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Abstract—The Kiwi system achieves co-design by allowing
nominated regions of C# programs to be targeted at FPGAs
while the remainder executes on unmodified .NET and Mono
virtual machines. Using C# attributes, certain methods are
identified for separate compilation and collections of methods
are mapped to multiple FPGAs or to workstations connected
to a common Ethernet switch. Individual methods become
RPC-callable entities for the top-level C# thread running on
one workstation, while server threads may run continually
on other workstations or FPGAs. We illustrate the concept
using minimal modifications to an Adobe Photoshop plug-in
where the processing for each colour channel is farmed over
the Ethernet to one or three remote entities which may each
be either an FPGA or a workstation.

I. INTRODUCTION

Emerging infrastructure for cloud computing will need

to exploit special purpose hardware accelerators including

FPGA and GPU in addition to von Neumann resources [1].

These specialized processing elements are necessary for

reducing latency and energy consumption to meet our re-

quirements for data processing which cannot be serviced

by multicore processors. The general potential is illustrated

by success in some domain-specific examples, such as code

cracking, DNA sequencing and automated trading (e.g. the

MoldUDP protocol for automated trading implemented on

FPGAs that issue buy and sell requests [2]) In this paper

we explore splitting C# programs into separate components

and hosting them on a cluster of workstations and FPGAs

interconnected by an Ethernet LAN. Modern FPGAs have

(multiple) on-board Ethernet MAC blocks, so connecting

them to the LAN is not a problem. Compared with C-to-

gates technology, which focuses on highly-efficient imple-

mentation of limited statically-allocated subsets of single-

threaded C/C++ programs, we look at multi-threaded pro-

grams coded in C#. Starting with multi-threaded programs

gives us a greater seam of potential parallelism to tap. This

was the motivation of the original Kiwi project [3]. However,

it is also a source of spatial parallelism, where different parts

of an algorithm are placed on different execution platforms.

Apart from coding style and language subset issues, which

have been well explored in the past, another main obstacle to

using FPGAs for general computations is the long compile

times incurred by the vendor synthesis, mapping, placement

and routing tools. Although some work has been devoted

to less fine-grained reconfigurable architectures [4], [5],

which should speed up place and route times, other tech-

niques deserve study. We take it for granted that software

toolchains support modular reuse of separately-compiled

libraries (DLLs) that may be locally linked or remotely

invoked by RPC (e.g. using Apache Tomcat) and then run

in parallel. Equivalently, modern FPGA tools now enable

designs to be combined together after place and route for

complete or partial reconfiguration of the FPGA array. For

instance, the Xilinx ‘bitgen’ program enables initialization

files for memories to be inserted into the bitstream immedi-

ately prior to FPGA download. The Xilinx PlanAhead tool

allows us to design a sub-component and constrain it to a

rectangular sub-region of the FPGA. This operation is much

quicker than performing a full place and route of the whole

FPGA (tens of seconds instead of tens of minutes). For even

more rapid, early devlopment, the whole application can be

developed and debugged as a Mono or .NET application on

a single workstation without any hardware compilation.

Our ultimate objective is to demonstrate automated

bitstream-level assembly of such components for FPGAs. As

a stepping stone towards that goal in this paper we show how

.NET C# programs split over several DLLs can be separately

compiled using the KiwiC compiler. These assemblies are

then ready for distribution over a mesh of workstations and

FPGAs. Each hosted application sports a standard net-level

interface that should be amenable to abutment-style wiring,

as is required if no routing is to be done post placement. We

give details of how data is transferred between components

within an FPGA and over the LAN. Specifically, in this

paper, we present a method to partition an application over

some number of Ethernet-connected nodes and also how to

host multiple application components on a single FPGA.

Figure 1 illustrates our general setup, where C# programs

are running on a mixture of FPGAs, Linux and Windows

workstations, interconnected by a LAN. One of the work-

stations is a client for the others which resemble the server

cloud.
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Figure 1. Experiment 1: Running a Photoshop plug-in on a mixture of FPGA and workstation servers.
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Figure 2. FPGA architecture for Experiment 2, offering multiple,
separately-compiled services.

in the absence of runtime profiles is unlikely to achieve

good results. We have not yet investigated parsing the output

of profiling tools as part of our flow, so we use manual

partitioning at the moment. The partitioning is manifested

as a ‘toplevel.v’ structural RTL file that instantiates the

separately-compiled hardware components as well as a

Makefile that invokes the C# and KiwiC compilers and

the Xilinx synthesis, map, placement and bitstream tools.

