ∧ waiti ≤ 0 then /* send control packet */
5 transmit(〈statusi, Local(FIi), 0〉);

〈waiti, waitAddi〉 ← BackOff(); /* next control packet countdown */
6 if statusi 6= active then 〈si, statusi〉 ← 〈s(), active〉;
7 else if waiti > 0 ∧ IsUnused((s()− 1) mod τ) then /* count down */

waiti ← max{0, waiti − 1}

8 FIi ← {〈•, rxT ime〉 ∈ FIi : rxT ime ≤timeOut GetClock()}; /* remove old
entries from FIi */

9 upon 〈j, tj , ti, 〈statusj , F Ij ,m′〉〉 ← receive() do
10 if ConflictWithNeighbors(FIj) ∧ statusi = active then /* conflicts? */

〈〈waiti, waitAddi〉, status〉 ← 〈BackOff(), passive〉; /* get passive */

11 if statusj = active then /* active node acknowledge */
12 if m′ 6= ⊥ then FIi ← {〈idi, •〉 ∈ FIi : idi 6= j}∪ {〈j,message, local, ti〉};
13 else if tj = ti ∧ Slot(tj) 6∈ Used(FIi) then /* passive node acknowledge */
14 FIi ← {〈idi, •〉 ∈ FIi : idi 6= j}∪ {〈j,welcome, local, ti〉};
15 if ti < tj then /* converge-to-the-max */
16 AdvanceClock(tj − ti); /* adjust clock */
17 FIi ← {〈•, (rxT ime+ tj − ti) mod c〉 : 〈•, rxT ime〉 ∈ FIi}; /* shift

timestamps in FIi */
18 〈〈waiti, waitAddi〉, statusi〉 ← 〈BackOff(), passive〉; /* get passive */

19 AddToFI(FIj , ti − tj); /* Aggregate information on used timeslots */
20 if m′ 6= ⊥ then MAC_deliver(m′);

Algorithm details The node status, statusi, is either active or passive. When
it is active, variable si contains pi timeslot number.

The frame information is the set FIi := {idk, typek, occurrencek, rxT imek}k

9

⊂ FI = ID×{message, welcome}×{remote, local}×N that contains information
about recently received packets, where ID := {⊥} ∪ N is the set of possible ids
and the null value denoted by ⊥. An element of the frame information contains
the id of the sender idk. The type typek = message indicates that the sender
was active. For a passive sender typek = welcome indicates that there was no
known conflict when this element was added to the local frame information. If
occurrencek = local, the corresponding packet was received by pi, otherwise it
was copied from a neighbor. The reception time rxT imek is the time when this
packet was received, regarding the local clock Ci, i.e., it is updated whenever
the local clock is updated. The algorithm considers the frame information to
select an unused timeslot. An entry in the frame information with timestamp t
covers the time interval [t, t+ ξ).

Nodes transmit control packets according to a random back off strategy for
collision avoidance. The passive node, pi, chooses a random back off value,
stores it in the variable waiti, and uses waiti for counting down the number
of timeslots that are available for transmissions. When waiti = 0, node pi
uses the next unused timeslot according to its frame information. During back
off periods, the algorithm uses the variables waiti and waitAddi for counting
down to zero. The process starts when node pi assigns waiti ← waitAddi + r,
where r is a random choice from [1, 3∆], and updates waitAddi ← 3∆ − r, cf.
BackOff().

The node clock is the basis for the frame and timeslot starting times, cf.
frame(), and respectively, s(), and also for a given timeslot number, cf. Slot(t).
When working with the frame information, set, it is useful to have restriction
by local occupancies, cf. Local(set) and to list the sets of used and unused
timeslots, cf. Used(set), and respectively, Unused(set). We check whether an
arriving frame information, set, conflicts with the local frame information that is
stored in FIi, cf. ConflictWithNeighbors(set), before merging them together,
cf. AddToFI(set, offset), after updating the timestamps in set, which follow
the sender’s clock.

Node pi can test whether the timeslot number s is available according to
the frame information in FIi and pi’s clock. Since Algorithm 1 complements
the studied lower bound (Section 3), the test in IsUnused(s) checks whether
FIi encodes a situation in which there are no unused timeslots. In that case,
IsUnused(s) tests whether we can say that s is unused when considering only
transmissions of direct neighbors. The correctness proof considers the cases in
which τ > 2∆ and τ > max{4δ,∆ + 1}. For the former case, Lemma 3 shows
that there is always an unused timeslot s′ that is not used by any neighbor
pj ∈ ∆i, whereas for the latter case, Lemma 4 shows that for any neighbor
pj ∈ δi, there is a timeslot s′′ for which there is no node pk ∈ δi ∪ δj ∪ {pj , pi}
that transmits during s′′.

