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Abstract—Network slicing enables the provision of services
for different verticals over a shared infrastructure. Nevertheless,
security is still one of the main challenges when sharing resources.
In this paper, we study how WireGuard can provide an encrypted
Virtual Private Network (VPN) tunnel as a service between
network functions in 5G setting. The open source management
and orchestration entity deploys and orchestrates the network
functions into network services and slices. We create multiple
scenarios emulating a real-life cellular network deploying VPN-
as-a-Service between the different network functions to secure
and isolate network slices. The performance measurements
demonstrate from 0.8 Gbps to 2.5 Gbps throughput and below
1ms delay between network functions using WireGuard. The per-
formance evaluation results are aligned with 5G key performance
indicators, making WireGuard suited to provide security in slice
isolation in future generations of cellular networks.

Index Terms—OSM, WireGuard, VPN, NFV, 5G, Network
slice, URLLC, eMBB.

I. INTRODUCTION

The enrollment of 5G non-standalone cellular networks is
already in operation by mobile network operators. In de-
veloping Beyond 5G (B5G) networks, several planned func-
tionalities will enable verticals to establish their services
with diverse Quality-of-Service (QoS) requirements on shared
physical infrastructure. Providing End-to-End (E2E) services
over isolated network slices is a key factor to empower
multiple services on a shared infrastructure. To develop ag-
ile B5G networks for supporting applications with different
QoS requirements, Network Function Virtualisation (NFV),
Software-Defined Networking (SDN) and Multi-Access Edge
Computing (MEC) are the main enabling technologies [1], [2].

An NFV Management and Orchestration (MANO) entity
connected to one or several Virtual Infrastructure Managers
(VIMs) controls and monitors the deployment of Network Ser-
vices (NSs) by deploying necessary infrastructure resources.
For an agile network deployment, the NFV MANO also
administrates connections between Virtual Network Functions
(VNFs), including creation of virtual networks with the help of
SDN. Therefore, instead of manually creating and connecting
the NSs together, the NFV MANO helps operators to deploy
and control Network Functions (NFs) automatically. With its
automatic and reusable functionality, a large number of NFs
and NSs can be rapidly deployed on a single or multiple VIMs.

Cloud infrastructures that can be rented or shared are
necessary to utilize resources efficiently for financial and

load distribution purposes. Introducing shared infrastructure
raises further security challenges. Securing application data
transfer over shared networks is one example of such a security
challenge. A countermeasure that can be initiated against such
security concerns is operating Virtual Private Network (VPN)
between NFs. However, establishing VPN tunnels introduces
additional overhead. For services dependent on low latency
or high throughput, the additional overhead may affect their
service performance.

NFV MANO can provide traffic isolation for NFs in NSs
by deploying VPN tunneling between NFs and interconnecting
them [3]. In this way, the secure tunneling isolates Network
Slice Instances (NSIs) and the provided NSs via the NSIs.
Nevertheless, this approach is only feasible if the VPN does
not introduce significant overhead violating QoS requirements.
The deployment of VPN between VNFs in an automatic mode
in order to provide security isolation between slices and the
effect of the introduced overhead on the performance isolation
among slices in a shared environment are still open research
questions.

In this paper, we implement and analyze the performance
of WireGuard for providing slice isolation in 5G environ-
ment. WireGuard [4] is a straightforward yet immediate VPN
solution that functions via the Linux kernel and employs
state-of-the-art cryptography approaches. Open Source MANO
(OSM) orchestrates NSs and NSIs, and establishes VPN
tunnels between the VNFs. The integrated WireGuard-OSM
architecture provides: 1) secure communication between the
involved VNFs of NSs and NSIs - slice isolation; 2) perfor-
mance isolation between the slices. The performance anal-
ysis shows that the integrated WireGuard-OSM architecture
meets the required Key Performance Indicator (KPI) values
in terms of high throughput for enhanced Mobile Broadband
(eMBB) slices and low latency for Ultra Reliable Low Latency
Communication (URLLC) slices. We make the code publicly
available1 to the research community.

