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Abstract

This paper presents a unified approach to analyzing pat-
terns of reconfiguration in dataflow graphs. The approach
is based on hierarchical decomposition of the structure and
execution of a dataflow model. In general, reconfiguration
of any part of the system might occur at any point during the
execution of a model. However, arbitrary reconfiguration
must often be restricted, given the constraints of particu-
lar dataflow models of computation or modeling constructs.
For instance, the reconfiguration of parameters that influ-
ence dataflow scheduling or soundness of data type check-
ing must be more heavily restricted. The paper first presents
an abstract mathematical model that is sufficient to repre-
sent the reconfiguration of many types of dataflow graphs.
Using thismodel, a behavioral typetheory is devel oped that
bounds the points in the execution of a model when indi-
vidual parameters can be reconfigured. This theory can be
used to efficiently check semantic constraints on reconfigu-
ration, enabling the safe use of parameter reconfiguration
at all levels of hierarchy.

1 Introduction

Dataflow models of computation [8, 10, 16] have been
used to represent awide variety of computing systems, such
as signal processing algorithms[18], distributed computing
workflows[21, 17], and embedded processing architectures
[12, 20]. In a dataflow model, a computation is decom-
posed into components (called actors) that communicate by
sending data values (called tokens) through ports. Ports are
connected to other ports by communication channels that
mediate the passage of tokens. Actors are not allowed to
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share state, so the only way for them to communicate is
by exchanging tokens. Typically a channel is a queue that
connects a single sending actor to a single receiving actor.
These models are appealing since they closely match a de-
signer’s conceptualization of a system as a block diagram.
The behavior of an actor can a so be specified using another
dataflow model, allowing high-level models to be refined
into arbitrarily detailed ones. A hierarchically refined actor
will be referred to as a composite actor when necessary.

Dataflow models of computation are also appealing be-
cause they offer opportunities for efficient implementation.
Because actors only communicate through ports and do not
share state, the parallelism of a system is completely ex-
posed in the model and concurrent execution can be more
easily understood. Additionally, under certain constraints,
many dataflow models can be statically scheduled to runin
bounded memory, which is critical for embedded system
implementation. For instance, the synchronous dataflow
model of computation [15, 4] breaks the execution of ac-
torsinto a (possibly infinite) number of firings and requires
that the number of tokens produced and consumed on each
channel by an actor is fixed and known at scheduling time.
Under these conditions, afinite schedul e of actor firings can
often be found such that the schedul e can be executed an in-
finite number of times while using only a finite amount of
memory for communication.

The communication interface consisting of an actor’'s
ports also allows actors to be developed independently and
provided as reusable library elements. Reusable library ac-
tors are commonly associated with actor parameters that
alter the behavior of the actor. For instance, an actor rep-
resenting a finite-impul se response (FIR) filter might have
a parameter that determines the filter taps. The same ac-
tor might also provide multi-rate capabilities for efficient
upsampling and downsampling, with corresponding param-
eters to determine the number of tokens produced and con-
sumed during each execution of the filter. At design time,
parameters help keep the size of actor libraries manageable
and allow models to be quickly modified or tuned for per-
formance. At run time, actor parameters allow for dynamic



reconfiguration of actors (and models) while amodel isrun-
ning.

There are many signal processing applications that can
make use of dynamically reconfigured dataflow models. For
instance, a communication system with adaptive echo can-
cellation can be modeled using dynamic reconfiguration of
a parameterized filter. At a coarser level of granularity, the
communi cation system might operatein two modes, atrain-
ing mode and acommunication mode. In the training mode,
the system communicates a predetermined bit sequence and
estimates the characteristics of the channel. These charac-
teristics are used in the communication mode to improve
the bit-error performance of the modem. The transition of
training mode to communication mode can be modeled as
system reconfiguration.

However, it isimportant to notice that in a synchronous
dataflow model not all actor parameters can be reconfig-
ured at runtime. In particular, parametersthat determinethe
number of tokens produced and consumed cannot be arbi-
trarily reconfigured without invalidating the static schedule.
Inthe case of the multi-rate FIR filter mentioned previously,
the parameter that determines the filter taps can be changed
during execution without changing the number of tokens
produced and consumed by the filter. On the other hand,
the parameters that determine the upsampling and down-
sampling factors cannot be changed without concern for the
validity of the schedule. This distinction represents a sig-
nificant challenge to the uniform representation of reconfig-
uration in design tools.

