
A Delay-Aware Approach for Distributed
Embedding Towards Cross-Slice Communication

Ioannis Dimolitsas, Dimitrios Spatharakis, Dimitrios Dechouniotis, Symeon Papavassiliou
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

{jdimol, dspatharakis, ddechou}@netmode.ntua.gr, papavass@mail.ntua.gr

Abstract—The evolution of modern applications and the adop-
tion of the 5G network slicing architecture require minimizing
the communication delays. Virtual Network Functions (VNFs)
offer low latency services to remote users. In the context of
Edge Computing, these virtualized services are hosted in Edge
Clouds, which, however, have limited resources. Embedding the
Network Slice requests from users is a challenging problem, and
demands distributed solutions in the presence of resource and
delay constraints in the Edge Network. This paper introduces
a distributed delay-aware service discovery mechanism, which
performs cache-based forwarding, trying to efficiently discover
VNFs in the Edge Clouds (ECs) and enable Cross-Slice Commu-
nication (CSC); that is the sharing of common VNFs between
different Network Slices (NSes). Furthermore, the distributed
NS embedding (NSE) problem is addressed by a modified k-
Shortest Path (k-SP) approach to minimize the total round-trip
network delay under the capacity constraints of the underlying
infrastructures. The proposed method significantly decreases the
execution time by 70% to provide the distributed NSE solution
compared to the baseline k-SP algorithm.

Index Terms—Network Function Virtualization, Network Slice
Embedding, Service Discovery, Resource Management, Edge
Computing

I. INTRODUCTION

Edge computing is the emerging service delivery paradigm
that addresses the resource orchestration challenges and guar-
antees the performance requirements of complex 5G verticals
[1]. Similar to the cloud computing case, virtualized services
are deployed over the computing infrastructure at the network
edge to ensure low-latency communication with end-users.
However, due to finite computing resources, the distributed
placement of Network Slices that consist of multiple VNFs is
required.

The current resource orchestration platforms facilitate the
creation of Network Service Marketplaces [2], which allows
users to be simultaneous both service providers and con-
sumers. Similarly, 5G network slicing aspires to support smart
manufacturing [3], where the orchestration of application is
outsourced to micro-operators and relies on ECs. This com-
plex environment requires the development of trust-worthy
resource orchestration mechanisms that overcome any security
constraints and enables zero-touch resource management for
supporting multiple tenants.

These new business challenges dictate the transformation of
the Network Function Virtualization technology. Initially, the
strict VNF definition, which refers only to network-oriented
functions such as firewall, routing, and load balancing, must

be enriched with application-oriented functions. Secondly, the
multi-tenancy of VNFs in such a way that the network slice
isolation is preserved can be beneficial for both infrastructure
providers and slice owners [4]. Towards this direction MESON
platform proposes a centralized embedding [5], based on
various functional and non-functional criteria, that places the
entire network slice in a single EC aiming at maximizing the
co-location between shared services between different slices.
Contrary to centralized approaches, the distributed embedding
solution places parts of the service chain among different ECs.
Towards this direction, the DistNSE mechanism provides ser-
vice chain partitioning across various infrastructure providers
using an auction algorithm respecting the individual provider’s
policy [6].

This paper proposes a solution to the distributed embedding
problem, which enables secure CSC between the network
slices of different tenants. A Network Slice Embedding (NSE)
request is assumed, which consists of multiple VNFs with
different resource constraints that must be placed in the ECs.
The major contributions of our work can be summarized as
follows:

• By extending our previous work [7], we propose a
distributed delay-aware service discovery mechanism that
enables the discovery of CSC-enabled VNFs that are
requested in the NSE request, minimizing the commu-
nication overhead within the Edge Network by utilizing
a cache-based forwarding policy.

• Based on the results of the service discovery, an aug-
mented network is constructed and a modified k-SP algo-
rithm is proposed, to provide a solution to the distributed
embedding problem. The proposed heuristic solution sig-
nificantly reduces the time complexity of the baseline k-
SP algorithm to minimize the round-trip network delay
of the embedding solution.

