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Zusammenfassung

Eingebette Systeme reichen von sehr einfachen Systemen zu sehr komplexen Steuerungen, und
haben meist extreme Echtzeit- und Planungsanforderungen. Viele Eingebettete Systeme sind
reaktive Systeme, die auf Ereignisse der Umgebung reagieren müssen und dabei bestimmte
zeitliche Vorgaben erfüllen müssen. Die Ausführung solcher Systeme wird normalerweise in
Reaktionsschritte unterteilt, wobei in jedem Schritt das System seine Eingaben liest und auf
diese mit den entsprechenden Ausgaben reagiert.

Das synchrone Berechnungsmodel (MoC) ist geeignet solche Systeme zu modellieren,
da es dem Paradigma der perfekten Synchronie folgt, welches die Natur der reaktiven
Systeme wiederspiegelt. Ein weiterer Vorteil ist das Vorhandensein von formalen Verifika-
tionsmethoden, wie Modelprüfung. Die Anwendbarkeit dieser Methoden basiert auf der
deterministischen Ausführung solcher Systeme, aufgrund der formalen Semantik. Durch die
steigende Komplexität von Eingebetteten Systemen muss der natürliche Nachteil der Mod-
ellprüfung, die Zustandsraumexplosion, ausgeglichen werden um akzeptable Laufzeiten des
Verifikationsverfahren sicher zu stellen. Dafür werden meist bestehende Techniken wiederver-
wendet. Vor allem Methoden, die den Zustandsraum durch z.B. Zerlegung verkleinern und
damit dem Nachteil der Modellprüfung entgegenwirken sind wichtig. Die Definition solcher
Dekompositionstechniken ist für synchrone Sprachen, durch deren Parallelität nicht einfach.

Inspiriert durch die Erfolge im Gebiet der Desynchronisation von synchronen Systemen,
welche diese in asynchrone Systeme transformieren, wird diese Arbeit die Möglichkeit unter-
suchen, ob ähnliche Techniken auch für die Verifikation verwendet werden können. Dabei
werden Techniken betrachtet, die ein anderes Berechnungsmodell zu Grunde legen und eine
mögliche Verwendung für die Verifikation synchroner Systeme untersucht. Dabei wird der
Schwerpunkt auf die interaktive Verifikation synchroner Systeme, basierend auf dem Hoare-
Kalkül, einer grundlegenden Verifikationstechnik sequentieller Programme gelegt. Durch die
verschiedenen zugrundeliegenden Berechnungsmodelle muss eine vielzahl an Problemen gelöst
werden. Besonders problematisch ist die Möglichkeit, dass verschiedene Programmteile zum
gleichen Zeitpunkt aktiv sein und sich gegenseitig beeinflussen können. Im Gegensatz zum
sequentiellen Fall, bei dem man einzelne Anweisungen betrachtet, bedeutet eine Dekomposi-
tion synchroner Programme, dass man eine symbolische Ausführung von mehreren parallelen
Programteilen betrachten muss. Zum Lösen dieses Problems werden verschiedene Ansätze
gezeigt.

Außerdem wird gezeigt wie ein synchrones System durch andere Berechnungsmodelle
zum Zwecke der Verifikation dargestellt werden kann und welchen Einfluß dies auf dessen
Verifikation hat.

Die Realisierbarkeit der vorgestellten Ansätze wird durch die Integration mit den vorhan-
denen Modellprüfungsmethoden durch die Implementierung eines Prototyps gezeigt.





Abstract

Embedded systems, ranging from very simple systems up to complex controllers, may
nowadays have quite challenging real-time requirements. Many embedded systems are reactive
systems that have to respond to environmental events and have to guarantee certain real-time
constrain. Their execution is usually divided into reaction steps, where in each step, the
system reads inputs from the environment and reacts to these by computing corresponding
outputs.

The synchronous Model of Computation (MoC) has proven to be well-suited for the
development of reactive real-time embedded systems whose paradigm directly reflects the
reactive nature of the systems it describes. Another advantage is the availability of formal
verification by model checking as a result of the deterministic execution based on a formal
semantics. Nevertheless, the increasing complexity of embedded systems requires to compen-
sate the natural disadvantages of model checking that suffers from the well-known state-space
explosion problem. It is therefore natural to try to integrate other verification methods with
the already established techniques. Hence, improvements to encounter these problems are
required, e.g., appropriate decomposition techniques, which encounter the disadvantages
of the model checking approach naturally. But defining decomposition techniques for syn-
chronous language is a difficult task, as a result of the inherent parallelism emerging from
the synchronous broadcast communication.

Inspired by the progress in the field of desynchronization of synchronous systems by
representing them in other MoCs, this work will investigate the possibility of adapting and use
methods and tools designed for other MoC for the verification of systems represented in the
synchronous MoC. Therefore, this work introduces the interactive verification of synchronous
systems based on the basic foundation of formal verification for sequential programs – the
Hoare calculus. Due to the different models of computation several problems have to be
solved. In particular due to the large amount of concurrency, several parts of the program
are active at the same point of time. In contrast to sequential programs, a decomposition
in the Hoare-logic style that is in some sense a symbolic execution from one control flow
location to another one requires the consideration of several flows here. Therefore, different
approaches for the interactive verification of synchronous systems are presented.