This paper presents several modeling syntaxesfor repre-
senting reconfiguration of parameters and a generic, hierar-
chical model of parameters and reconfiguration consistent
with those syntaxes. The model allows parameter valuesto
change at constrained points in the execution of the hierar-
chical model. These points, called quiescent points, are as-
sociated with actorsin the hierarchical model, called change
contexts, and are structured according to the hierarchical ex-
ecution of the dataflow model. The least change context of
a parameter determines a bound on how frequently the pa-
rameter is reconfigured. This bound can be used to simply
express and efficiently check constraints on the reconfigu-
ration of individual parameters. In particular, we describe
how the least change context can be used to check con-
straints for generating parameterized synchronous datafl ow
schedulesin a purely hierarchical framework [2].

2 Reconfiguration and Dataflow Scheduling

A synchronous dataflow model is a dataflow model
where the token rate of each port is known a priori. In
many cases, the token rate of a port depends on the value
of actor parameters that do not change during the execution
of the model. The token rates are used to pre-compute a fi-
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Figure 1. An example of a simple hierarchi-
cal synchronous dataflow model in Ptolemy
Il. The filter component is hierarchically de-
composed into two multi-rate FIR filters with
input and output token rates shown on the
figure. The synchronous dataflow scheduler
uses these rates to compute the number of
tokens consumed and produced by the filter
actor.

nite sequence of actor firingsthat can be executed forever in
bounded memory. This sequenceis called a static execution
schedule. By compiling this execution schedule into run-
time code, efficient embedded software can be synthesized
from synchronous dataflow graphs. A graphical representa-
tion of ahierarchical synchronous dataflow model is shown
in Figure 1.

Strictly speaking, reconfiguration in a synchronous
dataflow model must not affect the token rate of each port.
Without this restriction reconfiguration might violate the
properties of the static schedule, possibly causing deadlock
or memory overflow. For instance, the model in Figure 1
depictsapair of sample rate conversion filters that interface
to an audio input device and an audio output device. The
FIR filter actorsin thismodel must be reconfigured to match
hardware devices with different rates. This reconfiguration
includes not only the filter taps, but also the decimation and
interpolation factors of the filters that determine the num-
ber of tokens each actor produces and consumes. To allow
reconfiguration of token rates, many extensionsto the basic
synchronous dataflow model have been proposed.

One approach to allowing reconfiguration of token rates
involves the use of less constrained dataflow models that
allow for rate parameters to change. For instance, the
boolean-controlled dataflow model [6, 5] alows the rates
of actors to change in response to external control inputs.
Different combinations of control inputs effectively repre-
sent different 'states’ of reconfiguration. However, from
a designer’s perspective interpreting combinations of con-
trol inputs as implicit configuration state is rather difficult.
Additionally, the relaxation of dataflow constraints makes
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static scheduling undecidabl e, although algorithms exist for
computing static schedulesin most practical cases.

Another approach to reconfiguration is to explicitly rep-
resent each configuration state as the state of an extended fi-
nite state machine or modal model, as in the * -charts model
[9, 14], the FunState model [20], and the Stream-Based
Functions model [13]. Each state of the finite state machine
contains a dataflow model that is active in that particular
state. Essentially, the active dataflow model replaces the fi-
nite state machine until the state machine makes a state tran-
sition. Thisapproachisalso practically limited by the num-
ber of configuration states that a designer can specify ex-
plicitly. Although static scheduling for these modelsis gen-
erally undecidable, scheduling properties such as deadlock
freedom can be preserved. For instance, the heterochronous
dataflow model only alows reconfiguration between exe-
cutions of the toplevel schedule and can guarantee dead-
lock freedom [9]. If the number of configurations states is
known beforehand then every possible schedul e can be stat-
ically computed, although in practice the number of static
schedulesis often very large. In such cases, it is sometimes
preferable to compute execution schedules “on-the-fly” as
token rates change even if static schedules could theoreti-
cally be computed.