• The proposed algorithm produces a similar delay for the
NSE problem to the baseline algorithm for the same k
values, however, outperforms it, in terms of execution
time.

The remainder of the paper is structured as follows. Section
II describes the system modeling and the formulation of the
embedding problem. Section III provides the details of the
distributed service discovery mechanism, while in Section IV
an analytical description of the distributed NS embedding ap-
proach is presented. In Section V, we present the experimental

Fig. 1. Edge Network Overview

evaluation of the proposed work compared with the baseline
k-shortest path approach. Finally, Section VI concludes the
paper and discusses our future plans.

II. SYSTEM MODELING & PROBLEM DESCRIPTION

This section describes the parameters of the Edge Network
and the distributed Network Slice Embedding problem. Figure
1 illustrates the Edge Network topology, which consists of
geographically distributed ECs. Slice owners submit their NSE
requests in any EC in their vicinity. In this paper, towards
enabling CSC, an NSE request dictates the placement of an
NS, which consists of both new VNFs and CSC-enabled
VNFs of different slice owners, as Fig. 2 shows. Each EC
encompasses a mechanism that is responsible for providing
an embedding solution that satisfies the resource requirements
for the deployment of the new VNFs and the discovery of
the CSC-enabled VNFs. The demand for high-quality service
provisioning at the network edge necessitates minimizing the
network delay. Considering the fact that an NS provides appli-
cation functionalities to an end-user in a specific geographical
region, we assume that the corresponding NSE request is
submitted to a certain EC, termed as Search Node (SN).
In this respect, the proposed Distributed Slice Embedding
Mechanism (DSEM) focuses on providing a solution for the
NS placement over different ECs, while minimizing the round-
trip network delay. We define the round-trip delay as the sum
of the following three terms; (a) the in-going delay from the
Search Node to the first VNF of the NS, (b) the sum of the
delays between the VNFs of the NS, and (c) the out-going
traffic from the last VNF to the Search Node, through which
the end-user application is provisioned. Moreover, depending
on the available computing resources of each EC, parts of
the NS could be co-located, enabling further reduction of the
delay in the VNF chain. In this regard, we consider the Intra-
EC delay between VNFs to be negligible.

A. Edge Network Model

We illustrate the Edge Network as a Graph G = (V,E). The
set V corresponds to the nodes of G and vi ∈ V represents
the ECi of the Edge Network. The network links between
two ECs of the Edge Network constitute the set E and are

Fig. 2. Network Slice Embedding request with a CSC-enabled VNF in the
chain.

denoted as eij = (ECi, ECj). Besides that, we denote by
dij the delay of the network link between ECi and ECj . In
addition, for each vi ∈ V the available computing resources
are denoted as Rv representing CPU cores and the provided
CSC-enabled services nv are attributes of an EC v ∈ V . An
example of the an NSE request, to the SN EC1, in the Edge
Network is illustrated in Fig. 1, while the corresponding graph
representation is shown in Fig. 3.

B. Network Slice Embedding Request

A slice tenant submits an NSE request in a specific node
v ∈ V . The request consists of 1) the NS template, which is
represented as a directed service graph Gs = (Vs, Es), where
Vs = {sai }, i = 1, 2, . . . ,M represents the VNFs of the NS
and the set Es includes the links between the VNFs, and 2)
the set RS = {rsi}, i = 1, 2, . . . ,M that corresponds to
the resources requested for each VNF and it is expressed in
CPU cores. We denote by sai ∈ Vs the ith VNF of the NS,
where when a = csc corresponds to a CSC-enabled VNF
requested by the slice tenant and a = new corresponds to
new deployed VNFs. In case of an already deployed CSC-
enabled VNF, i.e., scsci , the corresponding resource demand
is rsi = 0. Furthermore, the slice tenant can define an
upper bound about the round-trip network delay as a strict
requirement of the submitted NSE request. In essence, this
requirement determines the acceptable network delay level,
for the corresponding application to be operational, based on
the slice tenant’s preferences and it is denoted by Dr.