The code of Algorithm 1 considers two events: (1) periodic timeslots (line 1)
and (2) reception of a packet (line 9).
(1) timeslot(), line 1: Actives nodes transmit their data packets upon their
timeslot (line 2). Passive nodes transmit control packets when the back off
counter, waiti, reaches zero (line 5). Note that passive nodes count only when

10

the local frame information says that the previous timeslot was unused (line 7).
Active nodes also send control packets, but rather than counting all unused
timeslots, they count only the unused timeslots that belong to frames with a
number that matches the timeslot number, i.e., frame() = si (line 3).
(2) receive(), line 9: Active nodes, pi, become passive when they identify
conflicts in FIj between their data packet timeslots, si, and data packet times-
lots, sj of other nodes pj ∈ ∆i (line 10). When the sender is active, the receiver
records the related frame information. Note that the payload of data packets
is not empty in line 12, c.f., m′ 6= ⊥. Passive nodes, pj , aim to become active.
In order to do that, they need to send a control packet during a timeslot that
all nearby nodes, pi, view as unused, i.e., Slot(t) 6∈ Used(FIi), where t is the
packet sending time. Therefore, when the sender is passive, and its data packet
timeslots are aligned, i.e., ti = tj , node pi welcomes pi’s control packet whenever
Slot(tj) 6∈ Used(FIi). Algorithm 1 uses a self-stabilizing clock synchronization
algorithm that is based on the converge-to-the-max principle. When the sender
clock value is higher (line 15), the receiver adjusts its clock value and the times-
tamps in the frame information set, before validating its timeslot, si, (lines 16
to 18). The receiver can now use the sender’s frame information and payload
(lines 19 to 20).
Correctness The proof of Theorem 1 starts by showing the existence of un-
used timeslots by considering the cases in which τ > 2∆ and τ > max{4δ,∆+1}
(Lemmas 3, and respectively, 4). This facilitates the proof of network connec-
tivity (Lemma 5), clock synchronization (Theorem 2) and bandwidth allocation
(Theorem 3).

Theorem 1. Algorithm 1 is a self-stabilizing implementation of task T
TDMA

that converges within O(diam · τ2δ + τ4δ2) starting from an arbitrary configu-
ration. In case the system happens to have access to external time references,
i.e., start from a configuration in which clocks are synchronized, the conver-
gence time is within O(τ4), and O(τ4δ2) steps when τ > 2∆, and respectively,
τ > max{4δ,∆ + 1}.

The proof considers the following definitions. Given a configuration c, we
denote by A(c) = {pi ∈ P : statusi = active∧waiti = 0} the set of active nodes,
and by P(c) = P \A(c) the set of passive ones. A frame for a node pi ∈ P is the
time between two successive events of timeSlot(s) with s = 0. Note that these
frames depend on Ci and, thus, might not be alinged between nodes. Commu-
nication among neighbors is possible only when there are timeslots that are free
from transmissions by nodes in the local neighborhood. Lemma 3 assumes that
τ > 2∆ and shows that every node, pi ∈ P , has an unused timeslot, s, with
respect to pi’s clock. This satisfies the conditions of Property 1 with respect to
all of pi’s neighbors pj ∈ δi. The proof considers the definitions of the start and
the end of frames and timeslots, as well as unused timeslots. A configuration,
cFrameStarti [x`] = c[x], in which GetClocki() mod (ξτ) = 0 holds, marks the
start of one of pi’s frames. This frame ends when the next frame starts, i.e., the
next configuration cFrameStarti [x`+1]. A timeslot of pi is, respectively, bounded
by two successive configurations cTimeSloti [x`] and cTimeSloti [x`+1], such that in

11

those configurations GetClocki() mod ξ = 0 holds. The slot number for this
timeslot is given as GetClocki()÷ ξ mod τ at configuration cTimeSloti [x`]. Given
execution R, we denote a timeslot starting at cTimeSloti [x`] as unused if there is
no active node pj ∈ ∆i exists such that it has in R an intersecting data packet
timeslot. Namely, there is no configuration cTimeSlotj [x′`] in R with slot number
GetClocki() ÷ ξ mod τ = sj occurs before cTimeSloti [x`+1] and a configuration
cTimeSlotj [x′`+1] occurs after cTimeSloti [x`].