Additionally, the representation of synchronous systems by other MoCs and the influence
of the representation on the verification task by differently embedding synchronous system
in a single verification tool are elaborated.

The feasibility is shown by integration of the presented approach with the established
model checking methods by implementing the AIFProver on top of the Averest system.
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Chapter 1

Introduction

1.1 Motivation

Embedded systems, ranging from very simple systems up to complex controllers, may
nowadays have quite challenging real-time requirements. Many embedded systems are reactive
systems [HaPn85] that have to respond to environmental events and have to guarantee certain
real-time constrain. Their execution is usually divided into reaction steps, where in each step,
the system reads inputs from the environment and reacts to these by computing corresponding
outputs. The synchronous Model of Computation (MoC) [Halb93, BCEH03] has proven to be
well-suited for the development of these systems [HaPn85] whose paradigm directly reflects
the reactive nature of the systems it describes. The predictable and deterministic nature
of this MoC allows one to determine the worst case execution time (WCET), which is an
important property for these systems. Languages like Esterel [BeGo92] and Quartz [Schn09]
that are control-flow based languages which implement the synchronous MoC provide many
convenient statements to control the execution. The explicit notion of (logical) time also
requires different kinds of assignments to enable communication within a step (immediate
assignments) and between successive steps (delayed assignments). Additionally, they support
the development of embedded systems consisting of application-specific hardware and software
since compilers can generate hardware as well as software from the same synchronous program.
For safety-critical applications, an important advantage of synchronous programs is that
formal verification can be directly applied due to the availability of precisely defined formal
semantics for all synchronous programming languages. This allows one to translate programs
into e.g. state transition systems and to make use of model checking [GrVe08, ClGP99] to
verify the system’s behavior. Such procedures are even integrated within the compilers, e.g.
to check for instantaneous loops, to guarantee the absence of write conflicts and runtime
errors, to analyze causality problems, and to solve many other problems that might appear
during compilation.

However, it is well-known that model checking suffers from its enormous complexity
meaning that only systems of a moderate size can be verified this way [BCMD92]. It is
therefore natural to try to integrate other verification methods with the already established
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techniques1. Hence, improvements to encounter these problems are required, e.g., appropriate
decomposition techniques, which encounter the disadvantages of the model checking approach
naturally. But defining decomposition techniques for synchronous languages is a difficult task
due to the inherent parallelism emerging from the broadcast communication.

Inspired by desynchronization techniques [CaMS01, Gira05, CaCo09, PoCB04] that allow
to run a synchronous program separated in multiple threads instead of a single one to be
executed on multi-core machines or distributed systems by a MoC transformation, this
work will use similar transformations for verification. The integration of existing verification
techniques developed for other MoCs might be beneficial for the synchronous MoC. Especially
interactive verification methods based on theorem provers are an interesting alternative for
verification of large systems at different abstraction levels. Interactive verification has many
advantages: It allows one to decompose a proof task to several simpler tasks, to abstract from
the size of data structures as well as the data types itself, and to exploit the user’s knowledge
of the program to e.g. encounter the state-space-explosion problem of the established model
checking methods for synchronous languages. However, state-of-the-art theorem provers
were designed for general proof problems, so that their use for the interactive verification of
synchronous/reactive systems is often too inconvenient.

In particular, the Hoare calculus [Floy67, Hoar69, Grie81, Apt81, Cous90] a basic founda-
tion for the formal verification of sequential programs, has not been considered for synchronous
systems before. This is surprising since it was adapted to different concurrent languages
[OwGr76a, OwGr76b, ApOl97, RBHH01] and even though the operational semantics of
synchronous systems seems to be compatible with the Hoare rules that define the meaning of
(sequential) programs. For example, the semantics of the imperative synchronous language
Quartz is defined by Plotkin’s Structural Operational Semantics (SOS) rules [Plot81, Schn09].
Hence, to establish a Hoare calculus for Quartz, it seems that these two sets of rules only
need to be combined.

Another advantage of changing the MoC is that it allows one to use many successful
rewrite-based (verification) tools, theorem provers and languages, like SAL [MORR04], Rodin
[Abri10], BlueSpec [Arvi03], CAOS [SiSh07], Murphi [Dill96], UNITY [ChMi89], VAMPIRE
[KoVo13], Giotto[HeHK01] and many others that are based on concurrent/asynchronous
MoCs similar to Dijkstra’s guarded commands [Dijk75] and currently not usable to analyze
systems of the synchronous MoC.

In general, guarded actions are well suited to describe systems with different models
of computations (MoCs). Different MoCs are thereby obtained by different ways to select
actions for execution: In particular, in synchronous models, one executes all enabled actions
synchronously in the same environment, in interleaved models, only a single (enabled) guarded
action is chosen (in a non-deterministic way) for execution, and in asynchronous models,
some non-empty subset of the enabled actions is (non-deterministically) executed. It seems
to be impossible to use tools for one of these MoCs for guarded actions that are based on
another MoC. This holds especially for the synchronous MoC, because the execution of all
enabled guarded actions in a step follows implicitly a causal ordering to define a deterministic

1 It is interesting to note that some recent approaches to software verification do the converse,
i.e. try to employ model checking for the verification of sequential software programs [Gode05,
CCGO04, BaPR02].
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result, hence confluence must be ensured to guarantee deterministic results for the interleaved
execution.