C. Problem Statement

The above discussed CSC-enabled Network Slice Embed-
ding problem is formulated according to the Edge Network and
NSE request specifications, as these determined previously.
Since the NSE request consists of both new deployed VNFs
and shared VNFs (i.e., scsci), which are already hosted in
some ECs, the problem can be broken down into two sub-
problems; at first, the discovery of the deployed CSC-enabled
VNFs and then, the placement and deployment of the rest, new
VNFs of the NS, based on their requested resources, aiming
to the minimization of the total round-trip network delay D.
Therefore, the problem is summarized as follows. Given the
Edge Physical Network G with V nodes and E links, the
NSE request represented as a directed service graph Gs, with
a length of M VNFs s ∈ Vs with the corresponding resource
requirements RS and Dr the maximum allowable round-trip

Fig. 3. Edge Network’s Graph Representation

delay, the objective of the proposed approach is to provide a
NSE solution U that minimizes the round-trip network delay.
We, also, denote the Search Node SN as usn ∈ V , where the
NSE request is submitted. A solution U j is defined as:

U j = {uj0, u
j
1, u

j
2, . . . , u

j
M , u

j
M+1},

where uji ∈ V , is the EC that the VNF si is embedded in
the solution U j . So, we say that uji is the embedding node
of si. Furthermore, it stands that uj0 = ujM+1 = usn, as
the network traffic has to return back to the end-user via the
Search Node. Let µj

i,i+1 is the shortest path cost in G between
two embedding nodes uji , u

j
i+1 of U j that corresponds to

the network delay. Furthermore, the parameter εi,v determines
whether an EC v is the embedding node for VNF si, where,

εi,v =

{
1, if ui = v

0, otherwise
, i = {1, . . . ,M}

The round-trip network delay of a solution U j is defined as
follows:

DUj =

M∑
i=0

µj
i,i+1. (1)

Assuming that U = {U j} is the set of the embedding
solutions, our objective is to minimize the total round-trip
network delay DU of the NSE:

min
U∗

DU ⇒ min
U∗
{

M∑
i=0

µi,i+1} (2a)

Subject to:
M∑
i=1

εi,vrsi ≤ Rv, ∀v ∈ V (2b)

u0 = uM+1 = usn (2c)
U∗ ∈ U (2d)

The constraint (2b) ensures the resource availability in every
EC v that is an embedding node for the respective VNFs. The
equation (2c) makes sure that the round-trip network traffic

will return to the Search Node after the VNFs operations
within the Network Slice, while (2d) implies that the optimal
solution belongs to the solution set U .

III. CSC-ENABLED SERVICE DISCOVERY

An efficient discovery of CSC-enabled VNFs in the Edge
Network is of major importance for optimizing distributed
NSE solutions with CSC capabilities. The proposed distributed
CSC-enabled service discovery (CSC-SD) considers several
parameters. These parameters refer both to the ECs and the
NSE requests. Specifically, the discovery is based on the CSC
VNFs Cache, which is an element of each EC and determines
the request forwarding policy at every hop.

A. CSC-Enabled VNFs Cache

Each EC maintains a cache, which contains records about
the most recent hosted CSC-enabled VNFs for all neighbour-
ing ECs. For instance, the cache of the EC1 of Fig. 3 contains
the corresponding records about the EC2, EC3 and EC5.
Since the NSE request can be submitted in any EC, the cache
content alongside with the Dr round-trip delay requirement
determines the forwarding policy of the request. More specific,
an EC forwards the request to a neighbor EC, whether its
cache entries contain at least on of the demanded CSC-enabled
VNFs, otherwise it broadcasts the request to all adjacent ECs.

