
Verification of Parameterized Hierarchical State Machines Using Action
Language Verifier ∗

Tuba Yavuz-Kahveci
CISE Department

University of Florida
Gainesville, FL 32611
tyavuz@cise.ufl.edu

Tevfik Bultan
Department of Computer Science

University of California
Santa Barbara, CA 93106

bultan@cs.ucsb.edu

Abstract

Action Language Verifier (ALV) is an infinite-state sym-
bolic model checker. ALV can verify (or falsify, by gener-
ating counter-examples) temporal logic properties of sys-
tems that can be modeled using a combination of boolean
logic and linear arithmetic expressions on boolean, enu-
merated and (possibly unbounded) integer variables and
parameterized integer constants. In this paper, we apply
ALV to the verification of parameterized hierarchical state
machine specifications. We extend the standard notation for
hierarchical state machines by introducing primitives for
explicit specification of asynchronous processes and their
finite and parameterized instantiations. We define the for-
mal semantics of these primitives, where the states of the
parameterized processes are mapped to integer variables
using the counting abstraction technique. We apply the pre-
sented approach to the specification and analysis of an air-
port ground traffic controller and verify several correctness
properties of this specification using ALV.

1 Introduction

Hierarchical state machines (HSMs) have been very in-
fluential in specification of computer systems after David
Harel’s seminal work on Statecharts [21]. Variations on
HSMs have become part of popular object oriented design
languages [5], are supported by commercial design support
tools [22], influenced the requirements specification lan-
guages [23], and have been investigated from automated
verification perspective [6, 7, 17, 18]. In this paper, we are
focusing on automated verification of parameterized HSMs.
In addition to including well-known concepts from State-
charts, we extend the HSMs using an instantiation opera-
tor as a way of specifying the asynchronous composition

∗This work is supported in part by the NSF grant CCR-0341365.

of HSMs. A parameterized HSM contains parameterized
components which can be instantiated arbitrary (unbounded
but finite) number of times. In order to verify parameter-
ized HSMs we translate them to the Action Language, and
then use the Action Language Verifier to model check their
CTL properties. Although the Action Language translation
is done manually at this point, it can be automated based on
the HSM semantics used in this paper.

Action Language is a specification language for reac-
tive software systems [13]. The Action Language Verifier
(ALV) [1, 16] consists of 1) a compiler that converts Ac-
tion Language specifications to symbolic representations,
and 2) an infinite-state symbolic model checker which veri-
fies (or falsifies by generating counter-examples) CTL prop-
erties of Action Language specifications. ALV specializes
on systems specified with linear arithmetic constraints on
integer variables. It uses the Composite Symbolic Library
[28, 29] as its symbolic manipulation engine. Composite
Symbolic Library integrates multiple symbolic representa-
tions: BDDs for boolean and enumerated variables, polyhe-
dral or automata representations for integer variables, and
BDDs for bounded integer variables.

Since Action Language allows specifications with un-
bounded integer variables, fixpoint computations are not
guaranteed to converge. ALV uses conservative approxi-
mation techniques, reachability and acceleration heuristics
to achieve convergence. ALV uses the counting abstrac-
tion technique [19] for verification of parameterized sys-
tems [26, 27]. Counting abstraction generates a set of in-
teger variables and a set of linear arithmetic constraints on
these variables to represent the behavior of arbitrary num-
ber of finite state processes. In this paper we use this feature
of ALV to verify parameterized HSMs.

Our results demonstrate that infinite state model check-
ing tools can be effective in verifying properties of param-
eterized hierarchical state machines. Model checking infi-
nite state systems specified by linear arithmetic constraints,

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Runway r1 Runway r2

Taxiway t1 Taxiway t2

Gate g

Figure 1. An airport ground network.

such as the ones targeted by ALV, has been an active re-
search area in the automated verification community in re-
cent years [8, 15, 20, 24, 25] Among the tools developed
based on the results in this area [2, 3, 4], ALV is unique
in combining multiple symbolic representations. Addition-
ally, Action Language provides high level constructs such
as the ability to declare parameterized processes, which is
supported by ALV using automated counting abstraction.

We applied the approach presented in this paper to a sim-
ple airport ground network system shown in Figure 1. In
this example, the ground network consists of two runways,
two taxiways, and a single gate. An arriving airplane lands
using runway r1, navigates on taxiway t1, crosses runway
r2, and navigates on taxiway t2 to reach gate g, where it
parks. A departing airplane starts from gate g, navigates
on taxiway t2 and takes off using runway r2. The control
logic for such a system must avoid accidents and deadlock.
We specified the control logic for this example using pa-
rameterized HSMs as shown in Figure 2. We modeled the
ground network as a hierarchical state machine which con-
sists of synchronous state machines that model individual
resources, e.g., state r1 models runway r1. Each airplane
is modeled as a hierarchical state machine (Airplane)
which consists of substates that model the status of the air-
plane, e.g., state landing models landing status. The
state Airplane[*] denotes asynchronous composition
of arbitrary number of Airplane state machines. The
whole system is modeled as the synchronous composition
of Airplane[*] and the state machines modelling the
ground network resources (r1, r2, t1, t2, and g).