Lemma 3. Suppose that τ > 2∆ and pi ∈ P . Let R be an execution of Algo-
rithm 1 that includes a complete frame start with respect to pi’s clock. Between
any two successive frame starts, cFrameStarti [x`] and cFrameStarti [x`+1], there is
at least one unused timeslot.

Proof. Let us consider all the configurations, c′ between cFrameStarti [x`], and
cFrameStarti [x`+1]. Let S be the partition of pi’s frame in τ timeslots of length
ξ and C be the maximal set of data packet timeslots of active nodes pj ∈ ∆i

(and their respective clocks, Cj). We show that τ > 2∆ implies the existence
of at least one unused timeslot between cFrameStarti [x`] and cFrameStarti [x`+1],
by requiring that C’s elements cannot interest all τ elements in S. The nodes
pj periodically transmit a data packet once every τ timeslots (line 2). Note
that there are at most ∆ active nodes, pj , in all (possibly arbitrary) configura-
tions c′. Namely, every pj has a single data packet timeslot, sj , but sj ’s timing
is arbitrary with respect to pi’s clock. By the proof of Lemma 2, C interests
maximum 2|C| elements of the set S. Since |S| = τ , |C| ≤ ∆, and the as-
sumption that C’s elements cannot interest all elements in S, we have τ > 2∆
implies the existence of at least one unused timeslot between cFrameStarti [x`]
and cFrameStarti [x`+1].

Lemma 3 is basically the application of Lemma 2, were we identify the
timeslots with intervals. Lemma 4 extends Lemma 3 by assuming that τ >
max{4δ,∆ + 1} and showing that every node, pi ∈ P , has an unused timeslot,
s, with respect to pi’s clock. This satisfies the conditions of Property 1 with
respect to one of pi’s neighbors pj ∈ δi, rather than all pi’s neighbors pj ∈ δi,
as in the proof of Lemma 3.

Lemma 4. Suppose τ > max{4δ,∆ + 1}, pi ∈ P and pj ∈ δi. Let R be
an execution of Algorithm 1 that includes a complete frame with respect to
pi’s clock. With respect to pi’s clock, between any two successive frame starts,
cFrameStarti [x`] and cFrameStarti [x`+1], there is at least one timeslot that is un-
used by any of the nodes pk ∈ δi ∪ δj ∪ {pj , pi}.

Proof. Let C be the maximum set of data packet timeslots of active nodes
pj ∈ δi ∩ δj ∩ {pj} (and their respective clocks, Cj). The proof follows by
arguments similar to those of Lemma 3. We show that τ > max{4δ,∆ + 1}
implies the existence of at least one timeslot that is unused by any of the nodes
pk ∈ δi∪δj∪{pj , pi} between cFrameStarti [x`] and cFrameStarti [x`+1], by requiring
that C’s elements cannot interest all τ elements in S, c.f., proof of Lemma 3 for
S’s definition. By the proof of Lemma 2, C interests maximum 2|C| elements

12

of the set S. Since |S| = τ > max{4δ,∆ + 1}, |C| ≤ 2δ, and the assumption
that C’s elements cannot interest all elements in S, we have τ > max{4δ,∆+1}
implies the existence of at least one unused timeslot between cFrameStarti [x`]
and cFrameStarti [x`+1].

Lemma 5 shows that the control packet exchange provides network con-
nectivity. Recall that Lemmas 3 and 4 imply that there is a single timeslot,
s, that is unused with respect to the clocks of node pi and all, respectively,
one of pi’s neighbors. Lemmas 3 and 4 refer to the cases when τ > 2∆ and
τ > max{4δ,∆ + 1} for which Lemma 5 shows that the communication delay
(during convergence) of the former case is δ times shorter than the latter. The
proof shows that we can apply the analysis of [12], because the back off pro-
cess of a passive node counts r unused timeslots, where r is a random choice in
[1, 3∆]. The lemma statement denotes the latency period by ` := (1− e−1)−1.