Selection of DLLs for running on workstations is performed

by conditionally copying them into folders or adjusting the

MONO PATH and/or PATH environment variables. An

ultimate aim is that our ‘toplevel.v’ file is invariant over a

large number partitioning decisions, or at least one of several

pre-compiled top levels can be automatically selected.

An important aspect of our approach is that .NET DLLs

do not need to be recompiled between running on the FPGA

and workstations. This enables us to claim that we are

providing cloud-like execution resources where the author of

the code was not aware of his execution platform. This claim

is slightly tenuous since some current examples contain

specific Kiwi attributes or calls (or even updates to LED

indicators) that a general author would not include.

Another significant aspect is that the complete application

can be run as .NET binary code on a single workstation for

development and debugging, before farming it out to the

cloud.

II. KIWI INTRODUCTION

The basic principles behind the design of the Kiwi system

are:

• The use of an existing language rather than the inven-

tion of a new language: this is achieved by taking as

input .NET bytecode rather than the source text of a

specific programming language;

• The modeling of hardware architecture by using con-

currency to describe the behaviour of system compo-

nents: this is achieved by using the .NET threading

library called System.Threading and in particular thread

synchronize and communicate with thread-safe chan-

nels (which are implemented as FIFOs).

By not extending an existing language the programmer

is free to use a regular compiler to compile programs

built against a Kiwi library and then execute them on a

computer to achieve a simulation of the system description.

Furthermore, standard static analysis tools (e.g. deadlock

checkers) can be applied to the regular .NET bytecode.

An artificial but complete example of a circuit that it-

eratively computes the factorial function in Kiwi and C#

is shown below. This program contains a class called Fac-

torial which has a custom attribute [Kiwi.Hardware()] which

indicates that this class contains a method that should be

converted into hardware through Kiwi synthesis to yield a

Verilog file.

Somehow the inputs and outputs of a generated circuit

module need to be identified. In Kiwi this is done by

decorating static fields with one of several special custom

attributes that specify ports, the polarity of a port, a name



for it if something other than the .NET name is required and

for integer types the number of bits required to represent

an integer value can be specified. In this case there is an

unsigned 8-bit integer input n and two outputs: a 126-bit

unsigned integer fac which will eventually represented the

factorial of the input n and a single bit output done which

will go high when the factorial has been computed.

using System;

class Factorial
{

[Kiwi.Hardware()]

[Kiwi.InputWordPort(7, 0)]
static uint n ; // Input to factorial circuit

[Kiwi.OutputWordPort(15, 0)]
static uint fac = 1; // Result of factorial circuit

[Kiwi.OutputBitPort]
static bool done = false; // Signal indicating when result is ready

static void FactorialCircuit ()
{

uint i = n; // On reset capture the input n
while (!done)
{

if (i > 1)

fac = fac∗i;
i−−;
if (i == 1)
{

Console.WriteLine(”Factorial is {0}”, fac);
done = true;

}
Kiwi.Pause();

}
}

public static int Main() // Test−bench
{

n = 5;
FactorialCircuit();
return 0;

}

public static void HWEntryPoint() // Top level of hardware circuit
{

FactorialCircuit();
}

}

The method FactorialCircuit computes the factorial circuit

and works iteratively performing a multiplication in each

clock cycle until the base case is reached. The explicit use

of Kiwi.Pause() indicates a synchronization with an implicit

clock.

The main program acts like a test bench for this program.

This program can be compiled and executed and will pro-

duce the output Factorial is 120. The method HWEntryPoint

is a special method that is understood to be the hardware

entry pint and in this case it just calls the static method for

computing factorial. When this program is submitted to the

Src Addr

(6 bytes)

Dest Addr

(6 bytes)

LLC Hdr

(4 bytes)

Length

(4 bytes)

Seq No

(4 bytes)
Application-specific data ...

Figure 3. Ethernet MAC frame format as typically used in our experiments.

Kiwi system it synthesizes the FactorialCircuit method into

a Verilog module which can then be implemented for our

ML605 FPGA boards using the Xilinx ISE tools (or other

vendor tools).

III. EXP. 1: SINGLE APPLICATION PER FPGA

In order to change the protocol stack implementation be-

tween workstation and FPGA execution platforms, we place

the different layers in different DLLs and have multiple alter-

natives at various layer. A client in one layer makes method

calls on the service access points provided by the lower

layer. We then choose a particular combination when tar-

geting a particular platform. Linking of separately-compiled

sections on a workstation is performed by the .NET/Mono

class path loader. Linking of separately-compiled sections on

the FPGA is performed by joining hardware nets with wires.