The rest of the paper is organized as follows. In Section 2
we define the HSM notation and its semantics. In Section 3
we define the parameterized HSMs. In Section 4 we discuss
the verification of parameterized HSMs using ALV. Finally,
in Section 5, we give our conclusions.

2 Hierarchical State Machines

In this section we define the Hierarchical State Machine
(HSM) notation and its semantics.

2.1 Modes

A mode1 denotes a control point. It is represented by an
annotated rectangle. A mode is called active if the HSM is
currently at that mode. There are two types of modes: ba-
sic modes and complex modes. A complex mode describes
a hierarchy and it is composed of submodes which can be
either basic modes or complex modes. A complex mode
can be one of two types: an OR-mode or an AND-mode.
An OR-mode is constructed by connecting its submodes via
transitions. If an OR-mode is active, then exactly one of its
submodes is also active. One of the submodes of an OR-
mode is identified as the initial mode and represented by
an incoming curved arc. An AND-mode is constructed by
separating its submodes by dashed lines. An AND-mode
denotes concurrent execution of its submodes. If an AND-
mode is active, then all of its submodes are also active.

We denote the set of all mode names in an HSM as
Mode. Given a mode m, Sub(m) denotes the set of modes
which are the submodes of m. A mode m1 is the super-
mode of the mode m2 (Sup(m2) = m1) if m2 is a submode
of m1, i.e., m2 ∈ Sub(m1). A mode m1 is said to be an
ancestor of the mode m2 if either m1 is a super-mode of
m2 or m1 is an ancestor of the super-mode of m2. Simi-
larly, m1 is said to be a descendant of m2 if either m1 is a
submode of m2 or m1’s super-mode is a descendant of m2.
Desc(m) denotes the set m’s descendants. Two modes m1

and m2 are called peer modes, if they are submodes of the
same node. The lowest-common ancestor of m1 and m2,
LCA(m1, m2), is defined as the mode that is an ancestor
of both m1 and m2 and which does not have a descendant
that is the ancestor of both m1 and m2. The top-most peer
ancestor of m1 with respect to m2, TPA(m1, m2), is the
ancestor of m1 that is a submode of the lowest-common an-
cestor of m1 and m2. A mode m is active if and only if
m.act = true.

We define three functions S, SA, SD : Mode →

Formula which map modes to formulas. Given a mode
m, S(m) is the formula denoting that m is currently active.
We define S(m) as S(m) = SA(m) ∧ SD(m) where the
formulas SA(m) and SD(m) denote the constraints on the
ancestors and the descendants of m, respectively. They are
recursively defined as follows:

SA(m) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

m1.act ∧ SA(m1) if m1 = Sup(m) and
m1 is an OR-mode

m1.act ∧ SA(m1) if m1 = Sup(m) and
V

m2∈Sub(m1),m2 6=m
m1 is an AND-mode

SD(m2)

true if m is the root mode

1We use the word mode here since we use the word state to refer to the
configurations of the hierarchical state machines.

���
�

���
�

���
�

���
�

��	
	

�
�

takingoff

flow

Airplane[*]

empty empty

occupied

empty

occupied

Airport Ground Traffic Control

empty

occupied

parking taxiing2

taxii1E/
taxii2E

taxii1E[
in(t1.empty)]/
taxii2E

land/
taxii1E

land[in(r1.empty)]/

taxii1E

taxii1E[in(t1.empty)]/

taxii2E

takeoff/fly

fly

taxii2E[in(r1.empty)
and in(t2.empty)]/park

park[in(g.empty)]/

takeoff
taxii2W[in(t2.empty)]/

taxii2W

taxii2E[

occupied

in(r2.empty)

in(g.empty)]/
and

park

flytakeoff/fly

park/taxii2W taxii2W[in(t2.empty)]/
takeoff

takeoff[in(r2.empty)]/
fly

landing

taxiing1

occupied

empty

in(r2.empty)]/
fly

takeoff[

park[
in(g.empty)]/
taxii2W

taxii2W/
takeoff

taxii2E/
park

t2g

r1 t1 r2

Figure 2. Hierarchical state machine specification of the airport ground network control system.

SD(m) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

m.act if m is a basic mode

(
L

m1∈Sub(m) m1.act) if m is an
∧(

V

m1∈Sub(m) m1.act OR-mode
⇒ SD(m1)) ∧ m.act

(
V

m1∈Sub(m) SD(m1)) if m is an
∧m.act AND-mode

where the expression with the exclusive-or operator (
⊕

)
denotes that exactly one of the submodes of an active OR-
mode should be active.