Algorithm 1 CSC-enabled Service Discovery
1: procedure DISCOVERY(G, T , source, csc, Dcurrent)
2: if Dcurrent < 0 then
3: return T
4: else
5: forwardToNodes = Cache-based CSC Forwarding
6: for node in forwardToNodes do
7: if edge e(source, node) not in T then
8: if de < D then
9: ADD e(source, node) in T

10: D
′
= Dcurrent − de

11: T=Discovery(G, T , node, csc, D
′
)

12: end if
13: end if
14: end for
15: return T
16: end if
17: end procedure

B. Delay Aware Distributed Service Discovery

Starting from the Search Node, the discovery process fol-
lowing the described policy, and a query message, which
contains all the requested CSC-enabled VNFs {scsci } and the
slice tenant’s round-trip delay requirement Dr, is forwarded.
Contrary to other discovery techniques that broadcast the query
messages with a specific Time-To-Live (TTL) value [7], in
the proposed approach, the search depth in the graph G is
determined by the Dr value, while the message forwarding is
performed based on the cache entries of each EC.

Algorithm 1 performs the discovery of the scsci VNFs of
the NSE. The algorithm’s output is a search graph T that
contains paths which lead to ECs that occurred as candidate
embedding nodes for one or more of the scsci . At each step,
the algorithm examines if the current delay threshold of the
search tree Dcurrent is greater than zero (line 2). In this case,
it forwards the query message based on the cache entries (line
5) and adds the corresponding edge in the search tree, while
updates the current delay threshold value D′ (lines 6-14). The
implementation of the specific discovery approach aims to
mitigate the network communication overhead, compared to
centralized broadcast approaches. Furthermore, the provided
search graph T , which is a sub-graph of G, down-scales the
search space for providing NSE solutions.

IV. DISTRIBUTED NETWORK SLICE EMBEDDING

In this section, the methodology for solving the above
described minimization problem is presented. Two different
shortest path-based methods are implemented, trying to bal-
ance between a good approximation for the embedding solu-
tion, and the complexity demands of the problem. Besides that,
individual features of the approaches are combined, in order
to design an efficient methodology in terms of solution con-
vergence and computational requirements. Also, we attempt to
take advantage of the search graph T provided by the CSC-
Enabled service discovery, to obtain a good approximation of
the optimal solution.

Fig. 4. Augmentation of G For Shortest Path-Based Approach

A. Graph Augmentation

For the purpose of providing an embedding solution using
shortest paths algorithms, we perform an augmentation of the
network model G as follows. Initially, we introduce new nodes
in the model for each VNF of the NSE request. The augmented
graph is declared as G

′
and it contains M new nodes, which

refer to the {sai }, i = 1, . . . ,M VNFs. According to the
required VNF resources rsi, the available resources Rv of
each EC v ∈ V and the service discovery outcome, a virtual
link with zero delay is added between an EC node v = ECi

and a VNF node u = saj . In precise, an edge between a VNF
sai and an EC node v is added in G

′
if sai is CSC-enabled

VNF (scsci) and is hosted to node v based on the service
discovery, or sai is a VNF to be deployed (snewi) and rsi ≤ Rv .
It is worth mentioning, that for the new deployed VNFs snewi ,
the augmentation is performed individually for each VNF and
each EC is considered as a candidate for the placement of the
corresponding VNF. So, the VNF resource demands rsi for
each snewi are compared with Rv , regardless previous addition
of virtual edges. The capability of co-location for two or more
VNFs is dissected during the NSE process, where, after each
VNF embedding, the respective available resources of the EC
are updated.