An alternative approach would have been to exploit an ex-

isting inter-process communication framework like Windows

Communication Foundation (WCF) however we choose our

lighter-weight variant to avoid taking a dependency on too

much .NET infrastructure and to make our system work just

as effectively on Linux as on Windows.

We first describe an experiment where a single application

server (an Adobe Photoshop plug-in) was developed in

C# and run both on the same workstation under .NET as

the Photoshop application and on locally-attached FPGA

cards. In section IV we describe a second experiment where

multiple application servers can be placed on each FPGA at

once.

Figure 3 shows the typical experimental frame format we

used in these experiments. The format is defined entirely

by the C# code and is conveyed through the workstation

operating system using the raw-frames API or compiled into

gates by KiwiC for the FPGA platforms. Rather than using

UDP or TCP we used a strictly word-oriented format that

was easier to develop. In terms of address resolution, all of

the current implementations send replies to the last MAC

address that sent a message, which works fine when each

server is peered with just one client workstation.

In Experiment 1, three DLL files were compiled by KiwiC

to Verilog RTL and combined with ‘toplevel.v’ to complete

the FPGA circuit. They were KiwiNetworkDevice.dll, Re-

liability.dll and PhotoFilter.dll (containing PhotoFilterChan-

nel and ThreeChannels). Hence one application server was

hosted on one FPGA. Two KiwiC compilations were in fact

used, since the application and its reliability/presentation

layer were compiled together rather than as separate RTL

sections. This was done for convenience in this instance,



but generally compiling DLL’s together results in inter-

procedural optimisations arising from a combined datapath

and sequencer. These optimisations are not generally dis-

covered by the state machine optimisers in the FPGA tools

when operating on individual controllers in isolation. The

reliability layer places a sequence number and length field

in each frame of the packet stream for each application.

The current implementation only checks and logs errors in

a global variable, rather than requesting a retransmit.

The Virtex 6 series of FPGAs contain a Tri-Mode Ethernet

MAC block which is easy to connect to at the net-level using

the LocalLink protocol.

Figure 4 illustrates the transmit-side, low-level LocalLink

code that deals with the net-level interface to the Ethernet

MAC. This DLL is only used on the FPGA platform and,

for brevity, we do not list the workstation alternative. Since

the net-level protocol is defined, as is common, in terms

of clock-cycles, this is compiled in Kiwi ‘hard pause mode’

where clock cycles must not be introduced by KiwiC except

at the manually-inserted Pause() calls. This allows us to

specify cycle accurate behaviour. It can be seen that the

transmitter uses source and destination addresses formed by

swapping over those from the last-received frame.

Customers send payload data to the KiwiNetworkDevice

static class instance by calling its static method WriteInt

defined in Figure 5. This is marked with a Kiwi attribute

Remote so that a net-level interface to it is generated

when the C# compiled DLL is further compiled by Ki-

wiC, to give output as partially shown in Figure 6. The

‘Remote’ mechanism enables this procedure to be called

by a separately-compiled section of hardware. Buses of

the appropriate width are constructed for each argument

(and would be for the return value if it were not void

in this example) along with req and ack signals that

execute a four-phase handshake. In general, any number of

methods can be attributed in this way, each resulting in an

additional set of connections to the RTL component. For the

KiwiNetworkDevice module, four methods were marked in

total, the other three being

public static void DiscardRxFrame();
public static uint RxBytes();
public static uint ReadInt();

For all application modules, we shall use a standard net-

level interface to ultimately support abutment-based wiring,

but the system classes do not require this as they are

specifically instantiated in ‘toplevel.v’.

The client thread for these procedures can be compiled

in the normal ‘soft pause mode’ but some manual Pause

calls are still required (as shown in figure 5). These were

inserted because part of the KiwiC compiler that overcomes

structural hazards in the generated code is currently broken

and the resulting circuit would otherwise attempt four writes

on the byte-wide memory in one clock cycle. An alternative

solution would have been to write the C# code with a 32-

// A static class since only one LAN port in use.
public static class KiwiNetworkDevice
{
static byte[] rx buffer = new byte[2048];
static byte[] tx buffer = new byte[2048];

static int tx PktLength, tx PktPtr;

