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Abstract—The Internet of Things (IoT) is gaining 
momentum in its quest to bridge the gap between the physical 
and the digital world. The main goal of the IoT is the creation of 
smart environments and self-aware things that help to facilitate 
a variety of services such as smart transport, climate 
monitoring, e-health, etc. Huge volumes of data are expected to 
be collected by the connected sensors/things, which in 
traditional cases are processed centrally by large data centers in 
the core network that will inevitably lead to excessive 
transportation power consumption as well as added latency 
overheads. Instead, fog computing has been proposed by 
researchers from industry and academia to extend the 
capability of the cloud right to the point where the data is 
collected at the sensing layer. This way, primitive tasks that can 
be hosted in IoT sensors do not need to be sent all the way to the 
cloud for processing. In this paper we propose energy efficient 
embedding of machine learning (ML) models over a cloud-fog 
network using a Mixed Integer Linear Programming (MILP) 
optimization model. We exploit virtualization in our framework 
to provide service abstraction of Deep Neural Networks (DNN) 
layers that can be composed into a set of VMs interconnected by 
virtual links. We constrain the number of VMs that can be 
processed at the IoT layer and study the impact on the 
performance of the cloud fog approach.  

Keywords— VM placement, energy efficiency, Internet of 
Things, cloud-fog networks, MILP, optimization, resource 
allocation 

I. INTRODUCTION  
Machine learning (ML) models have recently changed the 
basis for most modern-day applications that include object 
detection, natural language processing, self-driving cars, to 
name a few. As new technologies emerge, the adoption of ML 
based models widens. Studies forecast that billions of devices 
are now connected to the Internet and this figure is anticipated 
to rise further in the future[1]. Internet of Things (IoT) on its 
own is projected to generate five quintillions of data everyday 
day whilst on the other hand driverless cars are reported to 
generate up to 4TB worth of data every single hour of driving 
per day [2]. Thus, such an amount of data collected makes 
ML and Deep Neural Networks (DNNs) particularly 
attractive for deployment in the edge of the network. 
Traditionally, the collected data is transported from the edge 
all the way to the centralized cloud data center at the core 
network. However, the centralized processing approach 
introduces several challenges that include privacy, increased 
network power consumption due to the number of hops and 
unacceptable latency overheads  [3], [4]. To address the 
aforementioned challenges, fog computing has been 
proposed in the literature as a decentralized processing 
paradigm by exploiting the resources available across the 
IoT-Cloud continuum. In most cases, the aggregate resources 
available in the IoT-cloud continuum are overlooked in favor 

of centralized processing using the cloud data center [5]. 
Processing, networking, and storage are examples of such 
resources that can be used to relieve the cloud. Fog allows for 
cloud-based services to be brought closer to the data source, 
facilitating  effective and fast processing [6]. A fog node can 
be any device with CPU and networking capabilities [7]. 
Notwithstanding the benefits of fog computing, there still 
exists a number of obstacles that need to be addressed before 
it can reach its full potential. These include Interoperability, 
fog networking, orchestration and resource provisioning, and 
computation offloading, which are just some of the issues. 
We focus on the energy efficient placement of interconnected 
virtual machines (VMs) that are used to abstract DNN layers 
[3]. In this work, we extend our previous contribution in [8] 
by 1)  studying the impact of a range of the idle power 
proportion ratio (IPPR) that is attributed to our application for 
highly shared networking equipment in the access, metro and 
core networks. This can also represent the growth of the given 
application segment considered in the future provided that the 
idle power consumption is proportional to the size of the 
application and 2) paying particular attention to the impact of 
the constraint imposed on the processing capability at the IoT 
layer such that each IoT node can only process a limited 
number of VMs. This is a practical constraint imposed by 
hardware/software limitations where certain IoT nodes may 
not be able to host certain types of ML models. Also, we build 
on our previous studies in the areas of distributed processing 
[9]–[12], green data center [13]–[22] and core networks [23]–
[28], service embedding and virtualization in IoT [29]–[32], 
machine learning and health care systems [33]-[36] and 
network coding for core networks [33]–[38]. 
 