2.2 Transitions

A transition models an atomic mode change and is repre-
sented by a solid arrow connecting two modes. Let tmd

ms
de-

note a transition from ms to md, where ms and md denote
the source mode and the destination mode of t, respectively.
When a transition tmd

ms
is taken, the source mode ms, some

of its ancestors and all of its descendants become inactive,
and the destination mode md and all of its ancestors and
some of its descendants become active. We restrict the tran-
sitions so that, if a mode m is the source or destination mode
of a transition, then Sup(m) must be an OR-mode, i.e.,
there are no transitions from or to the submodes of AND-
modes. Moreover, given a transition tmd

ms
, if ms (md) is a

descendant of a submode of an AND-mode then md (ms)
must be a descendant of the same submode of that AND-
mode, i.e., for all tmd

ms
, for all m, if Sup(m) is an AND-

mode, then ms ∈ Desc(m) if and only if md ∈ Desc(m).
Transitions can be labeled with three fields

trigger[cond]/generate where trigger is the trigger
event of the transition, generate is the event generated
by the transition, and cond is a boolean combination of
predicates in the form in(m.sm). The cond and generate
fields are optional. The predicate in(m.sm) denotes that
the submode sm of the OR-mode m is currently active. We
model the events using boolean variables. A transition can
be taken if the trigger event and the cond are true (if cond
is not given, it is assumed to be true by default). Taking
the transition sets the trigger event to false and sets the
generated event (if it exists) to true. We call the formula
which denotes this transition semantics the transition
formula. Let f(tmd

ms
) denote the transition formula for

the transition tmd

ms
. We write the transition formula as

f(tmd

ms
) = g(tmd

ms
) ∧ u(tmd

ms
) where g(tmd

ms
) is called the

guard and states that the trigger event and the cond are
true, and u(tmd

ms
) is called the update and sets the value

of the trigger event to false and the generated event (if it
exists) to true in the next state. A transition preserves the
values of all the events that it does not update. When the
mode ms is active, the transition tmd

ms
can be taken provided

that the g(tmd

ms
) evaluates to true. If there is more than one

transition originating from the same mode and if the guards
of more than one of them evaluate to true at the same time,
then one of the transitions is taken nondeterministically.

Now, we will define the semantics of executing a tran-
sition. Let LU : Mode × Mode → Formula denote the
mapping from a pair of modes (m1, m2), where m2 is a de-
scendant of m1, to a formula which denotes the state of m2

and its ancestors up to m1 after a transition exits m2. We
use primed modes to denote the values of the attributes after

the transition is taken (m.act is the value of the act attribute
of mode m at the current state, whereas m′.act is the value
of the act attribute of mode m at the next state, after the
transition is taken).

LU(m1, m2) =

8

>

>

<

>

>

:

¬m′
1.act ∧ ¬m′

2.act if m2 ∈ Sub(m1)

¬m′
2.act∧ if m2 6∈ Sub(m1)

LU(m1, Sup(m2))

Let LD : Mode → Formula denote the mapping from
a mode m to a formula which denotes the state of mode m
and all its descendants after m is exited by a transition.

LD(m) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

¬m′.act if m is a basic mode

¬m′.act∧ if m is an OR-mode
V

m1∈Sub(m)

(m1.act ⇒ LD(m1))

¬m′.act∧ if m is an AND-mode
V

m1∈Sub(m) LD(m1)

Let Left : Mode × Mode → Formula denote the
mapping from a pair of modes (m1, m2) to a formula which
denotes the state of m2, its descendants, and its ancestors up
to m1, after a transition exits m2.

Left(m1, m2) =

8

>

>

<

>

>

:

LD(m2) if m1 = m2

LU(m1, Sup(m2)) if m2 ∈

∧LD(m2) Desc(m1)

When a transition tmd

ms
is taken, the destination mode md,

all of its ancestors, and some of its descendants become ac-
tive. Below we define the effect of executing a transition on
the destination mode and its ancestors and its descendants.

Let EnU : Mode × Mode → Formula denote the
mapping from a pair of modes (m1, m2), where m2 is a
descendant of m1, to a formula which denotes the state of
mode m2 and its ancestors up to m1 after a transition enters
m2.

EnU(m1, m2) =

8

>

>

>

>

<

>

>

>

>

:

m′
1.act ∧ m′

2.act if m2 ∈

Sub(m1)

EnU(m1, Sup(m2)) if m2 6∈

∧m′
2.act Sub(m1)

Let EnD : Mode → Formula denote the mapping
from a mode m to a formula which denotes the state of
mode m and all its descendants after m is entered by a tran-
sition.

EnD(m) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

m′.act if m is a
basic mode

m′.act ∧ EnD(m.init) if m is an
OR-mode

m′.act∧ if m is an
V

m1∈Sub(m) EnD(m1) AND-mode

Let En : Mode × Mode → Formula denote the map-
ping from a pair of modes (m1, m2), where m2 is a descen-
dant of m1, to a formula which denotes the state of m2, its
descendants, and its ancestors up to m1, after a transition
enters m2.

En(m1, m2) =

8

>

>

<

>

>

:

EnD(m2) if m1 = m2

EnU(m1, Sup(m2)) if m2 ∈

∧EnD(m2) Desc(m1)

Let IdND : Mode → Formula denote the mapping
from a mode m to a formula which denotes that for all the
modes which are not descendants of m, the act attribute
remains the same in the next state.

IdND(m) =
^

m6∈Desc(m)

m
′
.act = m.act

Similarly, IdD : Mode → Formula is the mapping
from a mode m to a formula which denotes that for all the
modes which are the descendants of m, the act attribute
remains the same in the next state.