Algorithm 2 Dijkstra-based Approach

1: Inputs: G
′
, usn, Vs,

2: Outputs: U : embedding solution, DU : round-trip delay
3: Initialize DU ← 0, u0 = usn
4: for ∀ sai in Vs do
5: Identify host ui from DijkstraPath(ui−1, sai)
6: Add ui in U
7: Update available resources Rui

after embedding
8: Update virtual links from ui in G

′

9: end for
10: uM+1 = u0
11: Calculate DU from Eq. (1)
12: return U , DU

B. Dijkstra Shortest Paths-Based Approach

At first, we implement a greedy approach based on Di-
jkstra’s shortest path algorithm (Greedy Dijkstra Embedding
Approach - GDEA). Considering the list of nodes of G

′
,

which represent the NS: Vs = sa1 , . . . , s
a
M , at each step of

the algorithm, we calculate a Dijkstra path, with source an
EC node v of G

′
to the next VNF node sai , that has to be

embedded. In the beginning, the first path that is calculated is
the usn = u0 to the sa1 , and the embedding node u1 is iden-
tified. Subsequently, the paths that are calculated at each step
are (ui, s

a
i+1). As this Dijkstra path lead to a VNF node via a

virtual link, the embedding node ui, which the sai is hosted,
is the second to last node of the Dijkstra path. Afterwards, the
available resources of the EC have to be updated and remove
the virtual links to VNFs with resource demand higher than
the updated EC’s resources. Algorithm 2 shows the discussed
implementation of the GDEA. The time complexity of Dijkstra
algorithm is O((|V |+|E|)log|V |). So, considering that GDEA
uses the Dijkstra algorithm for M times, the time complexity
of this approach is O(M(|V | + |E|)log|V |)). Although the
GDEA provides an embedding solution in limited time, it
does not always provide a good approximation to the optimal
solution.

C. k-Shortest Paths Embedding Heuristic

An exhaustive search, for finding the optimal solution, is
characterized from an extremely high computational com-
plexity. In order to accomplish a better approximation to the
optimal solution compared to GDEA, a k-SP-based Heuristic,

termed as k-Shortest Path Embedding Heuristic (k-SPE-H),
is introduced. The proposed heuristic is based on the Yen’s
algorithm [8] that finds the k-shortest loop-less paths in a
graph. Various studies regarding virtual network embedding
problems utilize this algorithm, such as in [9], in order to
deal with the exponential solution space of the problem, while
achieving a good approximation. However, the optimality of

Algorithm 3 k-SPE-H Approach

1: Inputs: G
′
, usn, Vs, k

2: Outputs: U∗: NSE solution, DU : round-trip delay
3: Initialize: U , U j ← ∅
4: LD ← algorithm’s 2 solution round-trip delay
5: U = k-SPE(G

′
, Vs, usn, LD,U , U j)

6: DU∗ ← (2a), where U∗ ∈ U
7: procedure K-SPE(G

′
, Vs, ui−1, LD, U , U j)

8: if DUj ≤ LD then
9: Stop constructing this solution

10: return U
11: end if
12: if Vs is empty then
13: Add ujM+1 in U j

14: Append U j in U
15: Update LD delay upper bound
16: return U , LD

17: else
18: Identify next VNF’s sai host uji
19: Add uji in U j

20: V
′

s ← extract sai from Vs
21: Update resources Ruj

i
in G

′

22: Update virtual links from ui in G
′

23: K← find k-shortest paths from uji to sai+1

24: for ∀ κi ∈ K do
25: Identify embedding host uji+1 for sai+1 from κi
26: . Continue for the next VNF in V

′

s :
27: U , LD = kSPE(G

′
, V
′

s , source, LD,U , U j)
28: end for
29: return U
30: end if
31: end procedure

the solution strongly depends to the k value, which determines
the number of the examined paths for embedding. So, as k
increases, the paths for embedding an NS with M VNFs that
will be examined are kM . To achieve better approximation
with a higher value of k and eliminate the number of examined
paths, we propose a heuristic that in each recursion determines
a delay upper bound of each examined solution U j , which
initially is provided from the above described GDEA solution.
Algorithm 3 outlines the following process. Precisely, our
heuristic calculates the shortest path of the last embedding
node uji from the source usn, and if the round trip delay is
more than the determined upper bound LD, the construction
of this solution is terminated (lines 8-10). Starting from the
Search Node usn, the k-shortest paths to the first VNF of