Definition 1. Let c ∈ R be a configuration and pi, pj ∈ P : pj ∈ δi two
neighbors. We say that the tuple e := 〈j, •, local, time〉 ∈ FIi is locally steady in
c when ((Cj + τξ− (time mod τξ))÷ ξ)÷ τ = sj . For the case of pi, pj , pk ∈ P :
pk ∈ δi ∧ pj ∈ δk we say that e := 〈j, •, remote, time〉 ∈ FIi is remotely steady
in c when ((Cj + τξ − (time mod τξ))÷ ξ)÷ τ = sj . A tuple e ∈ FIi is stale if
e is neither locally steady, nor steady.

A frame information set FIi is locally consistent if all local entries can be used
to predict a transmission of a node in δi. A locally consistent frame information
set FIj is consistent if all remote entries can be used to predict transmissions of
nodes in ∆i \ δi.

Lemma 5. Let R be an execution of Algorithm 1 that starts from an arbitrary
configuration c[x]. Then there is a suffix R′ of R that starts from a configuration
c[x + O(timeOut)] such that a node pi ∈ P receives a message from all nodes
in δi within finite time.

Proof. We show that every execution reaches a configuration c′′ such that in
the suffix R′ of R starting from c′′ neighbors can exchange packets within finite
time. Lemmas 3 and 4 show the existence of a free time slot for all nodes and
their clocks. Then we show that it is also marked as free in the node’s frame
information, since stale entries might block it. Therefore, we study the behavior
of elements in the frame information set FIi during the different clock update
steps. Furthermore, we show how elements in the frame information set are
propagated between neighboring nodes. We see how the distance in time from
each entry to the current time of a node Ci increases monotonically. Thus, a all
elements are deleted after Ci advances by timeOut clock steps. Additionally,
after all stale entries are deleted there is maximal one entry in FIi for each
neighbor pj ∈ ∆i. Thus, pi sees the free time slot.

Note that a node pi adds only elements e := 〈id, type, occurrence, rxT ime〉 ∈
FI to FIi within the lines 11, 14 and 19. If we add a direct neighbor in
line 14 and 11 rxT ime = Ci holds. In latter case, line 19, we copy entries
ei := 〈k, •, remote, rxT imei〉 from an entries ej := 〈k, •, remote, rxT imej〉 direct

13

neighbor pj ∈ δi. But here we update the rxT imej to rxT imei according to
pi’s clock Ci and thus Cj − rxT imej mod c = Ci − rxT ime mod c.

Let R be a run starting from a configuration c, such that pi has a stale entry
e := 〈j, •, t〉 ∈ FIi. There are three cases that can occur. (1) pi does not receive
a packet during the next timeOut − t + τ clock steps either from pj directly,
or from pk that contains an entry with the id j in the frame information and
with a smaller clock difference. In this case their exists a configuration c′ in R
such that e 6∈ FIi(c′) and 0 < (Ci(c

′) − Ci(c) − timeOut + t) mod c < τ . (2)
pi receives a packet from pj and thus the stale entry e is replaced by a stable
entry. (3) pi receives a packet from pk in configuration c′ that contains an entry
e′ := 〈j, bullet, t′〉, such that (Ci(c

′) − t) mod c > (Cj(c
′) − t′. In any case e′

replaces e. If case e′ is stable, the stale entry e is replaced by e′. Otherwise e is
replaced by the stale entry e′. But note that while replacing e with e′ the age,
i.e., the difference to the nodes clock is maintained. This means that the time
until it is removed by time out is for pi and pj the same.

It follows that in a configuration c′′ that is more then timeOut clock steps
after c, there are only stale entries due to nodes in the distance-2 neighborhood
that got passive recently, i.e. at most timeOut + ξ clock ticks ago. Thus, the
free time slot for a node pi, that exists by Lemma 3 and 4, is also free according
to FIi. This means pi can communicate with all neighbors in δi within finite
time.

After showing the network connectivity in Lemma 5, we continue with
bounding the expected communication delay in Lemma 6 i.e., how long does
it take to successfully send a control packet to a neighbor.

Lemma 6. Let R be an execution of Algorithm 1 that starts from an config-
uration c[x] such that a node pi ∈ P continuously receives messages from all
nodes in δi within finite time. Then every expected β frames in R′, node pi ∈ P
receives at least one message from all direct passive neighbors, pj ∈ δi, where
β is 3∆` frames if 2∆ < τ , or 3∆`δ frames if τ > max{4δ,∆ + 1}. More-
over, every expected γ frames, pi receives at least one message from all active
neighbor, pk ∈ δi, where γ is 3∆τ` frames if 2∆ < τ , or 3∆τ`δ frames if
τ > max{4δ,∆ + 1}.