IdD(m) =
^

m∈Desc(m)

m
′
.act = m.act

Now, we can define the semantics of a transition tm2

m1
as

[[tm2
m1

]] = S(m1) ∧ Left(m3, m1) ∧ En(m4, m2)
IdND(m5) ∧ f(tm2

m1
)

where m3 = TPA(m1, m2), m4 = TPA(m2, m1), and
m5 = LCA(m1, m2). Then, the semantics of a mode m is
defined as follows:

[[m]]=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

false if m is a basic mode

W

t
m2
m1

,m=LCA(m1,m2)[[t
m2
m1

]] if m is an OR-mode

∨
W

m1∈Sub(m)[[m1]]

V

m3∈Sub(m)([[m3]]∨ if m is an AND-mode
(IdD(m3)∧
V

t
m2
m1

,m3=LCA(m1 ,m2)

¬g(tm2
m1

))

3 Parameterized HSMs

We incorporate an instantiation operator to HSMs as a
way of specifying asynchronous composition of a set of
identical state machines. The instantiation operator is rep-
resented by the suffix “[n]” that is appended to a complex
mode name where n can be a number denoting the number
of instantiations or it can be the “*” character denoting the
arbitrary number of instantiations. We call a mode with ar-
bitrary number of instantiations a parameterized mode. For
instance, in Figure 2, Airplane is a parameterized mode.
The semantics of the mode instantiation is defined as

[[M [n]]]=
∨

1≤i≤n

[[Mi]]

where Mi denotes the HSM that is obtained from M by
appending i to each mode name. We explain the semantics
of parameterized modes below.

3.1 Parameterized Modes

We use an abstraction technique called counting abstrac-
tion [19] to define the semantics of parameterized modes.
Counting abstraction is used to abstract the local states of a
set of identical components. The abstracted system does not
keep track of the state of each component, rather, it keeps
track of the number of components in each state. This is
achieved by introducing a set of integer variables, one per
state, counting the number of components in that state.

We extend the notation we introduced so far by introduc-
ing the superscript P to denote the parameterized case. We
associate a counter m.c with each mode m, which denotes
the number of instances of the parameterized state machine
that are active in m. We define SP , SAP , SDP : Mode →

Formula as SP (m) = SAP (m) ∧ SDP (m) where SA
and SD are recursively defined as follows:

SA
P (m) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

m1.c > 0 ∧ SAP (m1) if m1 = Sup(m)
and m1 is an
OR-mode

m1.c > 0 ∧ SAP (m1) if m1 = Sup(m)
V

m2∈Sub(m1),m2 6=m
and m1 is an

SDP (m2) AND-mode

true if m is the root mode

SD
P (m) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

m.c > 0 if m is a
basic mode

(
W

m1∈Sub(m) m1.c > 0 if m is an
∧SDP (m1)) ∧ m.c > 0 OR-mode

(
V

m1∈Sub(m) m1.c > 0 if m is an
∧SDP (m1)) ∧ m.c > 0 AND-mode

Below, we present the transition semantics for pa-
rameterized modes, based on the notation for the non-
parameterized case in Section 2. Let Dec(c) ≡ c′ = c − 1
and Inc(c) ≡ c′ = c + 1.

LU
P (m1, m2) =

8

>

>

>

>

<

>

>

>

>

:

Dec(m1.c)∧ if m2 ∈

Dec(m2.c) Sub(m1)

Dec(m2.c)∧ if m2 6∈

LUP (m1, Sup(m2)) Sub(m1)

LD
P (m) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Dec(m.c) if m is a
basic mode

Dec(m.c)∧ if m is an
(
L

m1∈Sub(m) m1.c > 0∧ OR-mode
LDP (m1))

Dec(m.c)∧ if m is an
V

m1∈Sub(m) LDP (m1) AND-mode

Left
P (m1, m2) =

8

>

>

<

>

>

:

LDP (m2) if m1 = m2

LUP (m1, Sup(m2)) if m2 ∈

∧LDP (m2) Desc(m1)

EnU
P (m1, m2) =

8

>

>

>

>

<

>

>

>

>

:

Inc(m1.c)∧ if m2 ∈

Inc(m2.c) Sub(m1)

EnUP (m1, Sup(m2)) if m2 6∈

∧Inc(m2.c) Sub(m1)

EnD
P (m) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Inc(m.c) if m is a
basic mode

Inc(m.c)∧ if m is an
EnDP (m.init) OR-mode

Inc(m.c)∧ if m is an
V

m1∈Sub(m) EnDP (m1) AND-mode

En
P (m1, m2) =

8

>

>

<

>

>

:

EnDP (m2) if m1 = m2

EnUP (m1, Sup(m2)) if m2 ∈

∧EnDP (m2) Desc(m1)

IdNDP (m) =
V

m6∈Desc(m) m′.c = m.c

IdDP (m) =
V

m∈Desc(m) m′.c = m.c

[[tm2
m1

]]P = SP (m1) ∧ LeftP (m3, m1) ∧ EnP (m4, m2)

IdNDP (m5) ∧ f(tm2
m1

)

where m3 = TPA(m1, m2), m4 = TPA(m2, m1), and
m5 = LCA(m1, m2).