In summary it can be said, that the verification of synchronous systems might benefit
from tools and verification techniques for other MoCs.

1.2 Content of the Thesis

This thesis shows that the synchronous MoC does not prohibit the application or adaption
of verification techniques and tools developed for other MoCs, and furthermore, that even
the combination of those methods with model checking, which is the dominant verification
technique for synchronous languages, is possible. The enormous number of existing MoCs
and verification techniques therefore makes it impossible to discuss them all, hence only some
successful approaches are chosen and the work concentrates on them.

As a result of the already mentioned arguments, this work will present a feasibility
study to enable interactive verification for synchronous languages. The main goal is the
evaluation of possible ways to interactively verify synchronous languages by adapting existing
techniques for other MoCs (e.g. sequential languages) such that the existing model checking
methods for synchronous languages are supported during the verification task by e.g. suitable
decomposition rules. Therefore, the following problems have to be solved:

• Evaluation of methods for the interactive decomposition of synchronous languages, e.g.
Hoare-calculus [Hoar69], temporal logic decomposition methods, e.g. compositional model
checking [McQS00, BeCC98] and de Roever’s concurrency verification [RBHH01], and
module checking coined by Kupferman and Vardi [KuVW01].

• Enabling the re-usability of existing decision procedures (developed for other MoCs) for
synchronous languages

This work will start with enabling the use of the Hoare calculus for Quartz. Since Quartz
programs can be translated to sequential programs by the Averest system, it is in principle
possible to apply the classic Hoare calculus to the result of these translations. However,
the translations destroy most of the original program’s syntax: Usually, compilers generate
sequential programs that consist of only a single loop whose body contains the code for all
macro steps [PoEB07]. Thus, most of the syntax of the synchronous program is lost, and
since the Hoare calculus requires additional information from the user and is directed by the
syntax, it does not really make sense to apply the Hoare calculus after such a translation.
Another way to make use of this calculus is the definition of rules for the additional used
synchronous statements based on the available SOS rules. This thesis sketches this approach
and shows that a huge set of complicated rules are required, because besides defining the
semantics of each statement, these rules need to handle problems specific to synchronous
languages, e.g. schizophrenia, causality, as well as micro step and macro step behaviors.
Furthermore, they have to solve the issue that the compositional approach of Hoare calculus
is difficult to implement, because in a Quartz program several control flows may be active.
To circumvent most of the encountered issues, a normal form for the Quartz source code
will be defined that aggregates all behavioral changes (micro step assignments) into a single
synchronous tuple assignment (STA) such that the reasoning about the behavior is simplified
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by collecting the programs behavior at a single program part (the STA). This normal form
does not contain parallel statements, and has therefore properties similar to a sequential
program. Hence, it allows the compositional reasoning with a small set of proof rules and
can be seen as a pseudo-transformation to the sequential MoC. This way, a convenient use of
interactive verification based on an adapted Hoare calculus is possible. For this purpose a
program transformation at the source code level is required. Unfortunately, a proof will show
that it is in general impossible to define a syntax-preserving transformation without adding
additional variables. Nevertheless, two incomplete transformations covering most Quartz
programs are presented.

After this unsatisfactory result, this thesis will present another way to interactively
verify synchronous systems that is applicable to all Quartz programs. Therefore, rules
operating on synchronous guarded actions (SGAs), which are generated by compiling a Quartz
program [GeSc13a, BrSc09, Schn09], are defined. This approach has several advantages: the
transformations implemented in the compiler are reusable without additional effort, and using
guarded actions instead of the original source code allows more flexible decompositions of
proof goals: There is no need to follow the syntax of the program. Due to a back-annotation
via control-flow locations, there is still a direct relation between the source code and the
compiled guarded actions. Hence, the user works still on the readable source code, while the
rules operate on the compiled code.

Then, existing decomposition/verification techniques based on temporal logic [RBHH01,
McQS00, RBHH01, MaPn95b, MaPn92] are evaluated to combine the approach with model
checking, such that the verification task is improved by e.g. encountering the state-space-
explosion problem.

Afterwards, the approach is extended by modular verification techniques inspired by
Kupferman and Vardi’s module checking [KuVW01]. This allows one to verify specifications for
separately compiled Quartz modules [BrSc09] without knowledge about the final environment.
This way, (classes of) specifications are identified that are satisfied for a module in an arbitrary
context.

In this work, translations from the synchronous MoC to other system representations are
defined to allow the use of established tools for their formal verification also for synchronous
systems. The input of such transformations will be SGAs, since these systems are conveniently
represented by them. In particular, a translation of SGAs to interleaved guarded actions
(IGAs) is presented to make use of tools that are based on the concurrent/asynchronous
MoC for systems described by SGAs. The idea is to close the gap between SGAs and IGAs
such that tool chains based on these different models can be connected:

Quartz SGAs

IGAs Proof

Averest

SAL,
Rodin,
Murphi,
etc

?

To this end, the impact of a system representation on a verification task by embedding a
synchronous system differently in a verification tool will be investigated.
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The work is evaluated by presenting the AIFProver, a prototype implementation of the
presented approach. It integrates interactive verification techniques with model checking.