Proof. Lemmas 3 and 4 are showing the existence of unused time slots. We
showed above that the frame information set reaches a state in which it is
consistent with the actual assignment of time slots. It follows that a node has
the chance to choose a free time slot and exchange packets with all neighbors.
We show the expect communication delay.

Let c[x] be a configuration. Assume node pk is passive in c[x]. Node pk counts
down a random number of unused timeslots regarding FIk. Since FIk does not
necessarily contain information about conflicting neighbors, i.e., p`, pm ∈ δk ∩
A(c[x]) whose data packet timeslots are intersecting, pk could use a slot which
is used by some neighbors. Suppose that some nodes in δk ∩ A(c[x]) are not in
FIk due to conflicts. Then they intersect maximum 2/3 of the unused timeslots
in FIk, since two conflicting nodes can only intersect with three timeslots, but

14

for each node we add two slots to our frame (τ > 2∆). Therefore, a factor of
3/2 is added to our expected value `. The same holds if pk is active. In the case
of τ ∈ [4δ + 1, 2∆], there are maximum δ different timeslots for transmitting
packets to all neighbors; one for each pk ∈ δi. The choice of a timeslot is random
and, thus, there is an additional factor of δ to hit this timeslot.

For Theorem 2 shows that the converge-to-the-max principle works when
given bounds on the expectation of the communication delay, rather than con-
stant delay bounds, as in [11].

Theorem 2. Let R be an execution of Algorithm 1 that starts from an arbi-
trary configuration c[x]. Within expected Φ := γ · diam frames, a configuration
c[xsynchro] is reached after which all clocks are synchronized, where γ is the
expected communication delay as in Lemma 6.

Proof. For a moment consider the case of an unbounded clock. Let M ⊂ P
the set of nodes with maximum clock in an arbitrary configuration c. Then we
expect every execution to reach a configuration c′ within the communication
delay of γ frames in which every neighbor pi of M has received a message from
a node in M . Thus, pi converged the clock to the maximum value is part of
the set of nodes with maximum clock in c′. Note that a node in M is not
leaving M , since we neither assume clock skew, nor can it receive a larger clock
value. It follows by induction that the set of nodes with maximum clock value
is increasing monotonically and within expected γ ·diam framesM covers P and
thus a configuration c[xsynchro] is reached.

We proceed with investigating bounded clocks. As in [11] we consider three
cases. In the first case, all clock values, Ci, are smaller than the maximal
clock value, c − 1, by at least the algorithm convergence time, i.e., ∀pi : Ci ∈
[0, c − 1 − Φ]. The proof of this case follows that arguments above for the
unbounded case.

The second case, ∀pi : Ci ∈ [0,Φ− 1] ∨Ci[c−Φ, c− 1], is that all clocks are
near wrapping around. Clocks can change from the lower interval to the higher
one, but after expected Φ clock steps, all clocks have wrapped around, and
reached the lower interval [0,Φ− 1], or have left the lower interval by counting
up normally, but not by calling AdvanceClock(). Thus, the proof of the second
case is followed by the arguments of the first case.

The third case supposes that in configuration c[x] there is at least on node
whose clock value is in the range [Φ, c− 1−Φ], and at least one with a clock in
[c− 1−Φ, c− 1]. Note that those with a clock in [c− 1−Φ, c− 1] wrap around
in maximal Φ clock steps. Let c[x′] be the configuration after c[x], such that all
nodes with a clock value in [c− 1− Φ, c− 1] have wrapped around.

There are three cases. First, all nodes are able to receive a message from one
of the nodes with a clock value in [c− 1−Φ, c− 1], before they wrap around in
configuration.Then we have the second case and we are done. If in configuration
c[x′] not all nodes receive such a large clock value in [c−1−Φ, c−1], then either
there is no node in c[x′] that has a clock value in [c− 1−Φ, c− 1] and we have
the first case, or there is at least one node with a clock value in [c−1−Φ, c−1].

15

Let pi one of the nodes that have the largest clock value in c[x′] and let c[x′′] be
the first configuration of R after c[x] such that pi’s clock is in [c− 1−Φ, c− 1].
Then, expected Φ · diam clock steps after c[x′′], a configuration c[x′′′] is reached
in which all nodes in P have either received a clock that is equal or larger to pi’s
clock value and adopted it. Thus, in c[x′′′] all nodes have either a clock value in
[c− 1− Φ, c− 1], or in [0,Φ− 1], because they have wrapped around. So, this
is reduces to the second case.