//Use Kiwi attributes to define the net−level connections
[Kiwi.OutputWordPort(”tx data”)]
static byte tx data; // Write data to be sent to device
[Kiwi.OutputBitPort(”tx sof n”)]
static bool tx sof n = !false; // Start of frame indicator
[Kiwi.OutputBitPort(”tx eof n”)]
static bool tx eof n = !false; // End of frame indicator
[Kiwi.OutputBitPort(”tx src rdy n”)]
static bool tx src rdy n = !false; // Source ready indicator
[Kiwi.InputBitPort(”tx dst rdy n”)]
static bool tx dst rdy n; // Destination ready indicator

static void SendPacket()
{ Kiwi.PauseControl oldmode = Kiwi.PauseMdSet(Kiwi.hardPause);

tx src rdy n = !true; // We are not at the start of a frame
// Now send an Ethernet packet back to where it came from
// Swap source and destination MAC addresses
int j = 0;
tx sof n = !false;
for (j = 6; j < 12; j++) // Emit src address from companion
{

tx data = rx buffer[j];
tx sof n = j != 6;
Kiwi.Pause();

}
for (j = 0; j < 6; j++) // Now emit src address as dest
{

tx data = rx buffer[j];
Kiwi.Pause();

}

// Transmit the remanining bytes from transmit buffer
j = 12;
while (j < tx PktLength)
{

tx data = tx buffer[j];
if (j == tx PktLength − 1)

tx eof n = !true;

j++;
Kiwi.Pause();

}
tx src rdy n = !false;
tx eof n = !false;
Kiwi.Pause();
// End of frame, ready for next frame
Kiwi.PauseMdSet(oldmode);

}

Figure 4. Ethernet MAC interface module, transmit LocalLink code,
compiled in ‘hard pause’ mode where clock cycles may only be inserted
in correspondance with Pause calls in the source code.



[Kiwi.Remote(”EtherentLocalLink”, ”parallel:four−phase”)]
public static void WriteInt(uint d, KiwiFarmingInterface.Framing kfp)
{

if (kfp == KiwiFarmingInterface.Framing.Start) tx PktPtr = 0;
// Three pauses calls currently: avoids struct haz on mem write
tx buffer[tx PktPtr ++] = (byte)(d >> 24); Kiwi.Pause();
tx buffer[tx PktPtr ++] = (byte)(d >> 16); Kiwi.Pause();
tx buffer[tx PktPtr ++] = (byte)(d >> 8); Kiwi.Pause();
tx buffer[tx PktPtr ++] = (byte)(d >> 0);
if (kfp == KiwiFarmingInterface.Framing.End)
{

tx PktLength = tx PktPtr;
SendPacket();

}
}

Figure 5. Ethernet MAC interface module, transmit-side client entry point.

module EtherLink(reset, clk, tx dst rdy n, ...
input reset;
input clk;
input tx dst rdy n;
output tx src rdy n;
output tx eof n;
output tx sof n;
output [7:0] tx data;
output KiwiNetworkDevice WriteInt ack;
input KiwiNetworkDevice WriteInt req;
input [31:0] KiwiNetworkDevice WriteInt d;
input [31:0] KiwiNetworkDevice WriteInt kfp;
output [31:0] KiwiNetworkDevice ReadInt return;
...

Figure 6. Partial signature of EtherLink (Kiwi-MAC interface module) of
compilation unit (Verilog RTL listing).

bit wide memory and to serialise and deserialised on the

LocalLink side of the buffers.

For brevity, the mutex to stop concurrent operation of the

WriteInt and SendPacket methods on the same buffer

is deleted from the listing, but it follows the same pattern

as we shall illustrate for the Dispatcher component.

Figure 7 shows the example application for Experi-

ment 1—a one dimensional convolver. This follows the de-

sign pattern common to all our applications, of using its own

thread (started by a separate code, not shown, when running

on the local workstation and started by the KiwiC compiler

in response to the Hardware() attribute when running on

the FPGA). It requests work by making a blocking read

into ArrayRead. Note the call to Kiwi.Pause() in

the inner loop, which is a suggestion (in ‘soft pause mode’)

to KiwiC to consume one clock cycle per iteration. Also,

note that we have simplified the code in the listing to do

each channel in turn, whereas separate threads for each

channel within the application are used in the fuller version.