A third approach to allowing reconfiguration of to-
ken rates is to provide syntactic mechanisms for run-time
modification of parameter values, as in the parameterized
dataflow model [2]. The parameterized dataflow model dis-
tinguishes certain portions of a dataflow model as “initial-
ization” graphs, which are capable of modifying the param-
eter values of the main part of the dataflow graph. In many
cases, static scheduling [1] can still be performed by rep-
resenting token rates symbolically and generating a sym-
bolic or quasi-static schedule. A quasi-static schedule con-
tains conditional or iterative constructs that cannot be de-
termined statically at design time. Although the execution
of this schedule depends on token rates that might change
at run-time, the schedule is statically determined and can
be compiled into efficient executable software. The key
scheduling constraint is that actors in a parameterized syn-
chronous dataflow model must be locally synchronous [3].
The local synchrony condition requires that although actor
token rates may change, they are constant over the execu-
tion of a parameterized schedule. Fundamentally, the pa-
rameterized dataflow approach extends the heterochronous
dataflow model to allow limited reconfiguration at all levels
of hierarchy and feasible static scheduling.

3 Hierarchical Reconfiguration

In this paper, we will consider the semantic constraints
on reconfiguration, without focusing on the largely syntac-
tic differences in the above approaches. Our semantic ba-

sis for describing reconfiguration is the notion of a quies-
cent points in the execution of a model, which occur after
the firing of any actor. This section presents several mod-
eling syntaxes for generically representing reconfiguration
in hierarchical dataflow models. Each of these hierarchical
syntaxes is essentially equivalent with respect to quiescent
points and is independent of particular dataflow model of
computation. In order to guarantee that each reconfigura-
tion does not occur at quiescent points that violate dataflow
constraints, such as local synchrony, we will rely on analy-
sis of reconfiguration as described in Section 6.

The first syntax we present is based on an extended ver-
sion of amodal model where the action associated with a
finite state machine transition can set the value of actor pa-
rameters. During each firing of amodal model, the dataflow
model associated with the active state is fired once and it
communicates directly with the external ports of the modal
model. After the active dataflow model is fired, the guard
of each transition originating in the active state is eval uated.
If exactly one guard istrue, then that transition is taken and
the destination state of the transition will be active in the
next firing. If no guard is true, then the active state will re-
main active in the next firing. If multiple guards are true,
then either the model is considered incorrect or one of the
transitions can be chosen non-deterministicaly. If atransi-
tion is taken then the action of the transition is performed,
possibly resulting in reconfiguration of a model parameter
at the quiescent point after the firing. An example model
is shown in Figure 2 and a plot from running the model in
Figure 3.

The second syntax ties reconfiguration to dataflow in a
model. Reconfiguration in this model is represented by re-
configuration ports, a special form of dataflow input port.
An example of this syntax is shown in Figure 4. Each re-
configuration port is bound to a parameter of its actor and
tokens received through the port reconfigure the parameter.
More specifically, afiring of an actor with reconfiguration
ports is composed of two distinct sub-firings separated by
aninternal quiescent state. During thefirst sub-firing the ac-
tor consumes a singleinput token only from reconfiguration
ports. The input tokens determine the reconfiguration ap-
plied during the internal quiescent state. During the second
sub-firing input tokens are consumed from normal dataflow
input ports, computation is performed, and any outputs are
produced. For a composite actor, contained actors are not
fired during the first sub-firing and the associated dataflow
model is executed only during the second sub-firing. Re-
configuration ports exist in many dynamically-scheduled
dataflow environments, such as AV S/Express (Advanced
Visual Systems, Inc.).

A third syntax represents reconfiguration using a special
actor, the set Par amet er actor. This actor has a single
input port and is bound to a parameter of the containing
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Figure 3. A plot from running the model
shown in Figure 2.

Figure 2. A graphical representation of a sim-
ple modal model in Ptolemy Il showing three
levels of hierarchy. In this model, the con-
tained model is executed first producing a
block of output tokens. After producing out-
put tokens, the modal model transition is per-
formed, since the guard is always true, result-
ing in reconfiguration of the contained model
for the next block. In this model, reconfigura-
tion results in sinewave segments with differ-
ent amplitudes. The parameters of the inte-
rior dataflow model ensure that 130 samples
of the sinewave are generated in each block.

model. The actor consumes a single token during each fir-
ing of the set Par anet er actor and the bound parameter
is reconfigured during the quiescent point after the firing.
Although the set Par amet er actor might appear similar
to a reconfiguration port, it alows for a parameter to be
more frequently reconfigured, since the set Par anet er

actor might fire more than once in the execution schedule
of its contained model. The result is that it is often eas-
ier for adesigner to violate dataflow scheduling constraints
using the set Par anet er actor than with the other two
syntaxes.