1.3 Outline

This thesis is structured as follows. Chapter 2 describes the related work for this thesis
by giving an overview of the synchronous language Quartz and the corresponding Averest
system, introducing some verification techniques and the differences to existing approaches.
In Chapter 3 the Hoare calculus is adapted to synchronous programs on source-code level
and the encountered problems are discussed. Afterwards, most of these problems are solved
by modifying the Quartz representation by defining a normal form. Chapter 4 introduces an
approach evolved from the work presented in the previous chapter by defining an interactive
verification technique on the compiled SGAs. Afterwards, Chapter 5 extends the approach by
introduction of modular verification techniques following the ideas of Kupferman and Vardi’s
module checking. Afterwards, the impact of the system representation by other MoCs is
evaluated in Chapter 6. Then, the feasibility of the presented concept is shown in Chapter 7
by describing the implementation of a interactive verification tool, called AIFProver, which is
integrated into the Averest system and approves the thesis by enabling interactive verification
for Quartz. Chapter 8 concludes with a summary of the thesis.





Chapter 2

Preliminary and Related Work

This Chapter introduces the synchronous model of computation, the imperative synchronous
language Quartz and the Averest system. Moreover, some verification methods and their
relation to this work are presented.

Reactive systems were introduced as a special class of systems that have an ongoing
interaction with their environment [HaPn85]. Their execution is usually divided into reaction
steps, where the system reads inputs from the environment and reacts by computing the
corresponding outputs. In contrast to interactive systems, the environment is allowed to
initiate the interactions at any time, so that reactive systems usually have to work under
real-time constraints. Typical examples are synchronous hardware circuits, protocols, and
embedded and cyber-physical systems.

A model of computation is essentially the definition of the execution behavior. It is used to
analyze the required computational resources or to discuss the limitations of algorithms. Some
examples are Turing machines, finite state machines, lambda calculus, and abstract rewriting
systems. In this work, we will concentrate on the classification of sequential, asynchronous
and synchronous MoCs, which basically differ in the communication between concurrent
executed parts and the execution behavior [Jant04, LeSa98].

2.1 The Synchronous Model of Computation

The sequential MoC describes systems that executes one action/statement after another
without any capability of parallel/concurrent execution. The asynchronous MoC [OwGr76a,
OwGr76b, ApOl97, RBHH01] represents systems where (independent) actions may or may
not be executed in parallel. Hence, the sequential MoC is a subset of the asynchronous MoC.

For the design of reactive systems, synchronous languages have been developed [Halb93,
BCEH03, BeGu91, HCRP91, BeCo85] whose paradigm directly reflects the reactive nature
of the systems they describe. These languages are based on perfect synchrony [Berr97a] and
divide the execution of programs into a discrete sequence of reaction steps that are also
called macro steps.

Macro steps consist of finitely many micro steps that are atomic actions of the programs.
Within each macro step, the system reads all inputs and instantaneously generates all outputs
depending on the current internal states and the read inputs. Also, the next internal state
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is computed in parallel to the current outputs. Moreover, variables change synchronously
between macro steps, i.e. variables have unique values in each macro step.

Macro steps are often viewed as logical time, which is the same in all concurrent threads.
For this reason, concurrent threads run in lockstep, which leads to a deterministic form of
concurrency. This synchronous concurrency matches with the definition of automata products
and parallel compositions of transition systems which is one reason why synchronous languages
can be conveniently used for model checking.

2.2 Synchronous Languages

Synchronous programming languages implement the synchronous model of computation. The
computation of a synchronous program is partitioned into macro steps that correspond to
interactions between the reactive system and its environment. There are imperative languages
like Esterel [BeGo92] and Quartz [Schn09] and data-flow oriented languages like Lustre
[Halb05], Signal [BBGG85] and Scade [Este04].

2.2.1 Data-flow Oriented Synchronous Languages

Data-flow oriented languages model the system’s behavior by equations for output and local
variables based on inputs and local variables. Every equation defines the value for a single
reaction step. All these languages contain operators for manipulating values in a reaction
step and operators for the communication between reaction steps.

Data-flow oriented languages offer implicit parallelism and are obviously well suited for
data-processing models.

2.2.2 Imperative Synchronous Languages

Imperative languages like Esterel [BeGo92] and Quartz [Schn09] use a special statement
called pause that separates one macro step from the next one. The control flow may rest at
some of these pause statements and will resume the execution of the micro steps from these
locations in the next macro step. The synchronous model of computation further demands
that all micro steps are executed in zero-time (i.e. within the same variable environment), and
all updates to variables are made synchronously for the current macro step. The execution
of micro steps within a macro step must therefore be ordered by their data dependencies
since it is required that all variables have a unique value per macro step. Thus, the unique
assignment to a variable must be done before the variable is read, and thus, there must be
no causality/dependency cycles at runtime, which is checked by the compiler during the
causality analyses.

The explicit notion of (logical) time also requires different kinds of assignments to enable
communication within a step (immediate assignments) and between successive steps (delayed
assignments).