The remainder of this paper is organized as follows. Sec-
tion II provides a literature overview of practical approaches
for secure isolation between slices. Section III presents the
system architecture. The implementation steps are explained in
Section IV. The performance evaluation results are presented
in Section V. Finally, Section VI concludes the paper.

1https://github.com/sondrki/TTM4905/
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II. RELATED WORK

The isolation concept between network slices can be studied
from security, performance, and dependability aspects [5]. In
addition, the Confidentiality, Integrity and Availability (CIA)
triad is a widely used way of looking at different security
aspects. A shared infrastructure introduces security challenges
in all dimensions of the CIA triad. The key feature of shared
infrastructures is that an attack on or from another party
sharing the infrastructure should not affect the other sharing
parties. This definition of CIA is harmonic with the isolation
concept in network slicing. Other parties should also be
unaffected when it comes to performance and dependability,
extending the availability dimension. The workload, the num-
ber of resources, and hardware or software failure of another
NS should not reduce the performance of an NF in a separate
NS or NSI.

While 5G intends to fix some security issues present in the
previous generations of cellular networks, it also introduces
several new security threats. Some of them are raised by
providing services via network slices. Paper [6] explores and
classifies different security challenges of 5G networks. Proper
isolation of logical resources is essential to avoid introducing
several new risks. Eavesdropping and tampering with data,
for instance, are two vectors an attacker could use to interfere
with security if the application data is not properly encrypted.
Hantouti et al. suggest that operators should deploy encrypted
tunnels as a way to establish trust between Service Functions
(SFs) to provide packet integrity and prevent bypassing of
policies [7].

The work in [8] proposes a novel mutual authentication and
key establishment protocol utilizing proxy re-encryption. The
protocol grants specific authentication between components
of a network slice to enable secure connection for protected
key establishment among component pairs for slice security
isolation. Paper [9] offers a secure keying scheme by adopt-
ing a multi-party computation strategy, which is appropriate
for network slicing architecture in the case that third-party
applications access the slices. This mechanism ensures the
satisfaction of use cases or devices in which the data is
collected.

Both Haga et al. in [10] and Vidal et al. in [11] focus on
how a VPN can be deployed using OSM. Reference [10]
demonstrates how WireGuard can be added in VNFs and
compares the performance of WireGuard and OpenVPN. This
proof-of-concept is carried out using two VNFs in a single NS
with manual configuration of peer connectivity in WireGuard.
For the peer setup, keys and other necessary information are
obtained manually. Vidal et al. in [11] uses IPsec as VPN
solution to provide link-layer connectivity for multi-site de-
ployments. In this work, OSM deploys multiple NSs connected
through one VNF at each NFV Infrastructure (NFVI). These
VNFs handle the link layer abstraction for the other VNFs.
IPsec is used to secure the connection between the link layer
providing VNFs. Keys and connection parameters are supplied
by the operator when instantiating the NSI.

To the best of our knowledge, none of the state-of-the-
art works presents a secure service automation provisioning
utilizing complex and real-life NFs. This motivates us to
integrate WireGuard tunneling with OSM, which grants secure
communication between NFs in order to establish automated
and realistic network services. As a result, this system archi-
tecture guarantees security and performance isolation between
NSIs.

III. SYSTEM ARCHITECTURE

Day-0, Day-1, and Day-2 operations are terminologies used
in the OSM community referring to the stages of Life-Cycle
Management (LCM) of NFs. The steps in Figure 1 are used to
handle LCM of NFs via the NF onboarding process and they
link closely to Day-0 to Day-2 operations. In Figure 1,

• Day-0 phase focuses on necessary instantiation, including
charms and descriptor creation/editing, validation, pack-
aging, and emulation;

• Day-1 phase concentrates on service initialization con-
taining test, release, and deploy;

• Day-2 phase covers runtime actions comprising operate
and monitor steps.

Fig. 1. Steps for service lifecycle [12].