Once the clocks are synchronized, and the TDMA timeslots are aligned,
Algorithm 1 allocates the bandwidth using distance-2 coloring. This happens
within O(γ2) frames, see Theorem 3.

Theorem 3. Let R be an execution that starts from an arbitrary configuration
c[xsynchro] in which all clocks are synchronized. Within expected γ2 frames from
c[xsynchro], the system reaches a configuration, c[xalloc], in which each node
pi ∈ P has a timeslot that is unique in ∆i.

Proof Sketch. We have showed that active nodes get feedback within an
expected time. Active nodes with positive feedback stay active, but conflicting
active nodes get a negative feedback and change their status to passive. Passive
nodes are transmitting from time control packets. They are successful and stay
active on this timeslot with probability 1− 1/e. Otherwise, they get a negative
feedback within expected γ frames. Hence, the number of active nodes without
conflicts is monotonically increasing until every node is active.

The convergence time of this timeslot assignment is dominated by the time
for a successful transmission and the time for a negative feedback in case of
a unsuccessful transmission. This leads to an expected convergence time of
γ2.

The proof of Theorem 1 is concluded by showing that configuration, c[xalloc]
(Theorem 3), is a safe configuration with respect to LETDMA , see Lemma 7.

Lemma 7. Configuration c[x] is a safe configuration with respect to LE
TDMA

,
when (1) ∀pi,pj∈P : Ci = Cj, (2) ∀pi∈P : statusi = active, (3) ∀pi∈P∀pj∈∆i

:
si 6= sj, (4) ∀pi∈P : ∀pj∈∆i∪{pi}∃!〈id,message,•〉∈FI : id = idj.

Proof. First we check that c[x] is legal regarding LE
TDMA

.The conditions (1) and
(3) are coinciding with the conditions of a legal execution LE

TDMA
. Condition

(2) is necessary in combination to (3) to ensure that the TDMA slot stored in
si is valid. Condition (4) is a restriction to general configurations in LETDMA

that ensures that a node knows about its neighborhood.
We conclude by proofing that the conditions of this Lemma hold for all

configurations following c[x] in an execution R of Algorithm 1. Since (1) holds
in c[x], this means all clocks are synchronized, a node can never receive a clock
value that is larger than its own, so the clock update step in line 16 is never
executed. Thus for all following configurations to c[x] in R condition (1) holds.
A node changes its statusi to passive when it updates its clock (line 16), or when
it detects a conflict with the slot assignment (line 10). From (1) follows that

16

20 40 60 80
0

50

100

150

number of nodes

fr
am

es

grid graph
random graph

Figure 2: The converges time in frames for different graphs. In the grid graph,
nodes are placed on a lattice and connected to their four neighbors. The con-
vergence times are the average over 16 runs that start each with random clock
offsets. The random node graph is a unified disk graph with random node
placement with maximal 16 neighbors pair node.

there is no clock update. From (3) follows that in c[x] there is no conflict with
the slot assignment and from (4) that everyone is aware that there is no conflict.
Furthermore, (4) implies that every node selects only slots for control packets
that are free within the distance-2 neighborhood. Thus, in R there is never a
message transmitted from that the receiver can detect a conflict and no conflict
is introduced by sending a control packet on a data packet slot of a distance-2
neighbor. This proofs that c[x] is a safe configuration for LE

TDMA
.

Corollary 1. The configuration c[xalloc] is a safe configuration for the task
T

TDMA
.

Proof. We check that c[xalloc] fulfills the conditions of Lemma 7. Condition
(1) follows from Theorem 2 and conditions (2), (3) and (4) are following from
Theorem 3.

Proof of Theorem 1. Lemma 3, 4 and 5 show that communication is possible af-
ter a constant number of clock steps. Lemma 6 bounds the expected communi-
cation delay to γ. Theorem 2 shows that after O(γ ·diam) frames a configuration
c[xsynchro] is reached where the clocks are synchronized. Theorem 3 shows that
in O(γ2) frames after c[xsynchro], a configuration c[xalloc] is reached in which
all nodes have an allocated timeslot. Corollary 1 shows that Algorithm 1 solves
T

TDMA
by reaching c[xalloc].

5 Experimental results
We demonstrate the implementation feasibility. We study the behavior of the
proposed algorithm in a simulation model that takes into account timing uncer-
tainties. Thus, we demonstrate feasibility in a way that is close to the practical
realm.