It is important to notice that each of these syntaxes is
constrained in the set of parameters that can possibly be
reconfigured. In the case of the modal model, only pa-
rameters referenced in state transitions can be reconfig-
ured by the modal model. Reconfiguration ports and the
set Par anet er actor are bound to a single parameter,
and the binding cannot change at run-time. This restric-
tion is crucia to the useful application of the reconfigura-
tion analysis proposed in Section 6.
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Figure 4. A graphical representation of a
simple model with a reconfiguration port in
Ptolemy Il. In this model, the reconfiguration
port is shaded grey instead of black, and re-
configures the parameter named “factor” di-
rectly to its right. This model behaves essen-
tially identically to the one in figure 2, except
that the reconfiguration occurs prior to each
block of samples being produced rather than
after.

4 Parameterization Model

In this section, we present an abstract mathematical
model for hierarchical dataflow models of computationwith
parameterization and reconfiguration. This model allows
reconfiguration at all levels of the hierarchy, but does not
bind reconfiguration to specific syntactic constructs. The
model uniformly represents static schedules, quasi-static
schedules, token rates, and user-level configuration options
as actor parameters. The model explicitly represents the
dependencies between parameters. These dependencies
may arise from a variety of sources, such as an expression
in a design environment that expresses the value of param-
eter in terms of another, a declaration of token rates in a
library actor, or a scheduler that synthesizes a schedule and
corresponding token rates for the external ports of amodel.
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A hierarchical reconfiguration model isrepresented by a
finite tree of actors, called the containment tree. Leaf ele-
ments of the tree are primitive, or atomic actors, and non-
leaf elements are called composite actors. The root of the
containment tree is the toplevel composite actor. The be-
havior of a composite actor is given by a dataflow model
consisting of the actorsthat areitsdirect childrenin thetree.
The dataflow model associated with each composite actor is
assumed to reference external ports that communicate with
the dataflow model that contains the composite actor. The
composite actor at the root of the containment tree contains
no external ports. We say that the all actors in a subtree
are contained by the root of the subtree. Similarly, a com-
posite actor contains all actors in the subtree rooted by the
composite actor, including itself.

Formally, the set of actorsinamodel is A. We writec >
a if the composite actor ¢ containsa. Therelation>C A x
A isatransitive, reflexive, antisymmetric partial order and
(A, >)isatree. A fundamental property of the containment
treeisthat the set of actorsthat contain a particular actor in
the tree form a chain. Or, more formally, Ve € A the set
{z € A|z > ¢} istotally ordered by ©>.

Every actor a has a set of parameters P, that determines
the dataflow behavior of actor a. Different actorsare associ-
ated with digjoint parameter sets(a # b = P,NP, = (),
allowing them to be independently configured. The unique
actor associated with a parameter p is actor(p). Thefinite

set of all parametersinthemodel isP = |J P,. Thevalue
acA
of each parameter at any point during execution of a model

is given by an element of the set T of tokens. A valuation
functionisafunctionin P — T that givesthe value of each
parameter in amodel.

In practical models, the values of parameters are often
dependent on one another. This dependence might be spec-
ified explicitly in the construction of a model, e.g., one pa-
rameter is given as an expression of another, or implicitly,
e.g., a dataflow scheduler synthesizes some parameter val-
ues. We generally ignore these differences and take a de-
notational approach to describing constraints that parame-
ter values must satisfy. We write that the value of a pa-
rameter p depends on a finite, indexed set of parameters
domain®? = {domain?, ..., domain® }. We say that a pa-
rameter p is independent if domain® is empty, and depen-
dent otherwise. Independent parameters in a model are al-
lowed to be modified during reconfiguration.

The value of each dependent parameter p is constrained
by a constraint function constraint, : T" — T, wheren
is the number of elementsin domain?. A consistent valua-
tion function is a valuation function where the value of ev-
ery dependent parameter satifies the parameter’s constraint
function.

Definition 1. Consistent valuation function:

A valuation function v is consistent if and
only if Vp € P,p is dependent =
constraint,(v(domain?), ..., v(domain?)) = v(p)

For mathematical convenience, we define~~ C P x P
to be the dependence relation between parameters. The de-
pendencerelation isthe least transitive relation between pa-
rameters, such that Vo € domain®?,z ~ p. Inorder for a
model to be well-defined, we require that the dependence
relation is not reflexive (i.e., Vx € P,z + z). The set of
parameters that are transitively modified by a parameter p
will bewritten p = {z € P, p ~» z}, and for aset of pa-
rameters P, P = |J p. Generally speaking, a design tool

pEP
will determine the values of parametersin the set p based
on the value of a parameter p.