OSM has three inbuilt supporting applications for
LCM [13]. Cloud-init is responsible for the initial Day-0
operations like setting username and password. For Day-1
operations, Helm charts or Juju charms can be used, while
Day-2 operations are also possible with Juju. The difference
between Helm and Juju is that Helm is used solely for
Kubernetes-based Network Functions (KNFs), while Juju is
also usable at NS level and for VNFs that are not Kubernetes
(K8s) based [14], [15]. We have used cloud-init and Juju
charms for OSM onboarding in our implementation.

Further, Juju has two operation modes: native and proxy.
Native charms run operations directly inside a VNF. On the
other hand, proxy charms use a centrally placed controller,
VNF Configuration and Abstraction (VCA), to manage the
Day-1 and Day-2 actions. The VCA connects to the VNFs
through their management interface and instructs the VNFs.
The VCA-VNF connection uses the Secure Shell (SSH) proto-
col by default. In the paper, we have used proxy charms with
a VCA installed co-located and integrated with OSM. Both
the VCA and OSM are, therefore, able to access the VNFs
management interface to execute their actions.



To build user-defined actions, Juju uses Python scripts.
The connection to the OSM instance is made through the
description files of the VNFs, NSs, Juju config files describing
metadata, and the available Day-1 and Day-2 actions. For the
OSM integration of proxy charms, the charms.osm.sshproxy
library is provided by OSM to take care of, among other tasks,
the basic Juju proxy peer setup.

In addition to running actions in VNFs, Juju can be used to
create relations between Juju units for management, scaling,
and handling dependencies across VNFs. We use Juju relations
to transfer WireGuard peer information between VNFs.

Figure 2 illustrates how we use proxy charms and rela-
tions in Juju to create a bridge for transferring information
between VNFs. The figure shows the architecture for the
multi-site demonstration. Note that we used a single-VIM,
moving the Home Subscriber Server (HSS) into VIM 1, for
the performance evaluation results presented in Section IV.
The architecture for the single-VIM setup is as illustrated in
the rightmost half of the figure showing VIM 1.

Fig. 2. Interactions between elements in our Juju proxy implementation.

Key distribution is a task that often requires manual steps
when establishing a VPN tunnel. Manual setup can be time-
consuming for dynamic environments or environments with
many interfaces that need to be secured. If the tenant man-
ager needs to do configuration, the NS is only usable after
initializing the VPN tunnels. However, if we apply the ap-
proach presented by Vidal et al. [11] and input the necessary
information, including keys, the application can start sending
data immediately after Day-1 actions have finished. Using
a Key Management System (KMS) is a similar approach.
However, OSM does not provide such functionality. To use
the KMS approach additional functionality outside of the OSM
framework must be added.

To perform key management, we use a non-standard ap-
proach using Juju relations with the requirement of using
proxy charms for our VNFs. By using Juju relations, we
create new individual keys for every new deployment of an
interface and make the application of the NS usable directly
after the Day-1 tasks finish. Furthermore, with our approach,
the private keys are only stored inside the VNFs. The public

key and other necessary information for the peer setup get
automatically transferred to the peer.

IV. IMPLEMENTATION

Fig. 3. Architecture of our implementation.

To implement WireGuard in a realistic 5G environment we
created a NS with Evolved Packet System (EPS) components
from OpenAirInterface (OAI) [16]. We then added WireGuard
connectivity on the different interfaces. Figure 3 shows the
deployed architecture. OSM is used to communicate with
MicroStack VIM [17]. The VIM hosts different VNFs, creates
virtual networks and performs routing of outgoing traffic from
the VNFs, represented by solid blue lines. WireGuard tunnel
is created automatically between the VNFs on the interfaces in
the NS, represented by the red dotted lines. In addition to the
primary VIM, we utilized a second VIM in order to explore
the EPS NS deployment in multiple sites.

A. Development

We followed these steps to prepare the deployments: 1)
compose a virtualized EPS, 2) set up a mechanism for auto-
matic WireGuard peering, 3) structure NSs into Network Slice
Template (NST), and lastly, 4) test the WireGuard connectivity
in a multi-site deployment. The code for the descriptors and
charms is publicly available on GitHub. In the following
paragraphs, we further describe the development steps for
creating the descriptors and the scripts.