[[m]]P =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

false if m is a
basic mode

W

t
m2
m1

,m=LCA(m1,m2)[[t
m2
m1

]]P if m is an

∨
W

m1∈Sub(m)[[m1]]
P OR-mode

V

m3∈Sub(m)([[m3]]
P
∨ if m is an

(IdDP (m3)∧ AND-mode
V

t
m2
m1

,m3=LCA(m1 ,m2)

¬g(tm2
m1

))

3.2 Avoiding Redundancy

It is possible to determine all the active modes in an
HSM just by looking at the basic modes, i.e., the set of ba-
sic modes that are active determines all the active modes.
For the parameterized HSMs this results in the following
property: Given a complex mode m, the counter m.c can
be defined in terms of the counters of its submodes based
on the following equivalences:

m.c =

8

>

>

<

>

>

:

P

m1∈Sub(m) m1.c if m is an OR-mode

m1.c if m is an AND-mode
and m1 ∈ Sub(m)

We can reduce the number of counters by eliminating the
counters for the complex modes and inferring their values
from the counters of their submodes based on the equiva-
lences given above. To achieve this, in the functions SAP

and SDP , we replace the constraints in the form m.c > 0,
where m is a complex mode, with Gt(m.c) which is defined
as:

Gt(m.c) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

m.c > 0 if m is a basic mode

W

m1∈Sub(m) Gt(m1.c) if m is an OR-mode

Gt(m1.c) if m is an
AND-mode and
m1 ∈ Sub(m)

Additionally, in the functions LUP , LDP , EnUP , and
EnDP , for every complex mode m, we get rid of the
Inc(m.c) and Dec(m.c) constraints. This reduction im-
proves the efficiency of the verification by reducing the
number of integer variables in the parameterized system.

4 Verification of HSMs Using ALV

Figure 3 shows the translation of the HSM for the airport
ground control given in Figure 2 to Action Language. An
Action Language specification consists of integer, boolean
and enumerated variables, parameterized integer constants
and a set of modules and actions which are composed us-
ing synchronous and asynchronous composition operators
[13, 16]. Note that, a parameterized integer constant is
an unspecified constant which can take an arbitrary integer
value. Semantically, each Action Language module corre-
sponds to a transition system with a set of states, a set of
initial states and a transition relation. The top level module
is always called the main module. The variable declara-
tions of a module define the set of states of that module.
The initial expression of a module defines the set of initial
states of that module. A module expression (which starts
with the name of the module) defines the transition relation
of the module in terms of its actions and submodules us-
ing asynchronous and synchronous composition operators.
Each action in an Action Language specification defines a
single execution step. In an action expression primed vari-
ables denote the next-state values for the variables and un-
primed variables denote the current-state values.

In Action Language asynchronous composition of two
actions a1 and a2, denoted a1 | a2, is defined as the dis-
junction of their transition relations. However, an action
preserves the values of the variables which are not mod-
ified by itself. Two actions a1 and a2 can also be com-
bined with synchronous composition a1 & a2. Semantics
of synchronous composition corresponds to conjunction if
two actions are always enabled. However, if one component
of synchronous composition is not enabled in a state, this
would deadlock the composed system if conjunction is used
as its semantics. To prevent this, in such a state, the disabled
component makes a synchronous idle transition and stays in
the same state which allows other components to progress.
Formal semantics of Action Language is given in [26].

The Action Language translation of the HSM specifica-
tion in Figure 2, shown in Figure 3, follows the HSM se-
mantics we described in the previous sections. There is one
enumerated variable to encode each OR-mode in the HSM
specification. Each complex mode is represented with a
module. Each transition in the HSM specification is rep-
resented by one action in the Action Language translation.
Then, the overall transition relation is defined by combin-

module main()
enumerated sr1, sr2, st1, st2, sg {empty, occupied};
open boolean land, taxii1E, taxii2E, taxii2W, fly, park, takeoff;
initial: land and !taxii1E and !taxii2E and !taxii2W and !fly and !park and !takeoff;
module Airplane()

enumerated state {flow, landing, taxiing1, taxiing2, takingoff, parking};
initial: state=flow;
a1: state=flow and sr1=empty and land and state’=landing and !land’ and taxii1E’;
a2: state=landing and st1=empty and taxii1E and state’=taxiing1 and !taxii1E’ and taxii2E’;
a3: state=taxiing1 and sr2=empty and st2=empty and sg=empty and taxii2E

and state’=taxiing2 and !taxii2E’ and park’;
a4: state=taxiing2 and sr2=empty and takeoff and state’=takingoff and fly’ and !takeoff’;
a5: state=taxiing2 and sg=empty and park and state’=parking and taxii2W’ and !park’;
a6: state=parking and st2=empty and taxii2W and state’=taxiing2 and takeoff’ and !taxii2W’;
a7: state=takingoff and fly and state’=flow and !fly’;
Airplane: a1 | a2 | a3 | a4 | a5 | a6 | a7 ;

endmodule
module r1()

initial: sr1=empty;
r11: sr1=empty and land and !land’ and taxii1E’ and sr1’=occupied;
r12: sr1=occupied and taxii1E and st1=empty and sr1’=empty and !taxii1E’ and taxii2E’;
r1: r11 | r12;

endmodule
module t1()

initial: st1=empty;
t11: st1=empty and taxii1E and st1’=occupied and taxii2E’ and !taxii1E’;
t12: st1=occupied and taxii2E and sr2=empty and st2=empty and

sg=empty and st1’=empty and park’ and !taxii2E’;
t1: t11 | t12;

endmodule
module r2()