The remainder of this paper is organized as follows: Section 
II describes the proposed cloud fog architecture and the MILP 
optimization model for the distributed placement of VMs 
representing DNN layers. Section III provides the results and 
discussion while Section IV provides the conclusions and 
future work. 

II. THE PROPOSED CLOUD FOG NETWORK 
We assume that the proposed architecture shown in Figure 1 
supports full virtualization at the hardware level, which 
implies that different VMs can be created and deleted on the 
fly, regardless of the heterogeneity in the specification of the 
hardware equipment. We also abstract DNN workloads by 
random virtual topologies that are comprised of several VMs 
inter-connected by virtual links for data exchange. Figure 1 
shows a cloud fog network with four processing layers, 
namely: IoT, Access Fog Node (AFN), Metro Fog Node 
(MFN), and the Cloud. In the Edge Network, we have several  
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IoT devices distributed in different zones where they can 
collect different types of data and perform processing using 
their onboard CPUs. For the access network, we consider a 
Passive Optical Network (PON). The single PON contains 
several Optical Networking Units (ONUs) that connect with 
the IoT devices via Wi-Fi and aggregate IoT traffic through 
fiber links and a splitter towards an Optical Line Terminal 
(OLT) that can be placed at the operator’s exchange office 
[39]. In the access layer, the Access Fog Node (AFN) 
containing several servers is connected to the OLT and the 
OLT connects to the metro network through a metro switch. 
The metro switch connects to the core network via multiple 
edge switches. The metro switch is also connected to a Metro 
Fog Node (MFN) which has slightly higher number of servers 
than the AFN due to the number of users it serves. The core 
network is an IP over WDM network, which is comprised of 
a virtual and physical layer. In the virtual layer, IP routers 
aggregate traffic from the access network and in the physical 
layer, optical switches are used to establish the connection 
between the core nodes [40]. In this work, we consider a 
single cloud data center that is one hop from the core node 
that aggregates traffic from the metro and access network that 
link the IoT nodes.   
 

A. MILP MODEL 
The physical network shown in Figure 1 is modelled as an 
undirected graph 𝐺 = (𝑁, 𝐿), where 𝑁 represents the set of 
all nodes and 𝐿  the set of links connecting those nodes in the 
topology. A virtual request is represented by the directed 
graph 𝐺𝑟 = (𝑅𝑟, 𝐿𝑟) , where 𝑅𝑟  is the set of VMs 
representing virtualized DNN layers and 𝐿𝑟  is the set of 
virtual links connecting those VMs. In this subsection, we  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

formulate the Mixed Integer Linear Programming model 
(MILP) that optimizes the placement of the interconnected 
VMs over the proposed cloud fog architecture. Benefiting 
from our track record in MILP optimization and particularly 
in network virtualization and service embedding in [13], [14], 
respectively, we developed an optimization framework to 
optimally place virtualized DNN functions in the cloud fog 
network.  

B. NOTATIONS 
Before introducing the optimization model, we define the 
sets, parameters and variables used:  

Sets: 
𝔻ℂℕ  Set of data center node(s). 
𝕄𝔽ℕ Set of MF nodes. 
𝔸𝔽ℕ Set of AF nodes. 
𝕀𝕠𝕋 Set of IoT devices. 
𝕀ℕ Set of IoT nodes generating data for the input 

layer.  
ℙ Set of nodes that can process virtual requests, 

where ℙ = 𝔻ℂℕ ∪ 𝕄𝔽ℕ ∪ 𝔸𝔽ℕ ∪ 𝕀𝕠𝕋. 
ℝ Set of virtual requests. 
𝕍𝕄𝑟  Set of VMs in a virtual request 𝑟 ∈ ℝ.  
ℕ Set of all nodes in the CFN architecture.  
ℕ𝑚 Set of neighbor nodes of node m ∈ ℕ. 

 
Parameters: 
𝑠 𝑎𝑛𝑑 𝑑 Index the source and destination nodes of a 

virtual request. 
𝑏 𝑎𝑛𝑑 𝑒 Index source and destination of processing 

nodes hosting VM(s), where  𝑏, 𝑒 ∈ 𝑃, 𝑏 ≠ 𝑒. 
𝑚 𝑎𝑛𝑑 𝑛 Index the physical links.  

