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Abstract—In this work we consider discrete-time multiple-
input multiple-output (MIMO) linear-quadratic-Gaussian (LQG)
control where the feedback consists of variable length binary
codewords. To simplify the decoder architecture, we enforce a
strict prefix constraint on the codewords. We develop a data
compression architecture that provably achieves a near minimum
time-average expected bitrate for a fixed constraint on the LQG
performance. The architecture conforms to the strict prefix
constraint and does not require time-varying lossless source
coding, in contrast to the prior art.

I. INTRODUCTION

In this work, we consider discrete-time MIMO LQG control
where feedback occurs via variable-length packets (code-
words) of bits that we assume are conveyed reliably (without
error) from a sensor/encoder to a decoder/controller. For some
constraint on LQG control performance, we seek to design a
sensor/encoder and decoder/controller that minimize the time-
averaged expected bitrate of the binary channel.

The motivation for this formulation is communication-
efficient remote control over wireless communications. In
particular, we imagine a scenario where a remote sensor
platform measures some dynamical system and conveys the
measurements to the controller over a noiseless binary channel.
At the physical and medium access control layers, reliable
control of autonomous agents over wireless has motivated
the development of ultra low latency reliable communication
(ULLRC). While progress has been made on the development
ULLRC, the fundamental scarcity of physical layer resources
motivates approaches that minimize the use of these resources.
In contrast to the work on ULLRC, we aim higher on the
protocol stack; namely we propose to develop control and data
compression (source coding) strategies to achieve satisfactory
control performance with minimal communication bitrate. The
minimum average length, in bits, of the binary packets the
sensor encodes are an effective surrogate for the minimum
amount of physical layer resources (time/bandwidth/power)
required to achieve satisfactory performance for a fixed relia-
bility (cf. e.g. [1, Section 2.6]). We impose a prefix constraint
on the codewords that ensures that other users sharing the
same communication medium can identify the end of each
transmitted message and thus identify the channel as free-
to-use. In contrast to the prior art, this work imposes a
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time-invariant (TI) prefix constraint on the codewords, which
simplifies the decoding architecture architecture; the end of
codewords can be detected via comparison with a TI list [2].

In the prior literature, achievability results for the problem
of interest follow from asymptotically bounding the output
entropy of a quantizer [3][4][5]. While these bounds can
nearly be achieved with zero-delay lossless source coding, they
generally require that the lossless code be adapted, at every
timestep, to the probability mass function of the quantizer
output (cf. [6, Section IV.A]). This adds a great deal of
computational complexity to the encoder and decoder.

In this work, we propose a data compression architecture
for MIMO plants based on [4] and [6] that attains the desired
LQG performance, satisfies a TI prefix constraint, and does
not require a time-varying lossless source codec. Starting from
the architecture of [4], we prove that the quantizer output
has a limiting distribution. We propose to losslessly encode
the quantizations with a fixed prefix-free code adapted the
limiting distribution. We prove that under this modification, the
codewords satisfy a TI prefix constraint without an increase in
codeword length and without the complexity of time-varying
lossless source coding. The architecture nearly achieves a
known lower bound on the minimum expected bitrate. In
particular, we use results from systems theory to extend the
scalar TI achievability approach in [6] to the MIMO setting.

A. Related Work

Our work follows from the architecture for LQG control
with minimum bitrate prefix-free variable-length coding in [3].
For scalar systems, [3] derived a lower bound on the bitrate
of a prefix-free source codec inserted into an LQG feedback
channel in terms of Massey’s directed information (DI) [7].
This motivated a rate-distortion problem for the tradeoff
between DI and LQG control performance. Using entropy-
coded dithered quantization (ECDQ), [3] proved that the DI
lower bound was nearly achievable. In ECDQ, uses a shared
sequence of IID uniform random variables to whiten the error
induced by quantization process. The quantization are then
encoded via an entropy source code (e.g. a Shannon-Fano-
Elias code). The rate-distortion formulation was generalized to
MIMO plants in [8]. Likewise, the achievability approach was
generalized in [4]. New analytical lower bounds (for MIMO
systems) for the bitrate/control performance tradeoff were
derived in [5]. It was further demonstrated that such bounds
were nearly achievable without the use of a dither signal in
the high communication rate/strict control cost regime [5]. The
achievablilty approaches in [3], [4], and [5] implicitly assume
that quantizations are encoded using a time-varying lossless
source code [6]. More recently, [9] and [2] refined the lower
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bound analysis in [3], clarifying that the bound still applies
even when the encoder and decoder share a dither signal.

The use of time-varying source codes complicates compres-
sion architectures; generally speaking, the codebooks used to
encode quantizations must be updated at every timestep. Fur-
thermore, in network settings, a source code’s prefix properties
may be used by receivers to detect the end of transmissions.
If a TI prefix code is used, the set of prefixes against which
received codewords are compared is constant over time [2]. In
the time-varying case, there are no such guarantees. In [6] it
was shown that when a dither signal is available, there exists a
TI quantization and coding scheme for scalar plants that nearly
achieves the DI lower bound. In this work, we generalize this
to the MIMO setting; namely we prove the existence of a
quantizer and TI source codec for MIMO plants that nearly
achieves the directed information lower bound [8]. We believe
this to be the first such “time-invariant” achievability result for
MIMO plants in the literature.