5 Reconfiguration Semantics

This section describes an abstract semantics for hierar-
chical reconfiguration models. The semanticsis defined in-
completely in order to encompass various dataflow models,
scheduling techniques, and heterogeneous compositions of
different models. Primarily, the dataflow model associated
with each composite actor in the model is assumed to be
reactive and hierarchically composed. Reactivity requires
that the behavior of each actor consists of atotally ordered
sequence of firings. During the firing of an actor, it may
send and receive data from communication channels and
perform computation. Between firings, an actor is quiescent
and cannot communicate or perform computation. Hierar-
chical composition requiresthat each actor firing is encom-
passed by a singlefiring of its container. Equivalently, hier-
archical composition requires that when a composite actor
is quiescent, all actors deeply contained by the composite
actor are also quiescent.

Formally, we write the set of all quiescent points of actor
a during an execution of amodel as Q* wherec > a —

Q° C Q% Theset Q = |J Q*isthe set of al quiescent
acA
points of all actors. The precedence relation is a transitive,

reflexive, antisymmetric partial order <C Q x Q that gives
a time-ordering of quiescent points. The precedence rela
tion is constrained such that the quiescent points Q“ of an
actor a are totally ordered by <. If ¢; < ¢o then the qui-
escent point ¢; aways occurs before ¢». If ¢ £ ¢2 and
g2 £ ¢q1 thenthereisfreedomin the execution of ¢; and g2,
possibly allowing for concurrent execution. An illustration
of quiescent pointsis shown in Figure 5.

In addition to constraining the dataflow behavior of a
model, quiescent points in the execution also form points
where reconfiguration is allowed to occur. At each quies-
cent point ¢ in the execution of a model, a set of indepen-
dent parameters R(q) is selected for reconfiguration. Based
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Figure 5. A graphical representation of the
quiescent points in one execution of the
model in Figure 1. The model is one where ac-
tor t opl evel contains actors Audi oPl ayer
and filter, and actor filter in turn con-
tains actor FI R. Quiescent points are shown
as vertical lines and actor firings are shown
as arrows. A quiescent point is a quiescent
point of an actor if a firing arrow of the ac-
tor starts or end at the quiescent point. The
direction of arrows represents the partial or-
dering of quiescent points.

on this initial set of parameters and reconfigured values,

reconfigured values for dependent parametersin R(q) are
determined based on their individual constraints and those
parameters are al so reconfigured.

Note that the set of parameters R(q) reconfigured at a
particular quiescent point may be associated with actors
anywhere in the model. However, dataflow semantics may
require that certain parameters are not reconfigured, or are
reconfigured only at certain quiescent points in the execu-
tion of the model. For example, static scheduling often re-
quires limited reconfiguration. A bound on the quiescent
points when a parameter is reconfigured is established by
two notions of a constant parameter. The following two the-
orems give intuition about constant parameters.

Definition 2. Constant parameter:
Parameter p is constant if and only if

Va e A,Vqe Q% p¢ R(q).

Definition 3. Constant parameter over actor firings:
Parameter p is constant over firings of actor ¢ if and only if

Va € A,Vg € Q% p e R(q) = q€ Q°.
Theorem 1. p isconstant implies p is constant over firings
of any actor.

Proof. Let ¢ be an arbitrary element of A
Vo € A,Vg € Q*,p ¢ R(q)

Vr € A,Vge Q% pe R(q) = qeQ°
p is constant over firings of ¢

Theorem 2. pisconstant over firingsof cand ¢ &> a implies
p is constant over firingsof a .
Proof. Vo € A,Vq € Q%,p € RTq) = q € Q"

QR cQ N

Ve e AVge Q% pe R(q) = qe€Q°

p is constant over firings of a

O

Constant parameters are not reconfigured during exe-
cution of the dataflow model. Type parameters that are
used for static data type checking are commonly required
to be constant parametersin order to guarantee type sound-
ness. Special parametersthat determine the structure of the
model, such as the number of replications of a single ac-
tor, and parameters that are partially evaluated by a code
generation system are also required to be constant. There-
configuration constraint of heterochronous dataflow mod-
els requires that any parameter representing the dataflow
schedule of a composite actor is constant over firings of the
toplevel composite actor. Thelocal synchrony constraint for
parameterized synchronous dataflow scheduling requires
that the parameter representing the execution schedule of
acomposite actor ¢ is constant over firings of c.