Figure 1: The Evaluated Cloud Fog over PON Access Network. 
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𝑃𝑠
𝑟 Ps

r = 1,  if in virtual request 𝑟 ∈ ℝ , virtual 
machine 𝑠 ∈ 𝑉𝑀𝑟 is an input layer, otherwise 
Ps

r = 0. 
𝜋𝑛

(𝑛𝑒𝑡) Idle power consumption of network node 𝑛 ∈
ℕ. 

𝜖𝑛 Energy per bit of network node 𝑛 ∈ ℕ,  in 
W/Gb/s. 

𝜋𝑝
(𝑝𝑟) Idle power consumption of a single CPU at 

node 𝑝 ∈ ℙ. 
𝑁𝑆𝑝 Maximum number of CPUs deployed at 

processing node 𝑝 ∈ ℙ. 
𝐸𝑝 Energy per GFLOP of processing node 𝑝 ∈ ℙ. 
𝛿𝑛 Idle power proportion factor attributed to our 

IoT application on high-capacity networking 
equipment 𝑛 ∈ 𝑁. 

𝑘 The number of VMs that can be allocated to a 
single IoT node.   
 

Variables: 
𝜆𝑏,𝑒 Traffic demand between processing node pair 

(𝑏, 𝑒) ∈ ℙ  aggregated after all VSRs are 
embedded. 

𝜆𝑚,𝑛
𝑏,𝑒  Traffic demand between processing node pair 

(𝑏, 𝑒) ∈ ℙ  aggregated after all VSRs are 
embedded, traversing physical link (𝑚, 𝑛) , 
𝑚 ∈ ℕ and 𝑛 ∈ ℕ𝑚. 

𝜆𝑛 Amount of traffic aggregated by network node 
𝑛 ∈ ℕ,  
where 𝜆𝑛 =
 ∑ ∑ ∑ ∑ 𝜆𝑚,𝑛

𝑏,𝑒 +𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ

 ∑ ∑ ∑ ∑ 𝜆𝑛,𝑚
𝑏,𝑒  𝑛∈ℕ𝑚𝑚∈ℕ:𝑚≠𝑒𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ . 

𝛽𝑛 𝛽𝑛 = 1,  if network node 𝑛 ∈ ℕ  is activated, 
otherwise 𝛽𝑛 = 0. 

𝜃𝑝 Amount of traffic aggregated by processing 
node 𝑝 ∈ ℙ. 

Ω𝑝 Amount of workload in FLOPS, allocated to 
processing node 𝑝 ∈ ℙ. 

𝑁𝑝 Number of activated processing servers at 
processing node 𝑝 ∈ ℙ. 

Φ𝑝 Φ𝑝 = 1 , if processing node 𝑝 ∈ ℙ  is 
activated, otherwise Φ𝑝 = 0. 

𝛿𝑏
𝑟,𝑠 𝛿𝑏

𝑟,𝑠 = 1 , if virtual machine 𝑠 ∈ 𝑉𝑀𝑟  is 
embedded for processing at node b ∈ 𝑃 , 
otherwise 𝛿𝑏

𝑟,𝑠 = 1. 
 
Total power consumption is the sum of two parts: 1) network 
power consumption, 2) processing power consumption. The 
processing power consumption here includes switches 
routers and power consumed from servers within those nodes 
to provide (LAN) local area network.  
 

• Network Power Consumption (net_pc): 
This is given by: 

∑ 𝜖𝑛. 𝜆𝑛 + ∑ 𝛽𝑛.
𝑛∈ℕ

𝜋𝑛
(𝑛𝑒𝑡). 𝛿𝑛

𝑛∈ℕ

 (1) 

The power consumption of the networking equipment 
comprises of power consumption of routers and switches of 
all the nodes in the cloud fog architecture shown in Figure 1. 
The first term calculates the proportional power consumption 

(negligible in this work) and the second term accounts for the 
idle power consumption of the networking equipment.  
 