17

The system settings (Section 2) that we use for the correctness proof (Sec-
tion 20) assumes that any (local) computation can be done in zero time. In con-
trast to this, the simulations use the TinyOS embedded operating systems [18]
and the Cooja simulation framework [23] for emulating wireless sensor nodes
together with their processors. This way Cooja simulates the code execution
on the nodes, by taking into account the computation time of each step. We
implemented the proposed algorithm for sensor nodes that use IEEE 802.15.4
compatible radio transceivers. The wireless network simulation is according to
the system settings (Section 2) is based on a grid graph with 4 ≥ δ as an upper
bound on the node degree and a random graph with 16 ≥ δ as an upper bound
on the node degree. The implementation uses clock steps of 1 millisecond. We
use a time slot size of ξ = 20 clock steps, where almost all of this period is spent
on transmission, packet loading and offloading. The frame size is τ = 16 ≥ 4δ
time slots for the grid graph and τ = 64 ≥ 4δ for the random graphs. For these
settings, all experiments showed convergence, see Figure 2.

6 Conclusions
This work considers fault-tolerant systems that have basic radio and clock set-
tings without access to external references for collision detection, time or po-
sition, and yet require constant communication delay. We study collision-free
TDMA algorithms that have uniform frame size and uniform timeslots and re-
quire convergence to a data packet schedule that does not change. By taking
into account (local) computation time uncertainties, we observe that the al-
gorithm is close to the practical realm. Our analysis considers the timeslot
allocation aspects of the studied problem, together with transmission timing
aspects. Interestingly, we show that the existence of the problem’s solution de-
pends on convergence criteria that include the ratio, τ/δ, between the frame
size and the node degree. We establish that τ/δ ≥ 2 as a general convergence
criterion, and prove the existence of collision-free TDMA algorithms for which
τ/δ ≥ 4. Unfortunately, our result implies that, for our systems settings, there
is no distributed mechanism for asserting the convergence criteria within a con-
stant time. For distributed systems that do not require constant communication
delay, we propose to explore such criteria assertion mechanisms as future work.

Acknowledgments This work would not have been possible without the con-
tribution of Marina Papatriantafilou, Olaf Landsiedel and Mohamed H. Mustafa
in many helpful discussions, ideas, problem definition and analysis.

References
[1] N. Abramson. Development of the ALOHANET. Info. Theory, IEEE

Trans. on, 31(2):119–123, 1985.

[2] M. Arumugam and S. Kulkarni. Self-stabilizing deterministic time division

18

multiple access for sensor networks. AIAA Journal of Aerospace Comput-
ing, Info., and Comm. (JACIC), 3:403–419, 2006.

[3] J. R. S. Blair and F. Manne. An efficient self-stabilizing distance-2 coloring
algorithm. Theor. Comput. Sci., 444:28–39, 2012.

[4] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. Contention-free
MAC protocols for asynchronous wireless sensor networks. Distrib. Comp.,
21(1):23–42, 2008.

[5] H. A. Cozzetti and R. Scopigno. RR-Aloha+: a slotted and distributed
MAC protocol for vehicular communications. In Vehicular Networking Con-
ference (VNC), 2009 IEEE, pages 1 –8, Oct. 2009.

[6] P. Danturi, M. Nesterenko, and S. Tixeuil. Self-stabilizing philosophers with
generic conflicts. ACM Tran. Autonomous & Adaptive Systems (TAAS),
4(1), 2009.

[7] M. Demirbas and M. Hussain. A MAC layer protocol for priority-based
reliable multicast in wireless ad hoc networks. In BROADNETS. IEEE,
2006.

[8] S. Dolev. Self-Stabilization. MIT Press, 2000.

[9] T. Herman. Models of self-stabilization and sensor networks. In S. R.
Das and S. K. Das, editors, IWDC, volume 2918 of LNCS, pages 205–214.
Springer, 2003.

[10] T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm
for wireless sensor networks. In ALGOSENSORS, volume 3121 of LNCS,
pages 45–58. Springer, 2004.

[11] T. Herman and C. Zhang. Best paper: Stabilizing clock synchronization
for wireless sensor networks. In A. K. Datta and M. Gradinariu, editors,
SSS, volume 4280 of LNCS, pages 335–349. Springer, 2006.