Another possibility, that is easy to code, is to just handle

one channel on each FPGA and to use three FPGA cards in

parallel to serve the workstation. A third possibility is that

three instances of this complete, single-threaded application

are run in parallel on one FPGA using the mechanisms of

class PhotoFilterChannel
{ int[] coefs = new int [9] {1, −2, 3, −4, 5, −4, 3, −2, 1 };

int[] data = new int [9];
int ptr, max;
public int convolve(int din)
{

ptr = (ptr == coefs.Length−1) ? 0: ptr+1;
if (ptr > max) max = ptr;
data[ptr] = din;
int sum = 0;
for (int xx =0; xx<coefs.Length; xx++)
{

int yy = (ptr−xx + coefs.Length) % coefs.Length;
if (xx <= max && yy<=max) sum += data[xx] ∗ coefs[yy];
Kiwi.Pause();

}
return sum;

}
public void Reset()
{

ptr = 0; max = 0;
}

}

public static class ThreeChannels // Top−level for the application.
{ [Kiwi.OutputBitPort()]

// We connect an oscilloscope to these for observation
static bool rx led, tx led, work led, poll led;

static PhotoFilterChannel yy ch = new PhotoFilterChannel();
static PhotoFilterChannel uu ch = new PhotoFilterChannel();
static PhotoFilterChannel vv ch = new PhotoFilterChannel();

static ReliableLayer FarmPort = new ReliableLayer();
static int[] workbuf = new int[512];

[Kiwi.Hardware()]
public static void Main()
{ int k = 0;

yy ch.Reset();
work led = false; poll led = true; tx led = false;
while(true)
{ rx led = true;

uint len = FarmPort.ArrayRead(workbuf);
rx led = false;
yy ch.Reset(); vv ch.Reset(); uu ch.Reset();

work led = true;
for (int i=0; i<len; i+=3) // Work loop
{ workbuf[i+0] = yy ch.convolve((int)workbuf[i+0]);

workbuf[i+1] = uu ch.convolve((int)workbuf[i+1]);
workbuf[i+2] = vv ch.convolve((int)workbuf[i+2]);
poll led = !poll led;

}
work led = false; tx led = true; // Send result data out.
FarmPort.ArrayWrite(workbuf, len);
tx led = false;

}
}

}

Figure 7. Photoshop Plugin Application (version with three filter channels
as one application, simplified single-threaded version).



public void ArrayWrite(uint [] buffer, uint len)
{ // Add protocol id + flags

KiwiNetworkDevice.WriteInt(0x45C03200, Framing.Start);
KiwiNetworkDevice.WriteInt(tx seqno, Framing.Mid);
KiwiNetworkDevice.WriteInt(len, Framing.Mid);
for (uint pp = 0; pp<len; pp++)

KiwiNetworkDevice.WriteInt(buffer[pp], Framing.Mid);
KiwiNetworkDevice.WriteInt(0x45C03201, Framing.End);
// Protocol id + flags with end of message flag.
tx seqno = tx seqno + 1;

}

Figure 8. The ArrayWrite method from the reliability/presentation
layer code when directly operating on the KiwiNetworkDevice service-
access point as in Experiment 1. (In Experiment 2 it is modified to invoke
the dispatcher SAP).

Experiment 2 to dispatch work in parallel to each instance.

The methods ArrayRead and ArrayWrite are pro-

vided by a reliability and presentation layer, whose simpli-

fied code is shown in Figure 8.

Compared to following a heavy-weight approach like

adopting custom attributes for implementing WCF for cross-

process communication or the use of MPI or direct use of

sockets we believe the level of abstraction provided by the

highly specialized hardware and software custom attributes

strikes a good balance between low-level detail and high-

level intent.

IV. EXP. 2: DYNAMIC DISPATCH

There are several potential levels where dynamic dispatch

can be applied:

1) dynamic sharing on a per-FPGA basis (with one

customer for one pre-loaded FPGA at any one time),

2) implementing more than one function on the FPGA,

if the functions are small, and expecting to get better

load-balancing from the improved sharing potential,

3) dynamic loading of FPGA with combinations of ap-

plications that need to be run.

Numbers 1 and 2 are addressed in this work whereas 3 is for

further study. No 1 is provided by the packet routing within

the Ethernet LAN.

For Experiment 2 we specifically chose option no 2 from

the above list. We placed four application servers and a

Dispatcher and a KiwiNetworkDevice on one FPGA. Each

application had its own instance of the reliability layer.

The applications were three instances of the one-channel

PhotoFilter and one MonitorApp. The latter is a fairly simple

application server that provides status and error reports by

returning the value of public static variables in other classes

(e.g. total number of packets processed and error counts).