In addition to the explicit notion of reaction steps, languages like Esterel and Quartz offer
many convenient statements for the design of reactive systems. One class of such statements
are pre-emption statements for abortion and suspension that overwrite the normal behavior
of the system when a specified condition holds.
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2.3 The Synchronous Programming Language Quartz

In the following, we give a brief overview of the synchronous programming language Quartz.
This work will concentrate on this synchronous language, because of the rich set of tools
available for it. Especially the possibility to compile programs to SGAs is interesting for this
work. While SGAs are easy to obtain for Quartz, our work is not only applicable to Quartz.
SGAs can be obtained by compilation of many synchronous (and asynchronous) languages
following the work of Jens Brandt et al [BGSS12, BrSc11, BrSE12], and thus concentrating
on SGAs does not restrict the work to the language Quartz. Hence, the language should
be seen as representative of any synchronous language translatable to SGAs. The entire
language will not be described here; the interested reader should instead consult [Schn09] for
more information.

2.3.1 Core Statements

Figure 2.1 contains a list of core statements of Quartz where it is assumed that S, S1, and
S2 are statements, ` is a location variable, x is a variable, σ is a Boolean expression, α is
a type, M is a module’s name, params is a list of expressions, and all optional parts are
enclosed in square brackets.

nothing (empty statement)
` : pause (start/end of macro step)
x= τ and next(x) = τ (assignments)
{α x; S} (variable declaration)
if(σ) S1 [else S2] (conditional)
S1;S2 (sequential composition)
do S while(σ) (iteration)
S1 ‖ S2 (synchronous concurrency)
[weak] [immediate] abort S when(σ) (abortion)
[weak] [immediate] suspend S when(σ) (suspension)
M([params]) (module call)
assume(ϕ) (assumptions)
assert(ϕ) (assertions)

Fig. 2.1: List of Quartz Statements

The nothing Statement

The nothing statement defines a statement that does neither modify data nor control flow.

The pause Statement

The `: pause statement defines a control-flow location ` which is a Boolean variable that
is true iff the control flow is currently at the statement `: pause. Therefore, the pause
statement separates different macro steps. A pause statement is the only statement that
consumes time, all other statements are instantaneous and are evaluated synchronously.
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Control Flow and Data Flow

The control flow can only rest at positions defined by a pause statement in the program,
since all other statements are executed in zero time, and therefore, the possible control flow
states are subsets of the set of locations.

Assignments, Types, and Storage Classes

There are two variants of assignments; and both evaluate the right-hand side in the current
macro step. While immediate assignments x=τ immediately transfer the value of τ to the
left-hand side x, delayed assignments next(x)=τ transfer this value in the following step.

Available types are Booleans, natural numbers (with and without bounds), integers (with
and without bounds), bit-vectors (with and without bounds), as well as arrays and tuples of
types.

Declarations provide a storage class in addition to the type of a variable. There are
two storage classes, namely mem and event that declare memorized and event variables,
respectively. In case no assignment determines the value of a variable, then a memorized
variable maintains the value it had in the previous macro step, while an event variable is
reset to the default value of the variable’s type.

Label variables are event variables, while state and output variables may be event or
memorized variables. Both kinds of variables are important for the convenient modeling of
reactive systems.

Conditional Statement

The statement if(σ) S1 [else S2] defines a case distinction on the Boolean expression
σ and behaves like S1 in case σ holds and otherwise like the nothing statement or the
optional statement S2 if available.

Loop Statements

The do S while(σ) statement restarts the loop body S in the same macro step when
it is completely executed and σ holds, otherwise the whole statement terminates. The
while(σ) S statement starts the loop body S if σ holds in the first step and restarts it
when S is completely executed and σ holds, otherwise the whole statement terminates. An
important point for Quartz is that for both loop statements, S must consume time (e.g. at
least one pause statement must be reached in an execution of the loop’s body), otherwise
an unwanted infinite loop (inside a single reaction step) would occur.

Sequence Statement

The sequence S1;S2 defines the subsequent execution of both statements, hence, S2 is
executed right after S1 is finished. Hence, an instantaneous S1 implies that S1 terminates in
the macro step it is started and S2 is started at the same point of time as well. Otherwise,
the execution of S2 is postponed until S1 terminates.
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The Parallel Statement

In addition to the control-flow constructs that are well-known from other imperative languages
like conditionals, sequences and loops, Quartz offers synchronous concurrency S1 ‖ S2. In
S1 ‖ S2, both sub-statements S1 and S2 run in lockstep as long as both are active, and the
whole parallel statement terminates when the last one of the two sub-statements terminates.

Statements for Pre-emption

Pre-emption statements are another class of statements specific for synchronous languages
that allow one to stop or postpone the execution of the contained statement.

The abortion statement abort S when(σ) behaves as its body statement S as long as
the condition σ is false, and terminates when σ holds. The suspension statement suspend
S when(σ) also behaves as its body statement S as long as the condition σ is false, and
postpones the computation in each step where σ holds. Both pre-emption statements can
moreover be weak or strong which makes a difference on their influence on the control and
data flow of the controlled statement S: The weak variants allow all actions of the data flow
to take place even at the time of pre-emption, while the strong variant forbids them (at the
time of pre-emption). Nevertheless, both variants influence the control flow (depending on
the kind of pre-emption statement) in the same way. Additionally, there exist an immediate
and delayed variant of each pre-emption statement. The immediate forms do already check
for pre-emption at starting time of the preemption statement, while the default is to check
the pre-emption in the macro steps after the first one.