Work on fixed bitrate and event-driven communication
strategies for control are also relevant to this work. In [10],
numerical experiments demonstrated that Lloyd-Max style
quantization could be used to attain a control performance
competitive with known variable-rate upper bounds. However,
the quantizer in [10] is time-varying, and many experimental
realizations had time-average control costs that greatly ex-
ceeded the variable-length bounds [10]. More recently, [11]
have proposed the the mean time to quantizer saturation as a
metric for the analysis of fixed-length coding in LQG feedback
control. Periodic coding strategies were devised, and their
performances and escaped times were analyzed theoretically
and with an experiment [11]. More recently [12] consid-
ered tracking a scalar Markov source under an event-based
communication paradigm. Under this formulation, an encoder
monitoring a plant can send binary codewords (without prefix
constraints) at arbitrary (continuous-time) instants to a syn-
chronized decoder [12]. For a constraint on estimator error,
the minimum bitrate communication policy was deduced. In
this work, as in [4], [5], [10], we consider a sampled discrete-
time control and communication model. While event-driven
schemes like [12] may be able to achieve smaller bitrates than
these works, the models for control and communication in
[4], [5], [10] are more amenable to real-world sampled data
systems with finite sensing and communication bandwidths.

B. Notation

We denote constant scalars and vectors in lowercase x,
scalar and vector random variables in boldface x, and matrices
by capital letters X . We let [x]i denote the ith element of x,
Im denote the Rm×m identity matrix, 0m×m the respective
zero matrix. Let ‖X‖2 denote the largest singular value of
X . We write P(S)D for “symmetric positive (semi)definite”,
and let Sm+ denote the set of m × m PSD matrices. We let
�, � denote the standard partial order on the PSD cone, e.g.
if A,B ∈ Rm, we write A � B if A − B is PD, likewise
A � B if A − B is PSD. For time domain sequences, let
{xt} denote (x0,x1, . . . ), xba denote (xa, . . . ,xb) if b ≥ a,

xba = ∅ otherwise. Let xb = xb0. Denote the set of finite-
length binary strings by {0, 1}∗. For a ∈ {0, 1}∗, let `(a) be
the length of a in bits. Let ∆Zm denote the set of m−tuples
whose elements are integer multiples of ∆. Define the set
Bm(∆) = {x ∈ Rm : ‖x‖∞ ≤ ∆

2 }. For a set S, define the
indicator function of x ∈ S as 1x∈S . For a topological space
T, let B(T) denote the standard Borel σ-algebra of T. For
Euclidean spaces, let λ denote the Lebesgue measure. We use
PMF for “probability mass function”, PDF for “probability
density function” (with respect to λ), a ⊥ b for “a and b are
independent”, and H for entropy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the system model depicted in Fig. 1. The
system to be controlled is a TI, multidimensional, linear
dynamical system (i.e., a MIMO plant) plant controlled via
a feedback model where communication occurs over an ideal
(delay and error free) binary channel. The plant is fully ob-
servable to an encoder/sensor block, which conveys a variable-
length binary codeword at ∈ {0, 1}∗ over the channel to a
combined decoder/controller. Upon receipt of the codeword,
the decoder/controller designs the control input. Denote the
state vector xt ∈ Rm, the control input ut ∈ Ru, and let wt ∼
N (0,W ) denote processes noise assumed to be IID over time.
We assume W � 0m×m, i.e., the process noise covariance is
full rank. We assume assume that x0 ∼ N (0, X0) for some
X0 � 0. For A ∈ Rm×m the system matrix and B ∈ Rm×u the
feedback gain matrix, for t ≥ 0 the plant dynamics are given
by xt+1 = Axt +But +wt. To ensure finite control cost is
attainable, we assume (A,B) are stabilizable. We assume that
the encoder and decoder share access to a random uniform
dither signal {dt}. We assume that, for some ∆ > 0 to be
specified, the random vectors dt ∈ Rm have components that
are independently uniformly distributed on [−∆/2,∆/2], and
that the sequence {dt} is IID over time. We assume that {wt},
{dt}, and x0 are mutually independent. In real-world systems,
this shared randomness can be effectively accomplished using
synchronized pseudorandom number generators. We assume
that the encoder/sensor and the decoder/controller may be
randomized given their inputs. The encoder/sensor policy in
Fig. 1 is a sequence of causally conditioned Borel measurable
kernels denoted PE[a∞0 ||d

∞
0 ,x

∞
0 ] =

{
PE[at|at−1

0 ,dt0,x
t
0]
}
t
,

and that corresponding decoder/controller policy is given by
PC[u∞||a∞,d∞] =

{
PC[ut|at,dt,ut−1]

}
t
. Note that under

the assumed dynamics, xt is a deterministic function of x,
at−1, ut−1, and wt−1. We encode conditional independence
assumptions in the system model by a factorization of the one-
step transition kernels for at, dt, ut, and wt. For t ≥ 0, we
assume the kernels factorize via

P[at+1,ut+1|at,dt+1,ut,wt,x0] =

PE[at+1|at,dt+1,xt+1]PC[ut+1|at+1,dt+1,ut], (1a)

P[at+1,dt+1,ut+1,wt+1|at,dt,ut,wt,x0] =

P[at+1,ut+1|at,dt,ut,wt,x0]P[dt+1]P[wt+1], (1b)



Fig. 1. The encoder can select the codeword at randomly given “the
information it knows at time t”. When at arrives at the decoder, the decoder
can randomly generate the control ut given at as well as its own prior
knowledge. The encoder and decoder share access to dt, which is IID and
generated “independently” of all past system variables.

and that we have initially P[a0,d0,u,w0|x0] =
P[w0]P[d0]PE[a0|x0,d0] PC[u0|a0,d0]. Implications of
these factorization are discussed in the caption of Fig. 1.