 

• Processing Power Consumption (proc_pc): 
This is given by: 

∑ 𝐸𝑝. Ω𝑝
𝑝∈ℙ

+ ∑ 𝑁𝑝.
𝑝∈ℙ

𝜋𝑝
(𝑝𝑟)  + ∑ 𝐸𝐿𝑝. 𝜃𝑝

𝑝∈ℙ

+  ∑ Φ𝑝. 𝜋𝑝
(𝐿𝐴𝑁). 𝛿𝑛

𝑝∈ℙ

  

(2) 

Similarly, the first two terms are the proportional and idle 
power consumptions of processing servers, respectively. 
Whilst the third and fourth terms account for the proportional 
and idle power consumption of the LAN equipment inside 
server nodes.   
 
The objective of the model is as follows: 
 
Minimize: net_pc + proc_pc 
 
Subject to:  
 

 ∑ 𝛿𝑏
𝑟,𝑠 = 1

𝑏∈ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r ≠ 1 (3) 

Constraint (3) ensures that VMs of all virtual requests are 
embedded, except the input VMs that must be embedded onto 
the preselected IoT acting as the source node.  
 

∑ ∑ 𝛿𝑏
𝑟,𝑠 = 1

𝑏∈𝕀ℕ

 
𝑠∈𝕍𝕄𝑟

          ∀𝑟 ∈ ℝ ∶  Ps
r = 1 (4) 

 
Constraint (4) ensures that input layers of virtual requests are 
embedded on those IoT nodes acting as source.  
 

∑ ∑ 𝛿𝑏
𝑟,𝑠 ≤ 𝑘

𝑠∈𝕍𝕄𝑟

 
𝑟∈ℝ

          ∀𝑏 ∈  𝕀𝕠𝕋 ∶  b ∉ 𝕀𝕀  (5) 

 
Constraint (5) restricts the sum of VMs allocated to a single 
IoT node to be less than or equal to the parameter 𝑘.  

∑ 𝜆𝑚,𝑛
𝑏,𝑒 − ∑ 𝜆𝑛,𝑚

𝑏,𝑒 = {
𝜆𝑏,𝑒 𝑚 = 𝑠

−𝜆𝑏,𝑒 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈ℕ𝑚𝑛∈ℕ𝑚

 

∀𝑏, 𝑒 ∈ ℙ, 𝑑 ∈ ℙ, 𝑚 ∈ ℕ: 𝑏 ≠ 𝑒. 

(6)  

Constraint  (4) is the traffic flow conservation constraint that 
preserves the flow of traffic.  
 
In this paper, due to space limitations, we have only included 
the key parameters, variables, and constraints. The remaining 
constraints deal with traffic and CPU demand realization, 
binary indicators and capacity constraints.  
 
III. RESULTS AND DISCUSSIONS  
In our evaluations, we used the parameters in Table 1 and 
Table 2 for the processing and networking devices, 
respectively.  It is noteworthy that, where possible, device 
specifications were collected from manufacturer datasheets, 
however, we have also made simple but plausible 
assumptions. For instance, high-capacity networking 
equipment at the access, metro and core network are highly 
shared by many applications and services. Thus, we have 



assumed that only a portion of the idle power which we refer 
to as idle power proportion ( 𝛿)  is attributed to our 
application. The idle power consumption of core network 
devices is assumed to be 90% of the device’s peak power 
consumption. As for lightly shared devices such as ONU 
APs, we assume the idle power is 60% of the device’s peak 
power consumption. We also assume the cloud data center is 
a single hop from the aggregating core router and based on 
the topology of the NSFNET, the average distance between 
the core nodes is 509 km [41]. In total, there are 30 IoT 
devices, uniformly distributed into four IoT zones: IoT Zone 
1 to IoT Zone 4. In each zone, there are five IoT devices that 
are connected through Wi-Fi links to their corresponding 
ONU AP. In total, we have considered four ONU APs and a 
single OLT device. As for the workloads, we assume that the 
virtual requests are issued by the IoT devices. In this work a 
single IoT device acts as the source node (i.e., the node that 
provides data for the input layer). We consider 15 virtual 
requests that are all embedded simultaneously on the cloud 
fog network. The number of virtual nodes (or VMs) per 
request is assumed to be between 4 – 5 nodes. The CPU 
demand per virtual node is randomly distributed between 0.6 
– 10 GFLOPS. We assume that only the input layer nodes 
require negligible CPU workload as most of the intensive 
tasks are performed by the hidden layers. We have considered 
a linear power consumption profile in the MILP model; hence 
the proportional power consumption of networking is 
negligible compared to the processing power consumption. 
The proportional power consumption is a function of the 
workload whilst the idle part is consumed as soon as the 
device is activated. We have assumed that there are enough 
CPU resources at all layers to host all the workloads.  Finally, 
the MILP model is solved using IBM’s commercial solver 
CPLEX over the University of Leeds high performance 
computing facilities (ARC3) using 24 cores with 126 GB of 
RAM. 