Each application connects to a port on the dispatcher and

the first word of the Ethernet payload is used for selecting

the application number. This is a crude approximation of

the port-demultiplexing implemented by TCP and UDP. In

class Dispatcher
{ static Mutex tx mutex;

// Transmit interface − this is a simple exclusion zone:
// only one application can send at a time
public static void ClientWriteInt(uint data,

KiwiFarmingInterface.Framing kf, uint port)
{

if (kf == KiwiFarmingInterface.Framing.Start)
{ // If start of write − need to write LLC header

Monitor.Wait(tx mutex); // Wait here until we gain the lock.
KiwiNetworkDevice.WriteInt(llc header const<<16 | port,

KiwiFarmingInterface.Framing.Start);
KiwiNetworkDevice.WriteInt(data,

KiwiFarmingInterface.Framing.Mid);
}
else if (kf==KiwiFarmingInterface.Framing.End)
{ // If end of write − need to release lock

KiwiNetworkDevice.WriteInt(data, kf);
Monitor.PulseAll(tx mutex);

}
else KiwiNetworkDevice.WriteInt(data, kf);

}

Figure 9. LLC Dispatcher module, transmit-side multiplexor with exclu-
sion Mutex.

future we may use 802 LLC and other standard protocols at

this layer.

Concurrent tasks can easily be run on a given FPGA,

provided it has sufficient area, without crosstalk except at

the network interface and DRAM ports. The examples in this

paper did not use off-chip DRAM. Since each application

has its own hardware thread or threads, and makes a blocking

call into the dispatcher to receive its next work item, the

concurrency relies on thread-safe re-entrant hardware being

generated. Each application server may have any number

of internal threads in general, but in this experiment we

replaced the triple-threaded, three-channel PhotoFilter with

three single-threaded, single-channel instances.

The LLC dispatcher module implements a logical-link

layer packet demultiplexing using a table of registered

hardware entities. Figure 9 shows the ClientWriteInt

method which is re-entrant, being potentially called simul-

taneously by several loaded applications. Each client must

gain exclusive access to the transmit method of the Net-

workDevice module so a mutex is used directly. We assume

clients obey a simple protocol based on the Framing

enumeration type, where their first call sets this to Start,

requiring the mutex to be claimed and also causing the LLC

header to be inserted, and where their last call sets this to

End causing release of the mutex and also signaling to the

NetworkDevice that the packet can be sent.

The received packet handling is slightly more complex:

each client application initially performs a ‘listen’ by send-

ing a thread into the ClientReadInt(port) blocking

method and supplying their port number as an argument.

Each client has its own condition variable, rx_ready, in

the Farmable record, that it blocks on. The Dispatcher



...
static int PortsInUse = 0;

public class Farmable
{

public volatile bool rx ready;
public void IndicateRX() { rx ready = true; }
...

}
static Farmable [] PortBindings = new Farmable [Ports];

public static int Register(string id)
{ // NB: entirely executed at compile time under KiwiC.

PortBindings[PortsInUse] = new Farmable(id);
return PortsInUse++;

}

static void ReceiverThread()
{

// LLC−like header scan
rxpktLen = KiwiNetworkDevice.ReadInt();
WriteLine(”Dispatcher − pkt len word {0}”, rxpktLen);
uint llc header;
do llc header = KiwiNetworkDevice.ReadInt();
// scan for LLC protocol id and flags.
while (llc header>>16 != llc header const)
uint port = (uint)(llc header & 0xFF);
if (port >= PortsInUse)
{ WriteLine(”Discarded frame ({1} words)”

” rx’d on port {0}”, port, rxpktLen, PortsInUse);
KiwiNetworkDevice.DiscardRxFrame();

}
else
{ WriteLine(”Forwarding frame {1}”

” rx’d on port {0}.”, port, rxpktLen);
lock (rx mutex)
{ PortBindings[port].rx ready = true;

// Set a ready flag and wait for client application
while (PortBindings[port].rx ready)

{ Kiwi.NoUnroll(); Monitor.Wait(rx mutex); }
Monitor.PulseAll(rx mutex);

}
}

}

// Receive client interface service access point
public static uint ClientReadInt(int port)
{ // This entry point blocks its thread until the dispatcher

// thread receives a frame for this client.
WriteLine(”Listen from client blocked waiting.”);
lock (rx mutex) // block client thread spinning here
{ while (!PortBindings[port].rx ready)

{ Kiwi.NoUnroll(); Monitor.Wait(rx mutex); }
}
uint rv = KiwiNetworkDevice.ReadInt();
if (−−rxpktLen == 0)

lock (rx mutex)
{

PortBindings[port].rx ready = false;
Monitor.PulseAll(rx mutex);

}
return rv;

}
...