We require the codewords to conform to a TI prefix con-
straint, namely that for all i, j and distinct a1, a2 ∈ {0, 1}∗
with both P[ai = a1] > 0 and P[aj = a2] > 0, a1 is
not a prefix of a2 and vice-versa. Thus, not only must the
support of the random variable ai be a set of prefix-free binary
codewords, we also require the union of the supports of the
{ai} be prefix-free. This is a stronger prefix constraint than
was considered in [4]. The TI constraint may enable for more
computationally efficient communication resource sharing; the
end of a codeword can be unambiguously identified via
comparing received messages against the TI union of supports.
We are interested in the following optimization, over policies
PE,PC that conform to the prefix constraint:

L(γ) =


inf

PE,PC

1

T

∑T−1

t=0
E[`(at)]

s.t.
1

T

∑T−1

t=0
E[‖xt+1‖2Q + ‖ut‖2Φ] ≤ γ,

(2)

where Q � 0, Φ � 0, and γ is the maximum tolerable LQG
cost. Let S be a stabilizing solution to the discrete algebraic
Riccati equation (DARE) ATSA − S − ATSB(BTSB +
Φ)−1BTSA + Q = 0, K = −(BTSB + Φ)−1BTSA, and
Θ = KT(BTSB + Φ)K. Consider the optimization

R(γ) =



inf
P,Π,∈Rm×m

P,Π�0

1

2
(− log2 det Π + log2 detW )

s.t. Tr(ΘP ) + Tr(WS) ≤ γ,

P � APAT +W ,[
P −Π PAT

AP APAT +W

]
� 0

(3)

A consequence of [2] (cf. [6] and [8]) is the lower bound
R(γ) ≤ L(γ). In the sequel, we will analyze the bitrate of the
proposed achievability scheme in terms of R(γ).

III. ACHIEVABILITY ARCHITECTURE

The achievability approach we proposed is demonstrated
in Fig. 2. It is almost identically to the time-varying MIMO
achievability approach in [6, Section IV.B] with the exception
that the lossless Shannon-Fano-Elias source codec used to

Variable Description/Key Equations

P̂ ∈ Sm
+ Minimizing P of (3), asymptotic KF estimator error

P̂+ ∈ Sm
+ P̂+ = AP̂AT + W , asymptotic KF prediction error

C ∈ Rm×m Measurement matrix, P̂−1 − P̂−1
+ = CTC 12

∆2

∆ ∈ R Quantizer/dither sensitivity, P̂−1 − P̂−1
+ = CTC 12

∆2

K ∈ Ru×m Certainty equivalent feedback control gain
xt|t−1 ∈ Rm TI KF prediction of xt

xt|t ∈ Rm TI KF estimate of xt. ut = Kxt|t
et ∈ Rm KF predict error et = xt|t−1 − xt, E[eteT

t ]→ P̂+

dt ∈ Rm Dither sequence, IID elements ∼ Uniform(∆)
qt ∈ ∆Zm Quantization qt = Q∆(Cet + dt), encoded into at

q̃t ∈ Rm Reconstruction q̃t = qt − dt, error vt = q̃t − Cet

vt ∈ Rm vt ⊥ et, vt ⊥ xt, E[vtvT
t+k] = Im

∆2

12
1k=0

yt ∈ Rm Effective measurement at decoder yt = Cxt + vt

TABLE I

encode the quantizations is TI. We first describe the signals
in Fig. 2 before summarizing relevant results from [6] that
simplify the analysis. Let P̂ denote the minimizing P from
(3), let P̂+ = AP̂AT + W , and let ∆ ∈ R, ∆ > 0, and
C ∈ Rm×m be such that P̂−1− P̂−1

+ = CTC 12
∆2 . In this way,

P̂ (P̂+ ) is interpreted as the asymptotic (prediction) error
covariance attained by a Kalman filter tracking the source pro-
cess {xt} under a measurement model yt = Cxt+vt, where
E[vtv

T
t+k] = Im

∆2

12 1k=0, E[vtx
T
0 ] = E[vtw

T
t+k] = 0m×m.

We will show that this measurement model is attained by the
decoder in Fig. 2 using dithered quantization.

Fig. 2. The achievability architecture. Descriptions of the variables may be
found in Table I.