initial: sr2=empty;
r21: sr2=empty and takeoff and sr2’=occupied and fly’ and !takeoff’;
r22: sr2=occupied and fly and sr2’=empty and !fly’;
r2: r21 | r22;

endmodule
module t2()

initial: st2=empty;
t21: st2=empty and taxii2E and sr2=empty and st2’=occupied and park’ and !taxii2E’;
t22: st2=occupied and park and sg=empty and st2’=empty and taxii2W’ and !park’;
t23: st2=occupied and takeoff and sr2=empty and st2’=empty and fly’ and !takeoff’;
t24: st2=empty and taxii2W and st2’=occupied and takeoff’ and !taxii2W’;
t2: t21 | t22 | t23 | t24;

endmodule
module g()

initial: sg=empty;
g1: sg=empty and park and sg’=occupied and taxii2W’ and !park’;
g2: sg=occupied and taxii2W and st2=empty and sg’=empty and takeoff’ and !taxii2W’;
g: g1 | g2;

endmodule
module EnvEvent()

// this module generates the environment events nondeterministically
EnvEvent: land’=land or land’;

endmodule
module EventConstraint()

// this module specifies that at any execution step at most one event
// can be consumed and at most one event can be generated
...

endmodule
main: (Airplane()* & r1() & t1() & r2() & t2() & g() | EnvEvent()) & EventConstraint();
spec: AG(EX(true))
spec: AG(sr1=occupied and st1=occupied => AX(sr1=occupied))
spec: AG(st1=occupied and (sr2=occupied or sg=occupied) => AX(st1=occupied))

endmodule

Figure 3. Action Language specification for the airport ground control model given in Figure 2.

ing the transitions (or submodes) of OR-modes with asyn-
chronous composition |, and the submodes of AND-modes
with synchronous composition &.

In the Action Language translation, the events are rep-
resented as boolean variables. The event variables are de-
clared to be open which means that their updates have to be
explicitly stated (i.e., they do not preserve their value un-
less it is explicitly stated). We declare an event constraint
module which is synchronously composed with the rest of
the system. This module restricts the transition relation so
that at each execution step at most one event can be con-
sumed and at most one event can be generated. We also de-
clare an environment event module which is asynchronously
composed with the HSM. This module nondeterministically
generates the events that are generated by the environment.
Although the Action Language specification in Figure 3 is
generated manually, we believe that it can be automated
based on the translation approach we followed for the ex-
ample in Figure 2.

4.1 Parameterized Verification

The counting abstraction technique [19] is integrated to
ALV in order to verify properties of parameterized systems
with arbitrary number of finite state modules. In Action
Language, a module can be marked to be parameterized
which is denoted by the suffix “*”. Note that, in the Ac-
tion Language translation shown in Figure 3 the parameter-
ized mode in the HSM specification in Figure 2 is marked
to be parameterized. When a module is marked to be pa-
rameterized, ALV generates an abstract transition system
in which the local variables of the parameterized module
is replaced by a set of integer variables, one integer vari-
able for each valuation of the local variables of the param-
eterized module. These integer variables keep track of the
number of instances of the parameterized module in each
local state (which corresponds to a valuation of the local
variables). An additional parameterized constant is intro-
duced to denote the number of instances of the parameter-
ized module. Counting abstraction preserves the CTL prop-
erties that do not involve the local states of the abstracted
processes. When properties of a system are verified using
the counting abstraction, the result will hold for any number
of instances of the parameterized module and if a counter-
example is generated it corresponds to a concrete counter-
example. Note that counting abstraction technique works
only for modules with finite number of local states.

Counting abstraction technique may generate a large
number of (unbounded) integer variables to encode the local
states of the parameterized modules. Hence, efficient verifi-
cation with integer variables is crucial for the scalability of
parameterized verification. ALV specializes in verification
of such systems.

ALV is a symbolic model checker for CTL which
uses efficient symbolic representations for integer variables.
ALV computes the truth set of a given temporal property
based on the least and greatest fixpoint characterizations of
CTL operators. It uses iterative fixpoint computations start-
ing from the fixpoint for the innermost temporal operator in
the formula.

ALV uses the Composite Symbolic Library [28, 29] as
its symbolic manipulation engine. Composite Symbolic Li-
brary integrates multiple symbolic representations: BDDs
for boolean and enumerated variables, polyhedral or au-
tomata representations for integer variables, and BDDs for
bounded integer variables. Composite Symbolic Library
provides an abstract interface which is inherited by ev-
ery symbolic representation that is integrated to the library.
Originally, ALV was developed using a Polyhedral repre-
sentation for linear arithmetic constraints [15, 28]. Re-
cently, it has been extended with an automata representation
for linear arithmetic constraints [10, 11]. ALV also uses
BDDs to encode boolean and enumerated variables. These
symbolic representations can be used in different combina-
tions. For example, polyhedral and automata representa-
tions can be combined with BDDs using a disjunctive rep-
resentation. ALV also supports efficient representation of
bounded arithmetic constraints using BDDs [9].

In the presence of unbounded integer variables (such
as the ones generated by the counting abstraction) model
checking is undecidable. Hence, ALV uses conservative ap-
proximation techniques during verification. There are three
possible outcomes when one uses ALV to verify a parame-
terized system: 1) ALV verifies the property which means
that the property is provably correct, 2) ALV generates a
counter-example which means that the property is provably
incorrect, and 3) ALV states that it is unable to verify or fal-
sify the property. ALV uses several heuristics to minimize
the occurrence of the third outcome as much as possible.