In Figure 2.2 the four possible abort behaviors are presented, the solid arrows on the
left-hand side represent the (strong) abort behavior adding the dashed line to the behavior
leads to the (strong) immediate abort behavior. The arrows on the right-hand side represents
the weak variants. As can be seen, the strong aborts take place at the beginning of a macro
step, while the weak aborts take place at the end of a macro step.

In Figure 2.3, the four possible suspend behaviors are depicted. The left-hand side
represents again the strong versions and the right-hand side the weak versions. The dashed
lines are added for the immediate versions of suspend as well.

Module Declarations

A Quartz module defines an interface with inputs (indicated by ?), outputs (indicated by !)
and inouts (without ! or ?) and a behavior for this interface by a statement for the module
body. The body statement of the module is only allowed to read its input variables and to
write to its output variables. Each module must be declared in a separate Quartz file, but
may call other modules. There must be an hierarchical order of all modules, because cyclic
and recursive calls are not allowed.

The Module Call

A module call consists of the called module’s name and a list of parameter expressions that
have to match the number and type of the module’s interface. During linking, the module
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weak abort{
            .
            .
            .

    l0: pause;

            .
            .
            .

    l1:pause;

            .
            .
            .

    l2: pause;

            .
            .
            .

}when (σ)

σ σ

Fig. 2.2: Abort Behavior

weak suspend{
            .
            .
            .

    l0: pause;

            .
            .
            .

    l1:pause;

            .
            .
            .

    l2: pause;

            .
            .
            .

}when (σ)

σ

σ

σ

σ

σ

σ

σ
σ

Fig. 2.3: Suspend Behavior

call is replaced by the module’s body and the input parameters are replaced with expressions
of the same type, output parameters are replaced with local or output variables of the calling
module, and thus, the assignments of the called modules then become assignments of the
calling module. Of course, the calling module may also make assignments to its local and
output variables, so that the two behaviors are combined.

Assumptions and Assertions

Assumptions and assertions are statements mainly used for verification purposes. The Quartz
compiler adds automatically assertions to detect certain errors, like overflow or underflow
for bounded number representations, array out-of-bound accesses and division by zero.
Additionally, the user is allowed to add assumptions and assertions in the code as well.
Assertions have to be verified and assumptions are precondition that are assumed by the
compiler.

2.3.2 Additional Macro Statements

Besides the core statements, there are more statements that can be reduced to core statements.
The simplest one is the loop statement that represents an infinite loop:

loop{S}≡ while (true) {S}

This statement is used to emphasize that the loop does not terminate.
Additionally, reactive systems need to wait for certain conditions. The simplest way to

do that is with the await statement. Similar to the preemption statements, there exists
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an immediate and a delayed variant. The behavior is defined as given in Figure 2.4 and
Figure 2.5.

await(c):=do{ pause;} while(¬c);

Fig. 2.4: Await Behavior

immediate await(c):=while(¬c){ pause;};

Fig. 2.5: Immediate Await Behavior

The await statement contains a pause statement, hence it is possible to annotate the
statement to rename the contained pause. Additionally, the await represents the end or
the beginning of a reaction step.

Quartz-Code Example

module ABRO(event ?a,?b,?r,!o) {

loop
abort {

wa: await(a);
‖
wb: await(b);
emit(o);
s0: assert(a ∨ b);

wr: await(r);
} when(r);

} satisfies {

s1 : assert A G (o → a ∨ b);

s2 : assert A G (o → X ¬o);
s3 : assert A G (o→([a

←−
B r]∧[b

←−
B r]));

}

Fig. 2.6: Quartz Module ABRO

1 2 3 4 5 6

a F T F T F T
b F F T T T F
r F F F F T F

wa F T F F F T
wb F T T F F T
wr F F F T T F

o F F T F F F

Fig. 2.7: Example Behav-
ior

Figure 2.6 shows the source code of a simple Quartz module called ABRO with a contained
assertion and three specifications given in temporal logic and an example behavior in
Figure 2.7. The module has three Boolean inputs a,b,r (indicated by ?) and a Boolean
output o (indicated by !). The module waits on the input signals a and b in parallel, and
immediately emits output o as soon as the last one of a and b occurred. This behavior is
restarted if r occurs.

Assertion s0 demands that either a or b must hold in the macro step, when o is emitted,
and specification s1 essentially states the same from a global point of view. Specification
s2 asserts that o cannot hold at two successive points of time. The last specification uses
past-temporal operators stating that emitting o requires that a and b occurred in between
the last time where r held and the current step where o holds.
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The example behavior in Figure 2.7 shows that o is emitted in the third macro step,
because the event b holds in the same macro step and a already held in the second macro
step. After emitting o, the system waits for the reset signal indicated by wr in the fourth
and fifth macro step. Additionally, the event r holds in the fifth macro step, which leads to a
restart of the system’s behavior in the following macro step.

2.3.3 Schizophrenia and Causality

As mentioned above, synchronous programs offer many advantages for system design, but they
also challenge the compilers [SBST05a]: In particular, schizophrenia and causality problems
must be addressed [Schn09, Berr99, ScBS06].