Figure 10. LLC Dispatcher module, listing continued, receive-side
demultiplexor with condition variables and Mutex. Note that calls to ‘new’
are fully elaborated at compile time: a KiwiC rule is that the heap must have
the same structure at each iteration of a non-unwound loop. (WriteLine
calls are converted to Verilog $display statements but discarded at FPGA
synthesis.)

receiver has its own thread, started by the initialisation code

at the bottom of the Dispatcher class (not shown) that

itself enters the NetworkDevice blocking receive method

until the first packet is received. When this returns, it sets

the condition variable of the desired recipient and spins until

it is cleared again. The recipient, meanwhile, will copy the

LLC payload from the NetworkDevice before clearing the

flag.

The KiwiC compiler cannot handle separate compilation

when threads in different compilations make operations on a

common mutex. This would require synthesis of a hardware

arbiter with an undefined number of input request signals.

On the other hand, as mentioned in the introduction, we

eventually aim to overcome FPGA place and route delays,

and we certainly want to dynamically alter the mix of

applications instantiated on a given FPGA. Therefore we

cannot, in general, compile all of the applications together

with the Dispatcher (although this is supported by KiwiC

and is as illustrated by the reported metrics in §V). Our

approach is to place the central arbiter mechanisms in a

.DLL as is usual to make the program run on mono/.net,

but also to write a number, n, of stub clients of these

mechanisms as separate DLL’s only used for hardware

compilation. These stubs are combined with the main arbiter

DLL in a single KiwiC compilation that results in an n-way

arbiter being generated with separate net-level ports being

exposed, one for each customer application. The same stub

is used when compiling its related application under KiwiC

to generate the calling-side interface nets. When run as a

software program, the stubs have no special significance:

instead they provide a slight inefficiency, introducing an

extra layer of procedure calling between the client and the

dispatcher. This inefficiency could be removed by a C#

compiler that in-lines leaf calls to static methods compiled

at the same time, or alternatively, sometimes it could be

useful to put some minimal functionality in these stubs,

such as presentation-layer format conversion. An example

stub is shown in Figure 11 and the overall compilation

flow is shown in Figure 12. The semi-manually created

top-level.v and other KiwiC-generated RTL files, such

as EtherLink.v, must also be included. Currently we

used a single run of the Xilinx tools (and/or Synplify) to

generate each bitstream but in future work we will combine

separate placements.

V. RESULTS

Table I indicates the size of the RTL files generated by the

KiwiC compiler for each compiled section in terms of the

number of lines of Verilog, flip-flops and memory location

(RAM array) bits. Because the structural-hazard code in the

KiwiC was not working, all of the RAM is distributed RAM

instead of BlockRAM and the clock frequency was lower

than expected.



public class App14Stub
{

const int MyPortNo = 14;
[Kiwi.Remote(”StubPorts”, ”parallel:four−phase”)]
public static void WriteInt(uint d, KiwiFarmingInterface.Framing kfp)
{

Dispatcher.ClientWriteInt(d, kfp, MyPortNo);
}

[Kiwi.Remote(”StubPorts”, ”parallel:four−phase”)]
public static uint ReadInt()
{

return Dispatcher.ClientReadInt(MyPortNo);
}

}

Figure 11. An example application stub.

Figure 12. Exp. 2 Tool Flow - Each application is compiled separately
with its presentation/reliability layer and stub and then each stub is also
compiled with the central dispatcher.

Module Used RTL Scalar Total
in Exp lines bits bits

EtherLink.v 1+2 502 320 33121
3ch PhotoFilter.v 1 1127 128 16800

toplevel1.v 1 88 0 0
Dispatcher.v 2 2059 256 2720
MonitorApp.v 2 452 32 64

1ch PhotoFilter.v 2 1127 128 5712
toplevel2.v 2 208 0 0

Table I
CODE SIZE OF EACH SEPARATE-COMPILATION ENTITY (EXCLUDING

ETHERNET MAC). THE RELIABILITY LAYER DLL WAS COMBINED

UNDER KIWIC WITH EACH APPLICATION SO DOES NOT APPEAR

SEPARATELY.