The undecidability of the model checking problem for
unbounded systems implies that the fixpoint computations
are not guaranteed to converge. ALV uses several con-
servative approximation heuristics to achieve convergence
[12, 14, 15, 16]: 1) Truncated fixpoint computations to
compute lower bounds for least fixpoints and upper bounds
for greatest fixpoints, 2) Widening heuristics both for poly-
hedra [15] and automata representations [12] to compute
upper bounds for least fixpoints (and their duals to com-
pute lower bounds for greatest fixpoints), 3) Approximate
reachability analysis using a forward fixpoint computation
and widening heuristics, 4) Accelerations based on loop-
closures which extract disjuncts from the transition rela-
tion that preserve the boolean and enumerated variables but
modify the integer variables, and then compute approxima-
tions of the transitive closures of the integer part.

4.2 Experiments

After we translated the HSM model of the airport ground
network traffic control in Figure 2 to the Action Language
specification shown in Figure 3, we verified several correct-
ness properties using ALV. The first five properties we ver-
ified were:

AG(EX(true))
AG(sr1=occupied and st1=occupied

=> AX(sr1=occupied))
AG(st1=occupied and

(sr2=occupied or st2=occupied)
=> AX(st1=occupied))

AG(st2=occupied and sg=occupied and sr2=occupied
=> AX(st2=occupied))

AG(sg=occupied and st2=occupied
=> AX(sg=occupied))

We verified the five properties listed above both for con-
crete number of airplanes (2, 4, 8, 16, 32 and 64) and arbi-
trary number of (parameterized) airplanes. The first prop-
erty denotes absence of deadlock. Other properties make
sure that the airplanes follow the rules of the airport topol-
ogy when they are moving across the runways and taxiways.
We verified one more property indicating that at any reach-
able state of the system there is at most one airplane in the
taxiing2 state. To specify that property for the concrete
cases we wrote invariants in the following form:

AG(state1=taxiing2 => state2!=taxiing2 and
state3!=taxiing2 and ...)

where statei denotes the state variable of the i’th in-
stance of the Airplane module. Note that since each in-
stantiation of the Airplane module is identical, proving
this property ensures that the property holds for any in-
stantiation. For the parameterized case, we declared an
auxiliary integer variable count which is initialized to 0,
and is incremented when an Airplane module enters the
taxiing2 state and is decremented when an Airplane

module exits the taxiing2 state. We then verified the
property AG(count<=1).

Table 1 shows the transition system construction time,
verification time and memory usage. The first five rows
show the results for the concrete cases with 2, 4, 8, 16, 32
and 64 instances of the Airplane module and the bottom
row (denoted by P) shows the results for the parameterized
case. For the experiments we used a machine with a 2.8
GHertz Pentium 4 processor and 2 GBytes of main mem-
ory.

For the concrete cases the specification is a finite state
model and ALV works as a BDD based model checker (i.e.,
does not use any arithmetic constraint manipulation). The
fixpoint computations for the first five properties converged
in the first iteration for all cases. The fixpoint computation
for the last property took 11 iterations for the case with 2

Number of Construction Verification Memory (MB)
Airplanes Time (sec) Time (sec)
2 0.08 0.02 1.68
4 0.21 0.16 4.63
8 0.56 1.08 15.75
16 1.34 3.24 39.80
32 3.25 9.69 64.45
64 10.25 26.21 124.35
P 41.32 13.85 15.15

Table 1. Verification results.

airplanes, 18 iterations for the case with 4 airplanes, 22 iter-
ations for the cases with 8, 16, 32 and 64 airplanes, and 23
iterations for the parameterized case.

Note that the transition system construction time for the
parameterized case takes longer than the concrete cases.
There are two reasons 1) for the parameterized case the
counting abstraction is being computed during the transi-
tion system construction and 2) the parameterized case is
using linear arithmetic constraint manipulation during the
transition system construction which is more expensive than
boolean logic manipulation.

The verification time for the parameterized case is be-
tween the verification times for the concrete cases with 32
airplanes and 64 airplanes. In terms of memory usage pa-
rameterized case performs even better and uses less mem-
ory than the concrete case with 8 airplanes. More impor-
tantly, the result we obtain for the parameterized case is
much stronger than any of the concrete cases. From the
verification results for the parameterized case we can de-
duce that the airport ground traffic control model given in
Figure 2 satisfies the properties listed above for any number
of airplanes.

5 Conclusions

In this paper, we extended the standard notation for the
hierarchical state machines by introducing primitives for
explicit specification of asynchronous processes and their
finite and parameterized instantiations. We used the count-
ing abstraction technique in defining the semantics of the
parameterized instantiation operator. We showed that hier-
archical state machine specifications can be translated to the
Action Language and their properties can be verified using
the Action Language Verifier. The Action Language Veri-
fier is an infinite-state symbolic model checker which can
verify parameterized Action Language specifications using
automated counting abstraction. We showed that this fea-
ture of the Action Language Verifier can be used to verify
parameterized hierarchical state machine specifications au-
tomatically. As a case study, we modeled an airport ground
traffic control system using the hierarchical state machines,
translated the specification to the Action Language, and ver-

ified its properties both for different, concrete number of in-
stantiations and for arbitrary number of instantiations using
the Action Language Verifier.