Schizophrenia

Schizophrenia issues may occur if a statement is (re-)started at the time of its termination so
that the compiler has to keep track of different incarnations of the statement. In particular,
local variable declarations have to be handled with some care to distinguish values of variables
that belong to the same variable but to different scopes.

The problem is that following the synchronous MoC all variables must have a unique
value during a macro step. Executing an additional local declaration for a variable x in a
macro step where variable x is still valid requires a new instance of this variable and the
read and write accesses to both variables have to be distinguished accordingly. The target
variable of an assignment is uniquely determined by the scope of the variable. In particular,
schizophrenia problems are easily solvable by copying variables or parts of the program
[Schn09, Mali94, Berr97a] and handled during compilation by the Averest compiler.

A simple example containing a schizophrenic statement is given in Figure 2.8. There,
the local declaration for variable c (Line 4) is executed by re-entering the loop body while
the variable c from the previous execution of the loop body is still valid and also used to
assign the variable a a value. The introduction of a new instance of c prevents an (incorrect)
data-dependent cycle for c and a. The variable c in the equations c=a (Line 5) and a=c+1

(Line 8) are different, because they are encountered in different iterations of the loop.

Causality

Causality problems occur if a statement modifies variables that are responsible for triggering
the execution or evaluation of the statement. Hence, a statement may disable its execution
or it may justify its execution, which are both unwanted behaviors. The causality analysis,
which is a fixpoint iteration over a variable environment, ensures that a program is causally
correct. The iteration starts with the environment where all variables are unknown except
for the inputs and the variables written by delayed assignments in the previous step. Then,
the variables are evaluated with respect to the current environment and update the partial
environment until no further progress is seen. Thus, the number of iteration steps is bounded
by the number of variables. A detailed description of causality and the corresponding causality
analysis is given in [Schn09, ScBS04b, BrSc08a, Berr00, Berr99].
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1 module Schizo(nat{4} a) {

2 a = 1;

3 loop {

4 nat{4} c;

5 c = a;

6 next(c) = c+2;

7 w: pause;
8 a = c+1;

9 }

10 } satisfies {

11 s1 : assert (a==1);

12 s2 : assert A X (a==4);

13 s3 : assert A X X (a==7);

14 }

Fig. 2.8: Example of Schizophrenia

The causality analysis has to determine that the statements of a synchronous program
can be executed in a causal order where all trigger conditions are determined before the
corresponding statements are executed and a written value/variable is not overwritten. Hence,
a program is causally correct iff for all variables unique values are derived (by the causality
analysis sketched above) for all reachable states and all possible inputs, such that for all
possible inputs, the outputs can be determined in an (dynamic) schedule that respects the
data dependencies.

The Figures 2.9 and 2.10 contain Quartz programs with causality conflicts. The first
program does not have any behavior, because both possible values for the Boolean variable a
lead to a contradiction: in case a=true the if statement is not entered, hence no assignment
sets a, in the other case (a=false) the if statement is entered, hence the contained
assignment sets a. The other example has too many behaviors: in case a=true the assignment
contained in the if statement sets a and leads to a valid execution, in the other case
(a=false) no assignment is executed, which leads again to a valid execution. Hence the
behavior is therefore an unwanted non-deterministic behavior.

module causality1(event a) {

if (!a) emit(a);
}

Fig. 2.9: Causality Problem #1

module causality2 () {

event a;

if (a) a=true;
}

Fig. 2.10: Causality Problem #2
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2.3.4 Formal Semantics

The semantics of Quartz is defined as operational semantics following Plotkin’s structural
approach [Moss06, Plot81]. In [Schn09] the structural operational semantics (SOS) rules for
all Quartz statements are defined. Each rule defines the behavior of a statement under given
assumptions, an environment E that defines value for each variable, and the incarnation
index function h̄ (see [Schn09] for more details) that maps each variable to its incarnation
index, i. e. the number of scopes of the variable that have been entered in this macro step so
far. The incarnation index function is used to solve schizophrenia issues.

Given a complete environment (E , h̄) of the current macro step, a statement S and a
precondition α, these SOS rules are of the form:

α

〈E , h̄,S〉�
〈
h̄′,S′,D, t

〉
The semantics of these rules is that given that α holds, the rule computes the updated
incarnation index function h̄′, a residual statement S’ that has to be executed in the next
macro step, a set of pairs D representing the delayed assignments executed in the current
step by S and finally the Boolean value t indicating the time consumption of S (t = true
means S is instantaneous).

Examples

In the following one of the rules for the if-then-else statement if (σ) S1 else S2 is given:

JσKh̄E = true and 〈E , h̄,S1〉�
〈
h̄′1,S

′
1,D1, t1

〉
〈E , h̄,if(σ)S1 else S2〉�

〈
h̄′1,S

′
1,D1, t1

〉
This rules states that the behavior is defined by the then-part of the statement iff the
condition σ holds in the environment E . The SOS rule for the parallel statement S1 ‖ S2:

〈E , h̄,S1〉�
〈
h̄′1,S

′
1,D1, t1

〉
〈E , h̄,S2〉�

〈
h̄′2,S

′
2,D2, t2

〉
〈E , h̄,S1 ‖ S2〉�

〈
Max(h̄′1, h̄′2),S′1 ‖ S′2,D1∪D2, t1∧ t2

〉
This rules states that the behavior is defined by the given combination of the two evaluated
statements. The set of delayed assignments and the t’s are joined. Furthermore, the remaining
statements S′1 and S′2 are again executed in parallel in the next step.