1. Composing a Virtualized EPS: In [18], Dreibholz im-
plements an Evolved Packet Core (EPC) with HSS, Mobility
Management Entity (MME), and a combined Serving Gateway
(SGW) and Packet Data Network Gateway (PGW) separated in
two components, Service Packet Gateway-User plane (SPGW-
U) and Service Packet Gateway-Control plane (SPGW-C), for
user- and control-plane tasks, respectively. To extend this NS
with real-life traffic, we add a virtualized eNodeB (eNB).
Further, we create an User Equipment (UE) in a Virtual
Machine (VM) kept outside the NS. The UE is still able to
connect to the eNB after instantiating the NS with manual
network setup in MicroStack. To establish the air interface,
Uu, we have compiled and used OAI simulation option. When
connecting the UE to the eNB, we verify that the different EPS
components function as expected and provide service to the
UE. The UE connects to an outer network through the SPGW-
U via the eNB. At this first step of implementation, we still
have not included WireGuard between the components.

We chose to build the NS by spreading the EPS components
into separate VNFs. This approach allows to split the VNFs



in the VIMs. Extending it to a multi-site environment gives us
the opportunity to emulate a scenario where other components,
for instance, MEC, are deployed closer to the end-users. The
VNFs distributed to remote sites are able to communicate with
the core securely with the help of WireGuard.

2. Automatic WireGuard Peering: Manually setting up VPN
tunnels between several interfaces can be time-consuming.
Thus, we use Juju relations for automatic peering with no extra
information given to the other end of the peer at the time of
instantiating the NS. The first step in the automatic peering
is the establishment of relationships between VNFs on both
sides. Then the paired VNFs retrieve information like public
key, endpoint, and listening port to communicate with each
other. Wireguard usually employs the following cryptographic
primitives: elliptic Curve25519 for key exchange, then HKDF
for the key derivation, and finally, the bulk encryption work is
performed by the symmetric primitive ChaCha20Poly1305 for
Authenticated Encryption with Associated Data (AEAD) [4].
All of these primitives have excellent performance in software
supporting the objective of NFV. Moreover, due to the lack of
considerable overhead and latency, and remarkable efficiency,
ChaCha20Poly1305 AEAD performs significantly in terms of
ping time and throughput for the URLLC and eMBB slices,
respectively.

To establish WireGuard connectivity on all interfaces given
in Figure 3, we changed the IP address configuration in the
components. Changing the interface addresses is necessary to
route application data over the VPN tunnel and, at the same
time to ensure that applications inside the VNF have been
installed and started correctly even when waiting for the tunnel
establishment. Besides, to verify that the NS runs WireGuard,
we connect the UE and observe that it connects and gets Packet
Data Network (PDN) service.

Further, in order to observe how resources affect the Wire-
Guard performance, we have prepared a copy of the EPS NS
with WireGuard connectivity with doubled resources.

3. NST creation: After having a working NS with Wire-
Guard connectivity between the interfaces, we include it in two
NSTs to observe if and how the performance is affected by
providing security with WireGuard. The two NSTs have differ-
ent values of quality indicators corresponding to different 5G
QoS Identifiers (5QIs) [19]. The QoS parameters correspond
to eMBB and URLLC use-cases, respectively. Further, the
NST is prepared with only the management interfaces of the
VNFs. The management interfaces are attached to the external
connection points in the NSTs.

4. Multi-site deployment: To verify that the automatic peer-
ing setup also works in a multi-site environment, we have
separated the HSS VNF to a second VIM. When using Open-
Stack/MicroStack, the external floating IP address is by default
not known inside a VM. However, the VCA can retrieve the
management IP address to perform its actions. To find the
floating IP addresses of the VNFs, we use the same function
that Juju employs for its proxypeer connection between a Juju
unit at the VCA and the Virtual Deployment Unit (VDU) in
the VNF. After the endpoint IP address is found, the MME

and HSS connect automatically with WireGuard connectivity.
A prerequisite for multi-site WireGuard connectivity is to use
a port opened in the firewalls.