6 Change Contexts

In general, it is undecidable to determine if a parame-
ter is constant or constant over firings of an actor since the
set Q isinfinite and R(q) for ¢ € Q might depend on data
givento amodel only at runtime. However, there aressimple
and intuitive approximations that allow efficient checking
of these properties for parameters. When combined with
suitably formulated saf ety requirements on reconfiguration,
these approximations form a behavioral type theory for re-
configuration. The theory developed in this section is capa-
ble of detecting models with unsafe reconfiguration at com-
pile time and provides a proof that most models with safe
reconfiguration are indeed safe.

In order to statically analyze the reconfiguration of a
model, we will concentrate on approximately analyzing all
possible reconfigurations of a model during any execution
of amodel. To begin with, we assume that the reconfigura-
tion model includesaset R* C P for every actor a. The set
R“ isthesmallest set that contains any independent parame-
tersthat may be modified when actor a is quiescent. During
all executions of themodel, Va € A, Vg € Q%, R(q) C R®,

and R(q) € R“. For convenience, we say that an actor
a is a change context for al parameters in R“, and that
a parameter is inherently constant (or inherently constant
over actor firings) if its change contexts satisfy certain con-
straints. Intuitively, a parameter isinherently constant (over

Page 6



actor firings) if it is constant (over actor firings) during all
executions of the model.

Definition 4. Change context:

An actor « is a change context of a parameter p, written
ar~ p, ifandonlyif p € R*.

Definition 5. Inherently constant parameter:

Parameter p isinherently constant if and only if
Ya e A,asp.

Definition 6. Inherently constant parameter over actor fir-
ings:

Parameter p is inherently constant over firings of actor a if
andonlyif Vee A,crp — c>a.

Theorem 3. p isinherently constant implies p is constant.

Proof. Vz € A,z vl p
VZGA,p§Z§Z
V2 € A,Vq € Q°,R(q) C R*
Vz € A, VqEQZ,pgéR?q)
p is constant

O

Theorem 4. p isinherently constant over firings of actor ¢
implies p is constant over firings of actor c.

Proof. V:CGA:CM]D:> zl>ec
Va:eApGR”” = xD>c
Vo € A,Vq € Q7, ()CR””

VxeA,quQ“’,peR( ) = zlc
rbe = QTCQ°

Vr € A,Vge Q% pe R(q) = qeQ°
p is constant over firings of actor ¢

O

According to the previous definitions, it is decidable to
automatically check whether a parameter is inherently con-
stant or inherently constant over the firings of an actor. For
instance, a direct implementation of the above definitions

might compute the set R* for each actor and check the con-
straint for each parameter. Unfortunately, in large hierarchi-
cal models the toplevel parameters often have many depen-
dent parameters deep in the hierarchy and a direct imple-
mentation performs significant redundant computation by

computing R independently. A more efficient algorithm

could compute R* simultaneously for each actor, iteratively
updating each set. However, in large models, the memory
usage of this technique becomes large, since al of the sets
must be stored in memory at the same time.

T
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fllter

AudloCapture AudioPlayback

FIR FIR2

Figure 6. An example of the lattice formed
by augmenting the containment tree of the
model in Figure 1 with artificial top and bot-
tom elements.

The rest of this section presents an approximate and ef-
ficient algorithm that can verify whether parameters in a
model are constant. The intuition behind this algorithm is
that the set {a € A : a ~ p} of all change contexts of
a parameter p can often be approximated by the greatest
lower bound of the set. The greatest lower bound, written
MA, of asetisthe unique element that is alower bound for
the set (i.e, is less than every element in the set), and also
greater than every other lower bound [7]. We note that the
greatest lower bound of a subset of A does not necessarily
exist. In order to guarantee that the approximation always
exists, the algorithm computes the greatest lower bound in
an artificially constructed ordered set A | . Thisset contains
a special element | to represent the case when the great-
est lower bound does not exist, and a special element T to
represent the greatest lower bound of an empty set.