Test Place+Route LUTS DSP Utilisation Clock
CPU time blks percent freq

Ex. 1 21 mins 45025 3 7.4 31 Mhz
Ex. 2 50 mins 89046 5 14 20 MHz

Table II
FPGA XC6VLX240 P&R LUT UTILISATION (EXCLUDING ETHERNET

MAC), PLACE+ROUTE TIME (SYNPLIFY PREMIER, 5332 BOGOMIPS

X86 64) AND MAXIMUM CLOCK FREQUENCY.

The ML605 card uses an XC6VLX240 device. Table II

reports the utilisation and clock frequencies together with

the place and route time. The execution time for the KiwiC

and C# compilers was at least two orders of magnitude lower

than the FPGA tool time.

VI. RELATED WORK

Automatic synthesis of channel handshaking signals be-

tween compilation units is not new in hardware synthesis.

Like KiwiC, compilers for the Handle-C [6] and Bluespec

[7] languages generate a handshake signal in each direction

between components with these nets commonly disappearing

when components are part of the same compilation run

or when attributed as ‘always-ready’ or similar. Cardoso

[5] describes a C compiler for a reconfigurable execution

platform that has course grain for rapid place and route,

similar to [4]. Swapping modules at run-time on a Virtex-

4 FPGA was presented in [8] and FPGA companies are

increasing support for dynamic reconfiguration, but there are

many restrictions remaining, such as a tile bitstream being

tied to a fixed absolute X-Y co-ordinate within the device

with no API for moving it. An alternative approach would

be to follow the example of Wires on Demand [9] which

performs light-weight run-time placement and routing. We

avoid this approach because run-time placement and routing

is still a very fragile technology and we target scenarios

where off-line construction of a programming bit-stream is

acceptable.

The closest related work to the Kiwi project is the Liquid

Metal project at IBM and the associated Lime language [10].

The Liquid Metal project takes the decision to design a new

hardware description language by adding concurrency and

hardware constructs to a subset of Java. This permits much

more direct descriptions of system behaviour although it also

requires the development of a special compiler and standard

Java program analysis tools will no longer function on the

extended subset. In comparison, we suffer the constraints of

adding extra hardware and parallel behaviour information

through custom attributes but in return we do not need to

develop special compilers and we benefit from existing static

analysis tools e.g. for deadlock detection. Furthermore, since

our approach takes as input .NET bytecode we are not tied

to a specific language and the Kiwi system can process

descriptions written in other languages like F#, VisualBASIC

and Ada or any other language with a compiler that targets

.NET bytecode.

VII. CONCLUSIONS

We have developed a preliminary experimental infrastruc-

ture where

1) DLLs generated from C# and other .NET languages

can be developed and debugged using standard soft-

ware tools on an unmodified workstation,



2) users are encouraged to use multi-threaded C# to

express parallelism that can be exploited during ex-

ecution in a distributed system,

3) a run-time infrastructure (also in C#) that provides a

‘Farmable’ interface, where application servers written

to that interface can be placed on the local workstation,

remote workstations or in FPGA,

4) a hardware infrastructure where separately-compiled

DLLs can be allocated to FPGA platforms using

Makefiles and the like,

5) a vision for assembling the pre-compiled application

servers on to the FPGA after the time-consuming place

and route step.

We are advocating the use of a hardware, net-level API

for binding components that has a software dual in the .NET

system. The interface between the application and its server

is defined by our Farmable abstract interface which translates

into a concrete electronic API consisting of those nets. The

marshalling code that packs and unpacks the frame is part of

the application code and so the interface remains the same

even if the arguments to the user’s distributed functions vary.

At a future stage, we would like to move to some auto-

mated farming scenario, perhaps based on load balancing.

We can envision dynamically loading FPGAs with pre-

compiled bit streams and dynamically generating the bit

streams in the way we currently concatenate the RTL files

from separate KiwiC compilations.

Our methodology also supports access to the FPGA

DRAM, but again with static allocation of compiled DLLs

to regions of address space. Automating the memory map

allocation (as in LEAP [11]) and providing run-time alloca-

tion/sharing is future work.

It may be argued that automatically generating n-way ar-

biters on demand inside the KiwiC compiler would be better

than writing a specific Dispatcher C# class and compiling

it with the required number of customers that register. The

contrary argument is that the Dispatcher class needs writing

only once, but being in C# it is easy to modfiy if required and

compiling it with the required number of customers adds no

complexity beyond what is already needed to automate the

top-level assembly and wiring configuration for the FPGA

(as done with Makefiles, Perl/Python etc.).
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