Define a uniform elementwise quantizer via Q∆ : Rm →
∆Zm via [Q∆(x)]i = k∆, if [x]i ∈ [k∆−∆/2, k∆ + ∆/2),
e.g. each element of the vector x is rounded to the nearest
multiple of ∆. Both the encoder and decoder in Fig. 2 operate
identical time invariant Kalman filters that compute recursive
estimates of xt given measurements received by the decoder.
Let xt|t−1 denote the prior estimate at time t and xt|t denote
the posterior. Set x0|−1 = 0. At every time t the encoder and
decoder produces the Kalman filter prediction error

et = xt − xt|t−1, (4)

and the linear measurement innovation et. It then produces the
discrete, dithered quantization qt = Q∆(Cet+dt). It encodes
the discrete quantization losslessly into the codeword at which
it transmits to the decoder. Upon receiving at, the decoder can



recover qt exactly. It then produces the reconstruction q̃t =
qt−dt. Let vt = q̃t−Cet denote the reconstruction error. It
then produces the centered measurement yt = q̃t + Cxt|t−1

(equivalently yt = Cxt+vt). By [4, Lemma 1], the elements
[vt]i are mutually independent and uniform on [−∆/2,∆/2]
and furthermore vt ⊥ xt. Denote the TI Kalman filter gain
J = P̂+C

T(CP̂+C
T + Im×m

∆2

12 )−1. The decoder updates its
estimate via

xt|t = xt|t−1 + J(yt − Cxt|t−1), (5)

and applies the certainty equivalent control input ut = Kxt|t.
It then computes the predict estimate xt|t−1 = Axt−1|t−1 +
But−1. Since the encoder knows the quantizations {qt} and
the dither {dt}, it can recover the sequence of measurements
{yt}. The encoder can thus compute the sequence of TI
Kalman filter estimates {xt|t−1,xt|t}. While we have yet to
define how qt is encoded into at, we have the following.

Lemma 1: So long as the decoder recovers qt ex-
actly at every t, we have that 1) vt ⊥ et,vt−1wt,x0,
2) limt→∞H(q)t ≤ R(γ) + m

(
1 + 1

2 log2

(
2πe
12

))
, 3)

limT→∞
∑T
i=0 E[‖xt‖22 + ‖ut‖22] ≤ γ.

The first statement follows from [4, Lemma 1] and the system
model and the subsequent are via [6, Theorem IV.5].

The TI prefix constraint can be satisfied by encoding each
qt with the same lossless prefix code at all time. Let q be
a discrete random variable on ∆Zm (the same alphabet as
qt). Assume the support of q is such that P[q = k] = 0

only if P[qt = k] = 0. Define F q(q) = P[q < q] + P[q=q]
2 ,

and define the encoding function CF
q (q) : ∆Zm → {0, 1}∗

such that CF
q (q) is the binary expansion of F q(q) truncated

to d− log2(Pq[q])e+1 bits. This is a standard, lossless, prefix-
free Shannon-Fano-Elias code for the random variable q [13].
If we use CF

q to encode qt (e.g. at = CF
q (qt)) the codeword

length satisfies

E[`(at)] ≤ 2 +H(qt) +DKL(qt||q). (6)

Note that if for some k, P[q = k] = 0 while P[qt = k] > 0,
then DKL(qt||q) = ∞. The main result of this paper is the
following lemma, proved in Section IV.

Lemma 2: There exists a random variable q such that
DKL(qt||q) is finite for all t and limt→∞DKL(qt||q) = 0.
This lemma allows us to bound the bitrate for when a TI
prefix-free code is used in Fig. 2.

Theorem 3: Let η =
(
1 + 1

2 log2

(
2πe
12

))
. Setting at =

CF
q (qt) for all t ensures that the system in Fig. 2 attains

a control cost less than γ, satisfies the prefix constraint in
Section II, and attains a communication cost that satisfies

lim sup
T→∞

1

T

T−1∑
i=0

E[`(at)] ≤ R(γ) + 2 +mη (7)

Proof: CF
q is a prefix free code fixed over all t. Furthermore,

since DKL(qt||q) is finite for all t, it is lossless on the
support of {qt}. The bound on codeword length (7) follows
via applying (6) to each term on the left-hand side and then
using the Cesáro mean (cf. Lemma 1). �
In Section IV, we use ergodic theory to prove Lemma 2.

IV. PROOF OF LEMMA 2

We proceed as in [6] by analyzing the long-term behavior
of the Kalman innovation and dither signals, e.g. (et,dt). At
every t, the quantization error vt is a measurable function
of (et,dt) given by vt = qt − Cet, or, equivalently, vt =
Q∆(Cet + dt) − dt − Cet. Let L = AJ and R = A − LC.
The following recursion for the et (cf. (4)) can be derived

et+1 = Ret − Lvt +wt (8)
= M(et,dt) +wt. (9)

By construction of L, (A−LC) is stable, e.g. its eigenvalues
lie strictly within the complex unit circle [14]. Define the state
space Dm = Rm × Bm(∆). For r, µ ∈ Rm, Σ ∈ Sm×m+ ,
denote the PDF of a multivariate Gaussian random variable
with mean µ and covariance Σ evaluated at r by N(r;µ,Σ),
i.e. define the function N(r;µ,Σ) : Rm × Rm × Sm+ → R
via N(r;µ,Σ) = 1√

(2π)m det Σ
e−

1
2 (r−µ)TΣ−1(r−µ). Define

M : (x, y) ∈ Dm → Rm via M(x, y) = Rx − L(Q∆(Cx +
y) − y − Cx). By definition, the marginal PDF of the dither
is fdt+1

(d) = 1
∆m 1d∈Bm(∆) for all t. Since wt ⊥ (et,dt),

and dt+1 ⊥ (et+1,wt), via (8) we have that {et,dt} is a
time-homogeneous first order Markov chain.