[12] J.-H. Hoepman, A. Larsson, E. M. Schiller, and P. Tsigas. Secure and self-
stabilizing clock synchronization in sensor networks. Theor. Comput. Sci.,
412(40):5631–5647, 2011.

[13] A. Jhumka and S. S. Kulkarni. On the design of mobility-tolerant TDMA-
based media access control (MAC) protocol for mobile sensor networks.
In T. Janowski and H. Mohanty, editors, ICDCIT, volume 4882 of LNCS,
pages 42–53. Springer, 2007.

[14] S. S. Kulkarni and M. Arumugam. Transformations for write-all-with-
collision model, . Computer Communications, 29(2):183–199, 2006.

19

[15] P. Leone, M. Papatriantafilou, and E. M. Schiller. Relocation analysis of
stabilizing MAC algorithms for large-scale mobile ad hoc networks. In
5th Inter. Workshop Algo. Wireless Sensor Net. (ALGOSENSORS), pages
203–217, 2009.

[16] P. Leone, M. Papatriantafilou, E. M. Schiller, and G. Zhu. Chameleon-
MAC: adaptive and self-? algorithms for media access control in mobile ad
hoc networks. In 12th Inter. Symp. on Stabilization, Safety, and Security
of Distributed Systems (SSS’10), pages 468–488, 2010.

[17] P. Leone and E. M. Schiller. Self-stabilizing TDMA algorithms for dynamic
wireless ad-hoc networks. Int. J. Distributed Sensor Networks, 639761,
2013.

[18] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An operating system for
sensor networks. In Ambient intelligence, pages 115–148. Springer, 2005.

[19] T. Masuzawa and S. Tixeuil. On bootstrapping topology knowledge in
anonymous networks. ACM Trans. Auton. Adapt. Syst., 4(1):8:1–8:27, Feb.
2009.

[20] N. Mitton, E. Fleury, I. G. Lassous, B. Sericola, and S. Tixeuil. Fast
convergence in self-stabilizing wireless networks. In 12th Int. Conf. Parallel
and Distributed Systems (ICPADS’06), pages 31–38, 2006.

[21] M. Molloy and M. R. Salavatipour. A bound on the chromatic number
of the square of a planar graph. J. Comb. Theory, Ser. B, 94(2):189–213,
2005.

[22] M. Mustafa, M. Papatriantafilou, E. M. Schiller, A. Tohidi, and P. Tsi-
gas. Autonomous TDMA alignment for VANETs. In 76th IEEE Vehicular
Technology Conf. (VTC-Fall’12), pages 1–5. IEEE, 2012.

[23] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. In Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, pages 641–648. IEEE, 2006.

[24] T. Petig, E. M. Schiller, and P. Tsigas. Self-stabilizing tdma algorithms
for wireless ad-hoc networks without external reference. In T. Higashino,
Y. Katayama, T. Masuzawa, M. Potop-Butucaru, and M. Yamashita, edi-
tors, SSS, volume 8255 of LNCS, pages 354–356. Springer, 2013.

[25] S. Pomportes, J. Tomasik, A. Busson, and V. Vèque. Self-stabilizing algo-
rithm of two-hop conflict resolution. In 12th Inter. Symp. on Stabilization,
Safety, and Security of Distributed Systems (SSS’10), pages 288–302, 2010.

[26] R. Scopigno and H. A. Cozzetti. Mobile slotted aloha for VANETs. In 70th
IEEE Vehicular Technology Conf. (VTC-Fall’09), pages 1 – 5, 2009.

20

[27] V. Turau and C. Weyer. Randomized self-stabilizing algorithms for wire-
less sensor networks. In H. de Meer and J. P. G. Sterbenz, editors, IW-
SOS/EuroNGI, volume 4124 of LNCS, pages 74–89. Springer, 2006.

[28] S. Viqar and J. L. Welch. Deterministic collision free communication despite
continuous motion. In 5th Inter. Workshop Algo. Wireless Sensor Net.
(ALGOSENSORS), pages 218–229, 2009.

[29] F. Yu and S. Biswas. Self-configuring TDMA protocols for enhancing ve-
hicle safety with dsrc based vehicle-to-vehicle communications. Selected
Areas in Communications, IEEE Journal on, 25(8):1526 –1537, oct. 2007.

21

	1 Introduction
	2 System Settings
	3 Basic Results
	4 Self-stabilizing TDMA Allocation and Alignment Algorithm
	5 Experimental results
	6 Conclusions