References

[1] ALV: Action language verifier. Available at:
http://www.cs.ucsb.edu/˜bultan/composite/

[2] BRAIN: Backward reachability anal-
ysis with integers. Available at:
http://www.cs.man.ac.uk/˜voronkov/BRAIN/

[3] FAST: Fast acceleration of symbolic transition systems.
Available at: http://www.lsv.ens-cachan.fr/fast/

[4] LASH: The Liège automata-based symbolic handler.
Available at: http://www.montefiore.ulg.ac.be/

˜boigelot/research/lash/
[5] OMG’s UML 1.5 specification. Object Management Group.

Available at: http://http://www.uml.org/
[6] R. Alur and R. Grosu. Modular refinement of hierarchic

reactive machines. In Proceedings of the 27th Symposium
on Principles of Programming Languages, pages 390–402,
January 2000.

[7] R. Alur, R. Grosu, and M. McDougall. Efficient reachability
analysis of hierarchical reactive machines. In Proceedings of
the 12th International Conference on Computer Aided Veri-
fication, pages 280–295, July 2000.

[8] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: Fast
acceleration of symbolic transion systems. In Proceedings of
the 15th International Conference on Computer Aided Veri-
fication, pages 118–121, July 2003.

[9] C. Bartzis and T. Bultan. Construction of efficient BDDs
for bounded arithmetic constraints. In Proceedings of the
Ninth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 394–408,
April 2003.

[10] C. Bartzis and T. Bultan. Efficient image computation in
infinite state model checking. In Proceedings of the 15th
International Conference on Computer Aided Verification,
pages 249–261, July 2003.

[11] C. Bartzis and T. Bultan. Efficient symbolic representations
for arithmetic constraints in verification. International Jour-
nal of Foundations of Computer Science, 14(4):605–624,
August 2003.

[12] C. Bartzis and T. Bultan. Widening arithmetic automata. In
Proceedings of the 16th International Conference on Com-
puter Aided Verification, pages 321–333, July 2004.

[13] T. Bultan. Action Language: A specification language for
model checking reactive systems. In Proceedings of the
22nd International Conference on Software Engineering,
pages 335–344, June 2000.

[14] T. Bultan, R. Gerber, and C. League. Composite model
checking: Verification with type-specific symbolic represen-
tations. ACM Transactions on Software Engineering and
Methodology, 9(1):3–50, January 2000.

[15] T. Bultan, R. Gerber, and W. Pugh. Model-checking concur-
rent systems with unbounded integer variables: Symbolic
representations, approximations, and experimental results.
ACM Transactions on Programming Languages and Sys-
tems, 21(4):747–789, July 1999.

[16] T. Bultan and T. Yavuz-Kahveci. Action language verifier. In
Proceedings of the 16th IEEE International Conference on
Automated Software Engineering, pages 382–386, Novem-
ber 2001.

[17] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. D. Reese. Model checking large software
specifications. IEEE Transactions on Software Engineering,
24(7):498–520, July 1998.

[18] W. Chan, R. J. Anderson, P. Beame, D. H. Jones, D. Notkin,
and W. E. Warner. Decoupling synchronization from local
control for efficient symbolic model checking of statecharts.
In Proceedings of the 21st International Conference on Soft-
ware Engineering, pages 142–151, May 1999.

[19] G. Delzanno. Automatic verification of parameterized cache
coherence protocols. In Proceedings of the 12th Interna-
tional Conference on Computer Aided Verification, pages
53–68, July 2000.

[20] G. Delzanno and A. Podelski. Constraint-based deductive
model checking. Journal of Software Tools and Technology
Transfer, 3(3):250–270, 2001.

[21] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
June 1987.

[22] D. Harel and M. Politi. Modeling Reactive Systems with
Statecharts: The STATEMATE Approach. McGraw Hill,
1998.

[23] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese.
Requirements specifications of process-control systems.
IEEE Transactions on Software Engineering, 20(9):684–
707, September 1994.

[24] T. Rybina and A. Voronkov. Using canonical representations
of solutions to speed up infinite-state model checking. In
Proceedings of the 14th International Conference on Com-
puter Aided Verification, pages 400–411, 2002.

[25] P. Wolper and B. Boigelot. On the construction of automata
from linear arithmetic constraints. In Proceedings of the
6th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 1–19, April
2000.

[26] T. Yavuz-Kahveci. Specification and Automated Verification
of Concurrent Software Systems. PhD thesis, University of
California, Santa Barbara, 2004.

[27] T. Yavuz-Kahveci and T. Bultan. Specification, verification,
and synthesis of concurrency control components. In Pro-
ceedings of the 2002 International Symposium on Software
Testing and Analysis, pages 169–179, July 2002.

[28] T. Yavuz-Kahveci and T. Bultan. A symbolic manipulator
for automated verification of reactive systems with hetero-
geneous data types. International Journal on Software Tools
for Technology Transfer, 5(1):15–33, November 2003.

[29] T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. A library for
composite symbolic representations. In Proceedings of the
7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 335–344,
April 2001.