The PDFs of {et,dt} factorize via fet+1,dt+1|et,dt =
fdt+1fet+1|et,dt . Via (8),

fet+1|et,dt(e|ep, dp) = N(e;M(ep, dp),W ) (10)
fet+1|et,vt(e|ep, vp) = N(e;Rep − Lvp,W ). (11)

Let ft+1|t = fet+1,dt+1|et,dt , and likewise ft+n|t =
fet+n,dt+n|et,dt . From the foregoing, we have

ft+1|t(e, d|ep, dp) =
1d∈Bm(∆)N(e;M(ep, dp),W )

∆m
(12)

Applying the Chapman-Komogorov equations to (12), it can
be seen that the n-step transition kernels satisfy

ft+n|t(e, d|ep, dp) = fet+n|et,dt(e|ep, dp)
1d∈Bm(∆)

∆m
. (13)

We now state the generalization of [6, Lemma A.3].

Lemma 4: Let Σn =
n−1∑
i=0

RiW (RT)i and

µn(e0, d0, v
n−1
1 ) = Rn−1M(e0, d0)−

n−2∑
i=0

RiLvn−1−i.

For all n ≥ 1 we have

fen|e0,d0,v
n−1
1

(en|e0, d0, v
n−1
1 ) =

N(en;µn(e0, d0, v
n−1
1 ),Σn). (14)

Proof: The proof follows by induction on n. By (10), (14)
holds for n = 1. Assume that the relation (14) holds for
some n = k − 1. To avoid clutter, when obvious we sup-
press the arguments to PMFs, writing, e.g. fek|e0,d0,v

k−1
1

in
place of fek|e0,d0,v

k−1
1

(ek|e0, d0, v
k−1
1 ). Via Bayes’ Theorem,



fek|e0,d0,v
k−1
1

=
f
ek,vk−1|e0,d0,v

k−2
1

f
vk−1|e0,d0,v

k−2
1

. Since vk−1 is a mea-

surable function of ek−1 and dk−1, vk−1 is conditionally
independent of (vk−2

1 , e0,d0) given ek−1. By Lemma 1, vk−1

is (pairwise) independent of ek−1. This further implies that
vk−1 is independent of (vk−2

1 , e0,d0). Thus we have

fvk−1
= fvk−1|ek−1,e0,d0,v

k−2
1

(15)

= fvk−1|e0,d0,v
k−2
1

(16)

Using (15), it can be seen that fek,vk−1|e0,d0,v
k−2
1

=

fvk−1

∫
R fek|ek−1,e0,d0,v

k−1
1

fek−1|e0,d0,v
k−2
1

dek−1. Thus,

fek|e0,d0,v
k−1
1

=∫
R
fek|ek−1,e0,d0,v

k−1
1

fek−1|e0,d0,v
k−2
1

dek−1. (17)

As wk−1 ⊥ (dk−1
0 , ek−1

0 ,wt−1
0 ,x0), we have, via (8)

that ek is conditionally independent of (e0,d0,v
k−2
0 ) given

(ek−1,vk−1). Thus fek|ek−1,e0,d0,v
k−1
1

= fek|ek−1,vk−1
. Us-

ing (11) and assuming (14) holds for n = k−1, the integration
in (17) is given by fek|e0,d0,v

k−1
1

=
∫

R N(ek;Rek−1 −
Lvk−1,W )N(et−1;µk−1,Σk−1)dek−1. This is the convolu-
tion of two multivariate Gaussian PDFs.

Computing the convolution, we have fek|e0,d0,v
k−1
1

=

N(ek;Rµk−1 − Lvk−1, RΣk−1R
T + W ), e.g. given

(e0,d0,v
k−1
1 ) = (e0, d0, v

k−1
1 ), ek is Gaussian with mean

Rµk−1 − Lvk−1 and covariance RΣk−1R
T + W . As

µk = Rµk−1 − Lvk−1 and Σk = RΣk−1R
T + W we have

the proof. �
The next lemmas describe properties of {Σn}
and the sequence of functions µn(e0, d0, v

n−2
1 ) :

Rm × (Bm(∆))n−1 → Rm. We recall a result from
system theory.

Lemma 5 (Gelfand’s Theorem and a Corollary [15]): Let
Q ∈ Rm×m and denote the spectral radius of Q (e.g. the
largest of the absolute values of Q’s eigenvalues) by ρmax(Q).
Gelfand’s Theorem states that limn→∞ (‖Qn‖2)

1
n =

ρmax(Q). Let γ = (ρmax(Q) + 1)/2. If ρmax(Q) < 1 then
γ < 1 and by Gelfand’s Theorem ∃ i such that ∀ j ≥ i
‖Qj‖2 ≤ γj .

Lemma 6: We have Σn � W � 0m×m. Furthermore, there
exists a constant c such that for all n, ‖Σn‖2 ≤ c.
Proof: The first statement is immediate from the assumption
that W � 0m×m and the formula for Σn in Lemma 4. Note
that since Σn−1 � Σn, we have that {‖Σn‖2} is monotoni-
cally increasing. Recall that ρmax(R) < 1 [14]. Using Lemma

5, it is seen that for some c <∞, limr→∞
r∑
i=0

‖Ri‖22‖W‖2 =

c. The triangle inequality and the submultiplicity of the matrix
2-norm gives ‖Σn‖2 ≤ c. �

Lemma 7: There exist constants α and β such that
for any n and choice of vn−2

1 ∈ (Bm(∆))n−2 we have
‖µn

(
e0, d0, v

n−1
1

)
‖2 ≤ α‖M(e0, d0)‖2 + β.