B. Proof-of-Concept for VPN-as-a-Service

With the automatic peering, we presented a few steps to
add WireGuard as a VPN-as-a-Service (VPNaaS). Here we
summarize all steps to build the proof-of-concept.

1) Append installation of WireGuard in cloud-init.
2) Add name and parameters for Day-1 and Day-2 actions

in the actions.yaml file.
3) Add relations between VNFs in the metadata.yaml file.
4) Include the Python code to append the charm script.

The name of the relationship must correspond between
the name used in metadata.yaml and the listener in the

init function of the Python script.
5) Add the actions from actions.yaml into Day-1, Day-2

operations in the VNF Descriptor (VNFD). To create
the WireGuard tunnel as a Day-1 operation, the relevant
actions should be included in the initial-config-primitive
section in the VNFDs. Day-2 actions are placed in the
config-primitive section.

6) While the default implementation sets up the VPN, Day-
2 actions can be used for further configuration and
maintenance, for instance, if a new connection should
be added towards a NF.

V. PERFORMANCE EVALUATION

To assess the performance of WireGuard in the 5G network,
we conducted measurement tests in both the control and user
plane, with and without WireGuard capability. We utilized
both arbitrary data and the UE to generate realistic traffic
in the network. We observe the impact of integrating secure
communication with Wireguard on the performance metrics
that should be aligned with the 5G KPI [20].

While producing arbitrary data for high network load, we
measure the latency and Service Response Time (SRT) in
the control plane, combining multiple EPS components. In
general, the following tasks are done to test the performance
of NSs and NSIs:

• Observe SRT on the MME when the UE connects;
• Observe throughput and latency in the user plane with

the UE over S1-U interface;
• Measure throughput and latency between components in

the EPS in the control plane over S1-C and S6a interfaces.

A. Lab Environment

The primary VIM is a server running MicroStack with
resources of 56 vCPUs, 126 GB RAM, and 915 GB storage.
The second VIM, used for multi-site deployment, also runs
MicroStack but has fewer resources with a total of 9 vCPUs,
32 GB RAM, and 150 GB storage. For the EPS NS a total
of 14 vCPU, 27 GB RAM and 110 GB storage are utilized.
According to the limiting ISP, the bandwidth between the two
NFVIs is specified to be 200 Mbps. For the VNFs to communi-
cate securely across the VIMs, WireGuard tunnel is established



between the NFVIs. Our measurement shows a throughput of
approximately 180 Mbps between the MicroStack instances. A
nested WireGuard tunnel is used when adding WireGuard on
the S6a interface for the multi-site deployment. The internal
throughput of the NFVI where the primary VIM runs is
20 Gbps. Table I gives a summary of the resources used for
the VNFs.

TABLE I
VNF INFORMATION OF THE OAI EPS NS.

VNF Operating System Number of Amount of Storage
name virtual CPUs RAM (GB) (GB)
HSS Ubuntu18.04 4 8.0 20

MME Ubuntu18.04 2 4.0 20
SPGWU Ubuntu18.04 1 3.0 20
SPGWC Ubuntu18.04 3 4.0 30

eNB Ubuntu18.04 4 8.0 20
UE Ubuntu18.04 2 4.0 20

B. Observations

Before adding the VPN tunnels, we are able to capture
connection information such as the International Mobile Sub-
scriber Identity (IMSI), network realms, and hostnames at
the VIM. However, after we introduce WireGuard, the only
information observable at the VIM is the use of the WireGuard
protocol and link-layer discovery messages.

For the control plane, we observe the SRT for the HSS
application to a connecting UE. When monitoring SRT of the
HSS application including networking from the MME, the NS
with WireGuard has the lowest average SRT. In particular,
with ten successful connections for the UE, the average SRT
of the Diameter protocol drops from 6.156 ms for the EPS
without WireGuard capability to 5.377 ms when WireGuard
is added. When doubling the resources on the EPS NS with
WireGuard, SRT of 5.607 ms is measured. Based on the other
measurements, it is likely that the HSS application itself is
the delaying part. With a reduced number of connections, we
have not observed a negative effect on the SRT when using
WireGuard.