the NS, sa1 ∈ Vs, are calculated. For each path, we find the
host EC for sa1 , update the EC’s capacity (lines 20-21). A
solution U j is constructed and the procedure is then called
in a recursive way to find the path for the next VNF of Vs
(lines 23-27). When there are no more VNFs to be embedded,
the solution U j is stored in the set of solutions U , and the
upper bound delay LD is updated accordingly (lines 12-16).
The time complexity of Yen’s k-shortest paths algorithm is
O(k|V |(|V |+ |E|)log|V |). Thus, as k-SPE-H uses the Yen’s
algorithm to produce k-shortest paths M times, the worst case
complexity of this approach is O(Mk|V |(|V |+ |E|)log|V |).

V. EVALUATION

The evaluation of the proposed distributed NSE approach
is discussed in this section. For the experiments, we rely on
network topologies from [10], and we perform simulations on
an edge network with 48 ECs (nodes), using the NetworkX
Python package [11]. Each EC hosted between 5 to 10 CSC-
enabled VNFs, from a pool of 20 in total. The caches for
every EC have a standard initial configuration for all the NSE
requests, where its size is equal to 5, which is 25% of the
available CSC-enabled VNFs. The network links delays, dij
vary form 5 to 10 ms following a uniform distribution, while
the EC capacity, in available CPU Cores, Rv ranges uniformly
from 4 to 12. For varying NSE request sizes (3 to 6), we
generated 100 different requests. An NSE request consist of 1
or 2 CSC-enabled VNFs, while the rest VNFs regard to new
deployments with demands rsi 2 to 6 CPU cores uniformly
distributed. Every NSE request is submitted to a specific EC
in the edge network. The requested round-trip network delay
Dr ranges uniformly from 60 to 100 ms.

Under this configuration of the Edge network, two different
experiments are selected to showcase the performance of the
proposed technique. In the first experiment we compare the
efficiency of the proposed k-SPE-H over the baseline k-
SPE solution as it is presented in [9]. With the values of
k equal to 5, 6 and 7, both algorithms strive to provide an
embedding solution for each request. Both approaches achieve
equal results in the round-trip delay. However, as it shown
in Figure 5, k-SPE-H provides the embedding solution much
faster than the baseline k-SPE for all the k values, while avoids
the exponential growth of the execution time as NSE length
M increases. Specifically, the execution time reduction reaches
the 70% in average for higher NSE lengths. This is achieved
as the k-SPE-H calculates the distance of each new embedding
node uji from the usn during the construction of an embedding
solution U j and stops the expanding of U j when the upper
delay limit LD is exceeded.

The second experiment aims to highlight the effectiveness
of the proposed Distributed CSC-Enabled Service Discovery
(CSC-SD). To this end, we compare the k-SPE-H solutions
average round-trip delay, when the CSC-Enabled VNFs are
discovered (1) through the proposed CSC-SD, and (2) using
a centralized broadcast Service Discovery (B-SD), where the
query message is forwarded to each of the neighbors nodes
of every sender EC and it is used. Figure 6 demonstrates the

Fig. 5. Execution Time Comparison for several k values.

Fig. 6. Average Round-trip delay of 6-SPE-H using CSC-SD vs B-SD.

average round-trip network delay achieved in both cases. As
it shown, in both cases the proposed heuristic provides similar
solution in terms of round-trip network delay. For more than
90% of the requests, the algorithm achieves equal network de-
lay using both service discovery techniques, while, in average,
when B-SD is used leads to approximately 3% delay reduction
in average, in comparison when CSC-SD is used. However, the
CSC-SD utilizes only the 20-22 % of the physical links of the
Edge network, minimizing the communication overhead that
the discovery process adds, while providing the k-SPE-H with
a reduced search space, to operate faster.