A. Single VM Allocation at IoT 
We evaluated the impact of the constraint that only permits 
single VMs to be processed by any IoT device at a given time. 
Our aim was to represent a scenario in which, due to 
hardware/ software limitations, low power IoT nodes are not 
always capable of processing multiple types of VMs. Figure 
2 shows the total power consumption which is the sum of the 
networking and the processing power consumptions against 
different values of the 𝛿 factor. It can be observed that when 
the 𝛿 factor is low (3%), the model favors the IoT and cloud 
layers for processing the virtual requests due to the 
processing efficiency of the cloud and the low power 
consumption of the IoT nodes. However, as shown in Figure 
3, for cases where the  𝛿 is high (6% and 10%), it can be 
observed that the cloud is no longer a favorable choice as it 
loses its merit due to the power consumption of the transport 
network. This assumes that the idle power of the highly 
shared networking equipment grows linearly with the growth 
in the IoT applications demands. Interestingly, despite the 
ONU power consumption overhead, the IoT is always the 
predominant layer in all cases if there is enough processing 
capacity to host all the workloads.    
 
 
 

TABLE I.  CPU INPUT PARAMETERS  

TABLE II.  NETWORKING INPUT PARAMETERS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Multiple VM Allocation at IoT 
In this scenario, we increase the value of the paremer k and 
thus allow multiple VMs to be processed at the IoT layer. In 
Figure 4 and Figure 6, the results show that flexibility in the 
VM allocation scheme substantially increases the power 
savings under all values of 𝛿 by up to 65% compared to the 
single allocation scenario (k=1). In Figure 5, the trends show 
that the value of 𝛿  significantly influences the choice to 
process VMs at the cloud because of the number of hops it 
takes to get there, hence lower fog layers that are close to the 
source are perfered, despite their processing inefficiency.  As 
can be obsereved in Figure 5, when the VM allocation 
constraint is relaxed, the only layer that is utilized for 
processing is the IoT layer and this only changes if the 
assigned workload exceeds the IoT layer capacity. 
 
 

Devices Max(W) Idle(W) GFLOPS Efficiency 
(W/GFLOPS) 

IoT CPU 7.3 [42] 2.56 [42] 13.5 [42] 0.35 
AFN CPU 37.2 [42] 13.8 [42] 34.5 [42] 0.67 
MFN CPU 37.2 [42] 13.8[42] 34.5 [42] 0.67 
Cloud CPU 298 [42] 58.7 [42] 428 [42] 0.55 

Devices Max (W) Idle (W) Bitrate  
(Gbps) 

Efficiency 
(W/Gbps) 

ONU Wi-Fi AP 15 [42] 9 [42] 10 [42] 0.6  

OLT 1940 [42] 60 [42] 8600 [42] 0.22 
Metro Router Port 30 [42] 27 [42] 40 0.08 

Metro Switch 470 [42] 423 [42] 600 0.08 

IP/WDM Node 878 [42] 790 [42] 40  0.14 

3%                            6%                           10% 

Figure 2: Total power consumption under different 
values of 𝛿 when k=1. 

Figure 3: Workload distribution under different values 
of 𝛿 when k=1. 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSIONS  
This paper extended the work in previous contributions by 
evaluating the impact of VM allocation flexibly against the 
idle power proportion factor attributed to the considered IoT 
application in a cloud fog architecture. The results showed 
substantial savings in the multiple VM allocation scenario 
compared to the single allocation case due to hosting all the 
workloads on the available IoT nodes. Future work includes 
the design of heuristic algorithms that can solve the problem 
faster compared to the MILP model and evaluating the impact 
of the data rate between the connected VMs on the 
performance of the distributed placement of VMs. 
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