A comparison of the latency measurements for different
instances and interfaces is shown in Figure 4. The red line in
the figure indicates 1 ms, representing one of the E2E KPI for
URLLC applications in 5G. All single-site instances achieve
lower latency than the 1 ms. However, adding WireGuard
introduces a visible overhead when comparing the NS without
WireGuard to the other instances in Figure 4. On the other
hand, we observe that the average latencies for the S1-
C interface in the eMBB and URLLC NSIs (illustrated in
grey and purple) are lower than the other two counterpart
measurements. It is worth noting that doubling the resources
does not necessarily reduce the latency, confirming that the
latency depends on multiple factors such as 5QI parameters
and the workload of components in the NS.

Figure 5 compares the throughput between components with
WireGuard enabled on different interfaces across instances.
The red line represents the 100 Mbps downlink user data

Fig. 4. Latency comparison for different interfaces with and without Wire-
Guard functionality.

rate KPI. We highlight three main results from observing
the throughput. The first one is that, unlike the latency, the
throughput changes according to the available resources. When
comparing the NS with double resources to the others, the
throughput is higher for the NS with the double resources.
The second observation is that the throughput over the Uu
interface is significantly lower than the other measurements.
The throughput over the Uu is around 1.7 Mbps, while the
average throughput for the S1-U is over 1 Gbps making the
Uu the bottleneck of the EPS. The last observation is about
the maximum throughput when averaging over 10 minutes.
For the NS with double resources, we observe throughput of
2.2 Gbps for the S1-U. For the other instances, a range from
770 Mbps to 1.48 Gbps is measured.

Fig. 5. Throughput comparison for different interfaces with WireGuard.

Figure 6 compares the throughput in the two NSIs. We
observe that the performance over diverse interfaces differs
when running each NSI alone and when the two NSIs are
running simultaneously. For instance, the throughput at the S6a



interface reaches up to 1.1 Gbps for the URLLC slice when it
is operating alone and simultaneously with the eMBB slice.
However, the throughput at the S1-U interface is 1.43 Gbps for
the URLLC slice separately and it reduces a bit to 1.41 Gbps
when it is running simultaneously with the eMBB slice.
Regarding S1-C interface, the throughput reaches 1.12 Gbps
for the separate URLLC and it decreases to 0.97 Gbps when
the eMBB slice is also working. In general, the differences
between the NSIs are minor, meaning that WireGuard is a
promising solution for slice isolation of eMBB and URLLC
slices.

It should be noted that we observe a total throughput
of approximately 3 Gbps, which is lower than the internal
networking throughput of around 20 Gbps when testing with
a workload on the same logical interface for the two NSIs
simultaneously. As we approach the internal networking limit
for the throughput, we detect more considerable differences
between the NSIs based on their QoS parameters and the
allocated resources.

Fig. 6. Throughput comparison with WireGuard for NSIs - measured
separately and simultaneously.

In the multi-site deployment, we take measurements over
the S6a interface, which is the only one that differs from the
other NSs and NSIs. As expected, the throughput is lower,
and the latency is higher than in the other instances. The
performance is lower even without WireGuard between the
VNFs. However, we observe that WireGuard adds overhead
in this scenario as well. In the multi-site NS, the average
latency over 1000 ICMP packets increases from 18.355 ms to
19.769 ms when using WireGuard. For the average throughput,
we observe a reduction from 179 Mbps to 156 Mbps, which is
expected based on the given 200 Mbps bandwidth.

VI. CONCLUSIONS

By using Juju relations and providing a proof of concept for
using WireGuard as VPNaaS, we showed that WireGuard can
be implemented with automatic peer setup after instantiating.
The performance measurements demonstrate that WireGuard
is suitable for applications with requirements corresponding to
several of the 5G KPI values. We show that WireGuard can

be used as VPNaaS in the context of 5G networks and beyond
in order to provide secure communication and slice isolation.

Replacing the arbitrary Juju relations with a KMS, using a
5G Core network instead of EPC components, adding multiple
UEs, and evaluating scenarios in which fulfilling service
requirements (especially throughput) are beyond WireGuard
capability are potential directions for future investigation.
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