Proof: The proof is analogous to that of Lemma 6. Lemma 5
is used to bound ‖Rn−1‖2 and

∑n−2
i=0 ‖Ri‖2. We also use the

fact that for vj ∈ Bm(∆), ‖vj‖2 ≤ ∆
√
m

2 . �
For α, β, and c as defined in Lemmas 6 and 7, define a subset
of Rm×Rm×m viaM(e0, d0,m,L,R,∆) = {(µ,Σ) ∈ Rm×
Rm×m : ‖µ‖2 ≤ α‖M(e0, d0)‖ + β,Σ � W, ‖Σ‖2 ≤ c}.
We have that M(e0, d0,m,L,R,∆) is compact (closed and
bounded). This helps prove the main result of this section.

Lemma 8: There exists an invariant PDF g∞ such that∫
D
ft+1|t(e, d|x, y)g∞(x, y)dxdy = g∞(e, d), (18)

and g∞(x, y) > 0 for all (x, y) ∈ D.
Proof: A set F ∈ B(D) is called weakly transient with respect
to the Markov kernel (12) if there exists a sequence of positive
integers n1 < n2 < . . . such that

∞∑
i=1

Peni ,dni |e0,d0
[F |e0 = e0,d0 = d0] <∞ (19)

holds for λ almost-every (e0, d0) ∈ D. A consequence of
[16, Theorem 5] is that there exists an invariant PDF g∞
satisfying (18) and g∞(a, b) > 0 for all (a, b) ∈ D if and
only if every weakly transient set F has λ(F ) = 0. To
prove the lemma, we proceed via contradiction. We prove
that any set F ∈ B(D) with λ(F ) > 0 is not weakly
transient. Let F ⊂ D have λ(F ) > 0. Since λ(F ) > 0,
F must contain an open ball, which in turn must contain
a closed rectangle of positive Lebesgue measure, e.g. there
exists a δ > 0 and point (eF , dF ) ∈ F such that the set
H = {(x, y) ∈ Rm×Rm : ‖x− eF ‖∞ ≤ δ

2 , ‖y− dF ‖∞ ≤
δ
2}

has H ⊂ F . Note λ(H) = δ2m. Define the “e-section” of H
as the subset He = {x ∈ Rm : ‖x− eF ‖∞ ≤ δ

2}. As H ⊂ F ,
the conditional probability satisfies

Peni ,dni |e0,d0
[F |e0, d0] ≥

∫
H

ft+ni|t(x, y|e0, d0)dxdy (20)

≥ δ2m inf
(x,y)∈H

ft+ni|t(x, y|e0, d0),

≥ δ2m

∆m
inf
x∈He

feni |e0,d0
(x|e0, d0).

Since the “minimum is less than the average”, we have

inf
x∈He

feni |e0,d0
(x|e0, d0) ≥

inf
x∈He

v
ni−1
1 ∈(Bm(∆))n−1

f
eni |e0,d0,v

ni−1
1

(x|e0, d0, v
ni−1
1 ). (21)

Using the explicit formula for f
eni |e0,d0,v

ni−1
1

given by (14) in
Lemma 4, the right side of (21) can be written in terms of Σni
and µni(e0, d0, v

ni
1 ). However, for a fixed (e0, d0), Lemma 7

proves a compact set that contains µni(e0, d0, v
ni
1 ) for any

choice of ni and vni1 . This set is given by Cµ = {µ ∈ Rm :
‖µ‖2 ≤ α‖M(e0, d0)‖ + β}. Likewise, for any ni, Σni falls
within the compact set CΣ = {Σ ∈ Rm×m : Σ � W, ‖Σ‖2 ≤
c} Thus, we have, for any ni

inf
x∈He

v
ni−1
1 ∈(Bm(∆))n−1

f
eni |e0,d0,v

ni−1
1

(x|e0, d0, v
ni−1
1 ) ≥

inf
x∈He, µ∈Cµ, Σ∈CΣ

N(x;µ,Σ). (22)



Note that the optimization on the right of (22) does not depend
on ni. At every point (x, µ,Σ) where Σ � 0m×m, the positive
function N(x;µ,Σ) : Rm × Rm × Rm×m → R is continuous.
Note that the subset He × Cµ × CΣ ⊂ Rm × Rm × Rm×m

is closed and bounded, thus compact, and that Σ ∈ CΣ →
Σ � 0m×m. Thus we have that there exists ε > 0 such
that infx∈He,µ∈Cµ, Σ∈CΣ N(x;µ,Σ) ≥ ε. Thus, following the
inequalities from (20) through (22) gives, for any ni that
Peni ,dni |e0,d0

[F |e0, d0] > ε. Thus for any F with λ(F ) > 0
the terms in the summation (19) are bounded from below by
ε. For any subsequence {ni} of N the summation in (19)
diverges, which implies F is not weakly transient. Thus, if
F is weakly transient, it must have λ(F ) = 0, which via [16,
Theorem 5] proves the lemma. �
The next ensures that the sequence {et,dt} converges to g∞.