Formally, theset A | isdefinedtobe A U{T, L} where
T and L areartificial elementsnot in A. The ordering rela-
tion>]C A] x A] isdefined to be the transitive, reflex-
ive, antisymmetric ordering relation where Va € A,Vb €
Aabb < ab] bandVae A, T>] al>] L.
With this construction, (A ],>]) isalattice[7]. A basic
property of a lattice is that every set of elements A in the
lattice has agreatest lower bound in the lattice. An example
of aresulting lattice is shown in Figure 6.

We define the function || : P — A | as shown in Def-
inition 7 and say that |p] is the least change context of the
parameter p. The least change context of a parameter p is
essentially a conservative approximation of the set of all the
change contexts of p. If theleast change context of a param-
eter p iseither T or an element of A, then the set of change
contexts of p is limited and reconfiguration of p can only
occur during the quiescent points of certain actors. On the
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other hand, if the least change context is L then the conser-
vative approximation gives no interesting information about
reconfiguration, and no restrictions on reconfiguration can
be inferred. Theorems 5 and 6 prove the soundness of
the least change context approximation. Theorem 7 shows
that interesting reconfiguration constraints, such asthelocal
synchrony constraint for synchronous dataflow scheduling,
can be checked using the least change context approxima:
tion.

Definition 7. Least change context of a parameter:

The least change context of a parameter p, [p], is an
element of A | where:
lp]=M{a€A] :a€ ANar p}

Or equivalently,

T if{facA:arpt=10
if{eceA:ar p}#(@and
M{a € A :anr p}exists
L otherwise

lp] =

M{aeA:anr p}

Theorem 5. |p| = T impliesp isinherently constant.

Proof. {a € A:ars p}=10
Va € Aja b p
p isinherently constant

O

Theorem 6. |p| € A implies p isinherently constant over
firingsof |p].

Proof. [p] =M{a € A:ar>p}
VaeA:arp = al [p]
p isinherently constant over firings of |p|

O

Theorem 7. pisinherently constant over actor(p) implies
that [p] # L.

Proof. By cases.
Let p be an arbitrary element of P
Case1: fic € A suchthat ¢ ~ p

= |p|]=T
Case 2: Funiquec € A suchthat ¢ ~ p
= [p]=c

Case 3: JA C A suchthatVee A,c~p
Ve € A, c B> actor(p)
(A,>)isachan
dJee AVx € A,z B> ¢

= |p|=c -

Based on the structure of amodel, we noticethat the least
change context of a parameter must satisfy two simple con-
straints over the lattice (A [,>]). The first constraint re-
quiresthat the least change context of a parameter p cannot

be any higher in the hierarchy than the least change context
of a parameter that p depends on. The second constraint re-
quires that if a parameter is reconfigured by an actor, then
the actor must contain the least change context of the param-
eter. The following two theorems prove these constraints.

Theorem 8. p; ~ po implies [p1 | =1 [p2].

Proof. Let p; and p, be arbitrary elements of P
Va € A,arsp = anr> po
{aeA:arp1} C{acA:anrs po}
{aeA] :a€ANarp} C
{ae Al :a€ANar po}
MaeA] cac Aharpi} ]
M{ae Al :a€ AANar po}
1] =1 [p2]

O
Theorem 9. p € R¢impliesc > |p].

Proof. Let ¢ be an arbitrary element of A and p be an
arbitrary element of R

p € R

crp
ce{a€eA:anr p}
ce{aeA] iar p}
c>] Ma€eA] tar p}
c] |p]

O

Although there are generally many functionsthat satisfy
these constraints, the least change context function defined
previoudly is the unique solution that contains the most in-
formation about reconfiguration. Using these constraints,
the least change context function can be directly computed
without direct computation of the change contexts for each
parameter. One algorithm for computing the solution is
known to be linear time in the number of constraints [19].
The agorithm computes | -] by beginning with an initia
guess where Vp € P, |p| = T. The initia guessis up-
dated according to each constraint until al the constraints
are satisfied.