VI. CONCLUSIONS

This paper presents a distributed network slice embed-
ding approach that consists of a distributed service discovery
method and a heuristic k-shortest paths based approach and
aims at minimizing the round-trip network delay of the embed-
ded network slice. Furthermore, this approach enables cross-
slice communication between different network slices that
increase the resource utilization and further reduce the network
traffic. The numerical results present the computational time
benefits obtained by the combination of the fast greedy GDEA

and the search tree of the CSC-Enabled Service Discovery
with the k-shortest paths algorithm. That allows higher values
of the k parameter to be determined, in order to obtain better
approximations to the optimal solution. Regarding our future
directions, we aim to extend the proposed method to deal
with the VNF placement problem with resource allocation
constraints within the EC infrastructure, combined with the
distributed NSE. Furthermore, we will investigate a more
efficient solution about distributed NSE problem, in terms
of minimization of the round-trip network delay and the
computational complexity.

ACKNOWLEDGMENT

This work was supported by the CHIST-ERA grant CHIST-
ERA-18-SDCDN-003 (DRUID-NET), and is co-financed by
Greece and European Union under the Operational Pro-
gramme ”Competitiveness, Entrepreneurship and Innovation”
(EPAnEK) through the Greek General Secretariat for Research
and Innovation (GSRI), grant number T11EPA4-00022.

REFERENCES

[1] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton,
R. Jungers, and S. Papavassiliou, “Edge computing resource allocation
for dynamic networks: The DRUID-NET vision and perspective,” Sen-
sors, vol. 20, no. 8, p. 2191, 2020.

[2] L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio, R. L. Santos,
R. J. Pfitscher, E. J. Scheid, B. Stiller, F. De Turck, E. P. Duarte,
et al., “FENDE: marketplace-based distribution, execution, and life cycle
management of VNFs,” IEEE Communications Magazine, vol. 57, no. 1,
pp. 13–19, 2019.

[3] T. Taleb, I. Afolabi, and M. Bagaa, “Orchestrating 5g network slices to
support industrial internet and to shape next-generation smart factories,”
IEEE Network, vol. 33, no. 4, pp. 146–154, 2019.

[4] G. Papathanail, A. Pentelas, I. Fotoglou, P. Papadimitriou, K. V.
Katsaros, V. Theodorou, S. Soursos, D. Spatharakis, I. Dimolitsas,
M. Avgeris, et al., “MESON: Optimized cross-slice communication for
edge computing,” IEEE Communications Magazine, vol. 58, no. 10,
pp. 23–28, 2020.

[5] I. Dimolitsas, D. Dechouniotis, V. Theodorou, P. Papadimitriou, and
S. Papavassiliou, “A multi-criteria decision making method for network
slice edge infrastructure selection,” in 2020 6th IEEE Conference on
Network Softwarization (NetSoft), pp. 1–7, IEEE, 2020.

[6] A. Abujoda and P. Papadimitriou, “Distnse: Distributed network service
embedding across multiple providers,” in 2016 8th international confer-
ence on communication systems and networks (COMSNETS), pp. 1–8,
IEEE, 2016.

[7] I. Dimolitsas, D. Dechouniotis, S. Papavassiliou, P. Papadimitriou, and
V. Theodorou, “Edge cloud selection: The essential step for network
service marketplaces,” IEEE Communications Magazine, vol. 59, no. 10,
pp. 28–33, 2021.

[8] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[9] N. Torkzaban and J. S. Baras, “Trust-aware service function chain
embedding: A path-based approach,” in 2020 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), pp. 31–36, IEEE, 2020.

[10] The University of Adelaide, “The Internet Topology Zoo.”
http://www.topology-zoo.org/index.html.

[11] “NetworkX, Network Analysis in Python.” https://networkx.org, Last
Accessed on 2022-07-10.