Lemma 9: Let (e∞,d∞) ∼ g∞, and (e0,d0) be drawn
from a continuous distribution on D. The sequence of random
variables {(et,dt)} converges weakly to (e∞,d∞).
Proof: We can prove this result using [17, Theorem 4] adapted
to the special case when a first-order time-homogeneous
Markov chain admits an invariant PDF (18) (in other words.
when the chain admits an invariant measure that is absolutely
continuous with respect to Lebesgue measure). A Markov
chain {gt} on a state-space G is said to be φ-irreducible if
there exists a nonzero σ-finite measure φ such that for all
measurable G ⊂ G with φ(G) > 0 and all initial conditions
z0 = z0 with z0 ∈ D we can find an integer n such that
Pzn|z0

[zn ∈ A|z0 = z0] > 0. A Markov chain {gt} on G is
aperiodic if there does not exist d ≥ 1 and disjoint nonempty
measurable subsets G0,G1, . . .Gd−1 such that when gn−1 ∈ Gi,
then Pgn|gn−1

[gn ∈ Gi+1 mod d|zn−1 = zn−1] = 1. A
consequence of [17, Theorem 4] is that if the Markov chain
{gt} admits an invariant PDF g∞, is φ-irreducible, aperiodic,
and g0 is a continuous random variable then the gi converge
weakly to the measure induced by the invariant PDF. Consider
the Markov chain {et,dt} on D, and recall that the Lebesgue
measure λ on D is countably generated. Take A ⊂ D with
λ(A) > 0, and let (e0, d0) ∈ D be arbitrary. We have

Pe1,d1|e0,d0
[(e1,d1) ∈ A|(e0,d0) = (e0, d0)] =∫

A
ft+1|t(e, d|e0, d0)ddde. (23)

It is immediate from the defition of ft+1|t in (12) and the fact
that A ⊂ D that Pe1,d1|e0,d0

[(e1,d1) ∈ A|(e0,d0)(e0, d0)] ≥
0. Thus the Markov chain {et,dt} is λ−irreducible.

Via the same logic, it can be shown by contradiction
that the chain is aperiodic. Assume that the chain is pe-
riodic, e.g. that for d ≥ 2, there exist disjoint nonempty
measurable subsets A0,A1, . . . ,Ad−1 ⊂ D satisfying such
that if (en−1, dn−1) ∈ Ai then Pen,dn|en−1,dn−1

[(en,dn) ∈
Ai+1 mod d|zn−1 = zn−1] = 1. Assume that Ai has λ(Ai) > 0
(since the sets {Ak} partition D, at least one of the sets must
have positive Lebesgue measure). Take (et, dt) ∈ Ai, and let
j = i+ 1 mod d. By the assumption of periodicity

Pt+1|t[(et+1,dt+1) ∈ Aj |(et,dt) = (et, dt)] = 1. (24)

If Ai has λ(Ai) > 0, for any (et, dt) our proof of irreducibility
guarantees that ∃ ε > 0 such that P[(et+1,dt+1) ∈ Ai|et =
et,dt = dt] ≥ ε. As we assumed Ai∩Aj = ∅, this contradicts
(24). Thus the Markov chain {ei,di} is aperiodic, and by [17,
Theorem 4] we have the proof. �
The next lemma characterizes the invariant PDF g∞.

Corollary 10: Assume (e,d) ∼ g∞. Denote the marginal
PDF of e via ge∞(e) =

∫
Bm∆

g∞(e, δ)dδ. We have that e ⊥ d
and d ∼ Uniform[−∆/2,∆/2]. This implies that, g∞ : D→ R
factorizes via g∞(e, d) = ge∞(e)/∆m for (e, d) ∈ D.
Proof: Let A1 be an open ball in Rm and A2 be an open ball
inside Bm(∆). Open intervals like A1 ×A2 form a π system
that generates the σ−algebra B(D). Using the definition of
the transition kernel (12) and the invariant PDF (18), it can
be shown that if P = A1 × A2 then, P[(e,d) ∈ P] =∫
A∞ ge∞(e)deλ(A2)

∆m . By Dynkin’s π−λ theorem, this proves
that e ⊥ d (see e.g., [18, Prop. 2.13]). �
Let (e,d) ∼ g∞, and define q = Q∆(Ce+d). We now prove
that qt converges to q in the KL sense. This is not obvious a
priori as qt and q have countably infinite support.

Lemma 11: DKL(qt||q) <∞ and lim
t→∞

DKL(qt||q) = 0.
Proof: Using the properties of the invariant measure and a data
processing inequality for f-divergences [19, Theorem 2.2 (6)]
one can prove that the sequence of relative entropies is mono-
tonically decreasing, i.e., that DKL(qt+1||q) ≤ DKL(qt||q)
for all t. Since DKL(qt||q) ≥ 0, the limit as t → ∞
exists. From applying the data processing inequality for KL
divergences several times (cf. [19, Theorem 2.2 (6) ]), and
the fact that both dt ⊥ et and by Corollary 10 that both
d ⊥ e and dt and d are identically distributed, we have
that DKL(qt||q) ≤ DKL(et||e). Details can be found in the
proof of [6, Lemma IV.10]. The rest of the proof follows from
bounding DKL(et||e).