7 Design Example

Figure 7 shows an example signal processing model that
illustrates some of the issues involved with reconfiguration.
This model describes a blind communication receiver that
must analyze and process a received signal with unknown
characteristics. Specifically, the model analyzes an arbi-
trary pre-recorded segment of a digital Phase Shift Keyed
(PSK) signal to determine the carrier frequency, baud rate,
and number of phase shifts of the signal. The model is a
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Figure 7. A heterogenous design example.

heterogenous composition of synchronous dataflow models
and parameterized synchronous dataflow models. The sub-
models are composed hierarchically in a Kahn-MacQueen
process network [11, 16]. Each actor in the process net-
work acquires an operating system thread and communi-
cates with other other components through dynamically re-
sized queues. Actor threads block until communication
gueues have enough data.

The Denpdul at e and BaudRat eEst i mat or actors
are implemented by synchronous dataflow models that pro-
cess 299 jnput samples and compute estimates of the car-
rier frequency and symbol rate of the input signal. Addi-
tionally, the Denodul at e block synthesizes a carrier sig-
nal of the appropriate frequency and outputs a baseband
version of the input signal. The Resanpl er actor sam-
ples the baseband signal at the estimated baudrate, and out-
puts a data-dependent number of complex samples. The
PhaseSt at esEst i nmat or processestheresampled data
to estimate the number of different phases used in the PSK
transmission.

A hierarchical process network implementing the
PhaseSt at esEst i mat or is shown in detail in Figure
7. This model relies on the Conput eHi st ogr amactor,
which computes an array representing a histogram of input
data. The number of samples used to computethe histogram
isspecified as an actor parameter bound to areconfiguration
input port. The model is constructed so that the histogram
computes a histogram of all the resampled data.

Overal, the data-dependent nature of the resampling
operation prevents the entire model from being stati-
cally scheduled, since amount of resampled data tokens
is not available to a scheduler. A static schedule for the

AudioReader CartesianToComplex

Demodulate
L g Exl=as

BaudRateEstimator

i 998.75

Carrier Estimate samples, Ph‘ase states
203125 L] B 8o H 2

ample Count

PN Director

e order: 10
@ samplingFrequency: 8000.0 > 127

Parameterized SDF Director
[>>inputCoum: 127

ComplexToPolar

samples FIR wrap

ComputeHistogram ArrayToSequence FIR2
input

inputCount,

ArrayLength

SequenceToArray  Arrayf output

peakindices

Figure 8. An improved design that allows
more opportunities for dataflow scheduling.

PhaseSt at esEst i mat or would be represented by a
parameter with Conput eHi st ogr amas the least change
context. This least change context implies that the sched-
ule is constant over firings of Conput eHi st ogr ambut
not constant, as required for static scheduling. In this case,
parameterized synchronous dataflow scheduling is not a-
lowable either, since it would require that the schedule be
constant over firings of the PhaseSt at esEst i mat or
composite actor.

One design solution is to modify the model as
shown in Figure 8. In this model, reconfiguration
has been moved up one level in the model, resulting
in less frequent reconfiguration. The parameter of the
Conput eHi st ogr amactorisequal tothel nput Count
parameter, which is reconfigured by the reconfiguration
port. In this model, the schedule depends on the input
rate of the Conput eHi st ogr am which depends on the
I nput Count parameter, which is reconfigured by the re-
configuration port. Asaresult, the scheduleis constant over
firings of the PhaseSt at esEst i mat or, satisfying the
local synchrony constraint for parameterized synchronous
dataflow schedules.

8 Conclusion

In this paper, we have presented a model of parameter-
ization and reconfiguration for hierarchical dataflow mod-
els. The model assumes that reconfiguration of parameters
occurs at quiescent points in the hierarchical execution of
the model. The quiescent points at which a parameter is
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reconfigured are restricted by showing that the parameter
is constant over the firings of an actor in the model. Re-
strictions on reconfiguration are often necessary in order to
ensure that semantic constraints of the model, such as the
local synchrony constraint for parameterized synchronous
dataflow scheduling, are satisfied.

In order to analyze the reconfiguration of a model and
ensure semantic constraints are satisfied, we have presented
abehavioral type theory that analyzes reconfiguration. The
theory analyzes the change contextsin amodel that perform
reconfiguration and relies on two abstractions of the behav-
ior of the model. Firstly, the theory analyzes the behavior
of the model based on all possible executions of a model.
If invalid reconfiguration might occur during any execution
of the model, the theory assumes that the model is invalid.
Secondly, the theory approximates the least change context
of each parameter. The least change context approxima-
tion alows for efficient type checking, but might result in
no information about reconfiguration. We show, however,
that the least change context approximation is sufficient to
check interesting semantic constraints.
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