Let {νt} denote an IID sequence of random variables
uniformly distributed on Bm(∆). Likewise, let {ωt} be IID
with ωt ∼ N (0,W ), and let λ ∼ N (0, X0). Assume {ωt},
{νt}, and λ are mutually independent. Let “a D

= b” denote
“a and b are identically distributed”. By unwrapping the
recursive definition of {et} in (8), we have et

D
= Rtλ +∑t−1

i=0 R
i(ωi − Lνi). Likewise, by definition of e, we have

that both e
D
= limt→∞Rtλ +

∑t−1
i=0 R

i(ωi − Lνi) and
e
D
= limt→∞

∑t−1
i=0 R

i(ωi − Lνi) following from the weak
convergence guaranteed by Lemma 9. Define the random
variables g≤t =

∑t−1
i=0 R

iωi, u≤t = −
∑t−1
i=0 R

iLνi, and
s>t = limr→∞

∑r
i=tR

i(ωi − Lνi). Note that the limit
in the definition of s>t is well defined via Lemma 5 in
concert with Kolmogorov’s two-series theorem. By definition,
et

D
= Rtλ+ g≤t + u≤t and e D

= g≤t + u≤t + s>t. Note that

g≤t ∼ N (0,
t−1∑
i=0

RWRT). We have

DKL(et||e) ≤ DKL(Rtλ+ g≤t||g≤t + s>t) (25)

≤ DKL(Rtλ+ g≤t||g≤t + s>t|s>t), (26)

where (25) follows from the data processing inequality for



f-divergences and (26) follows since conditioning increases
KL divergence (see [19, Theorem 2.2 (5)]). Given s>t =
s, (26) simplifies to a KL divergence between multivari-
ate Gaussians. Let St =

∑t−1
i=0 RWRT and St = St +

RtX0(RT)t. Since λ ⊥ g≤t by construction, Rtλ + g≤t ∼
N (0, St). Recall also that g≤t ⊥ s>t by construction. We
have, then that DKL(Rtλ + g≤t||g≤t + s>t|s>t = s) =

DKL(N (0, St)||N (s, St)). Let ft : Rm → R be defined via

ft(s) = Tr(S−1
t St) + sTS−1

t s+ ln
(
detSt/detSt

)
. (27)

We have that DKL(N (0, St)||N (s, St)) = 1
2 (ft(s) − m),

where the divergence is expressed in nats. Thus, via (26),

DKL(qt||q) ≤ E [(ft(s>t)−m)]

2
. (28)

Since s>t ∈ L2 and St, St � W , it is clear that the right-
hand side of (28) is finite for all t. We now demonstrate that
limt→∞ E [(ft(s>t)−m)] = 0, attacking the terms in (27)
one-at-a-time. As St � St � W � 0m×m, the determinants
detSt and detSt are bounded strictly away from 0. Since
ρmax(R) < 1, we have that Q = limt→∞ St is well defined,
and that limt→∞ St = Q. Thus

lim
t→∞

ln
(
detSt/ detSt

)
= 0 and lim

t→∞
Tr(S−1

t St) = m.

We now prove limt→∞ E[sTS−1
t s] = 0. Fix t and let pt;r =∑r

i=tR
i(ωi − Lνi). For any t, limr→∞ pt;rp

T
t;r = s>ts

T
>t.

These limits are well defined by Kolmogorov’s two-series
theorm. Let U = W + L∆2

12 L
T. We have

E[sT
>tS

−1

t s>t] = E[Tr
(
S
−1

t s>ts
T
>t

)
] (29)

≤ Tr
(
S
−1

t lim inf
r→∞

E
[
pt;rp

T
t;r

])
. (30)

where (30) follows from Fatou’s lemma, and linearity. We have
E
[
pt;rp

T
t;r

]
=
∑r
i=tR

iU(RT)i, thus

lim
r→∞

E
[
pt;rp

T
t;r

]
= Rt

(
lim
r→∞

r∑
i=0

RiU(RT)i

)
(RT)t,

where the limit exists via Lemma 5. Let N =(
limr→∞

∑r
i=0R

i
(
W + L∆2

12 L
T
)

(RT)i
)

. We have estab-

lished that E[sT
>tS

−1

t s>t] ≤ Tr(S
−1

t RtN(RT)t). Thus
since ρmax(R) < 1 taking the limit as t → ∞
proves lim

t→∞
E[sT

>tS
−1

t s>t] = 0. Thus, in conclusion

limt→∞D(qt||q) ≤ limt→∞
E[(ft(s>t)−m)]

2 ≤ 0. �

V. CONCLUSION

For m dimensional plants, we have proven the existence of
a time-invariant data compression architecture and controller
that can achieves any feasible LQG control performance given
a feedback bitrate within approximately 2 + 1.26m bits of a
known lower bound. Using the “Shannon-type” source codes
described in [6, Section IV.A], it can be shown that this over-
head can be reduced to 1+1.26m bits. The difference between
the lower bound and the rate achieved by the dither free, but
time-varying, achievability architecture in [5] is logarithmic in

the plant dimension (i.e. O(log(m))). This follows from the
use of more sophisticated lattice quantizers [5]. An opportunity
for future work is to demonstrate TI achievability without the
use of dithering and with more sophisticated quantization.

While we have proved that the minimum bitrate can nearly
be achieved with a time-invariant source codec, there still
remains the problem of developing a practical implementation
of this source coding scheme. Numerical experiments would
lend credence to these theoretical results. While the time-
varying achievability approaches in [4] [5] require the precise
construction of codebooks in accordance with the PMF of the
quantizer output, the long-term analyses of Section IV could
be useful in proving bounds on the performance of adaptive
compression schemes based on, for example, [20].
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