2.3.5 Compilation to Synchronous Guarded Actions

Synchronous languages can be compiled to Synchronous Guarded Actions (SGAs) that are a
convenient intermediate representation for compilers and can represent each Quartz program
by preserving its original semantics [Schn09, Schn01a, Schn02]. Hence, the SOS semantics is
followed. In [ScBS06] the correctness of this compilation technique was proven. SGAs have a
very simple structure:
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Definition 1 (Synchronous Guarded Actions). Given a set of variables V, a SGA is a
pair γ⇒ α consisting of a Boolean condition γ called the trigger and its action α. An action
is either an immediate assignment x = τ , a delayed assignment next(x) = τ , an assumption
assume(ϕ), or an assertion assert(ϕ), where ϕ is a Boolean formula over V, τ is an
expression of x’s type, and x ∈ V.

Any synchronous system can be represented by a set of synchronous guarded actions. The
synchronous model of computation demands that in each macro step, all enabled guarded
actions have to be executed and that their execution does not invalidate once enabled guards
(so that causality will be respected). Clearly, to deal with causality problems, there must be a
partial order to execute the guarded actions so that the variables become known before (in
terms of micro steps) they are read. These considerations are major problems for compilers
and code generators and will be discussed in detail in Chapter 6.

Intuitively, the behavior of SGAs is that whenever the guard is true in a macro step s,
the action is fired, which means that the corresponding equation must be true. In case of an
immediate assignment x = τ this means that on s (in the current step), variable x must have
the same value as τ , and for a delayed assignment next(x)= τ , it means that in the following
step s′, variable x must have the value that τ has on s. Assumption and assertions are used
for verification purposes only and become assumptions and proof obligations, respectively.

In addition to the generated guarded actions, the behavior of a system moreover includes
for every variable an implicit guarded action which is called the default reaction: It defines
the value of a variable in case that no action has determined its value in the current macro
step (obviously, this is the case iff the guards of all immediate assignments in the current
step, and the guards of delayed assignments in the previous step of a variable are false). The
default reaction depends on the variables storage type: Memorized variables keep their value
from the previous step while event variables are reset to the default value of the variable’s
type.

Furthermore, we partition the set of guarded actions into control- and data-flow actions,
which will be important for defining strong and weak pre-emption.

Definition 2 (Control and Data Flow). The control flow consists of guarded actions
writing a label variable l ∈ Vl, while the data flow are guarded actions writing a local variable
Vs or an output Vo. Following the Averest’s compiler output, we assume that guarded actions
of the control flow have the form γ⇒ next(`) = true.

Label variables Vl correspond with places in the program where the control flow can rest
between the macro steps, i.e., these labels denote places in the program code where a macro
step ends and where another one starts (i.e. pause statements). Labels are translated to
Boolean variables where only guarded actions as shown above are obtained. Since labels are
event variables, they will be automatically reset to false if there is no assignment setting
them to true.

Since the pause statements (which are the essential control flow locations) have names
that occur in the guarded actions as Boolean variables, there is a close relationship between
the guarded actions and the original source code.

An example for generated SGAs of a Quartz program is presented in the following section.
In [BrSc09, Schn09] the general compilation approach is described in full detail.
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Example

system ABRO :

interface :

a, b, r : input event bool
o : output event bool

locals :

init, wa , wb, wr : label bool
synchronous guarded actions :

control flow:

init ⇒ next(wa) = True

init ⇒ next(wb) = True

¬r∧wa∧¬a∨r∧(wr∨wa∨wb) ⇒ next(wa) = True

¬r∧wb∧¬b∨r∧(wr∨wa∨wb) ⇒ next(wb) = True

¬r∧(wr∨a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa)
⇒ next(wr) = True

data flow:

¬r∧(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa) ⇒ o = True

assertions:

¬r∧(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa) ⇒ assert(a ∨ b)

specifications:

s1: A G o → a ∨ b

s2: A G o → X ¬o

Fig. 2.11: AIF System for ABRO

The ABRO module (given in Figure 2.6) is compiled to the guarded actions shown in
Figure 2.11, which are separated into control flow, data flow, and assertions. Note that a
new control flow location init has been automatically added which is often called the boot
location. This allows one to distinguish the starting point (only label init holds) from the
termination point (no label holds). The relation of the source code and the labels in the
SGAs is also seen in this example, e.g. wr is reached by not reading r and either leaving wa

and wb (by reading a and b) as well as the simple cases where only wa (wb) holds and a (b)
is read or by already being at wr.

The example behavior in Figure 2.7 is computable by applying the SOS rules on the
source code or evaluating the equivalent set of SGAs (derived by the compiler from the source
code by following the semantics/SOS rules).

2.3.6 Translation to Transition Systems

In this section, we describe how symbolic representations of transition systems (Kripke
structures) [Schn03] can be directly generated from a set of guarded actions (that has been
obtained by the compilation of a synchronous module). The definitions are restricted to the
Boolean type B for the sake of simplicity.
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Definition 3 (Transition Systems). A transition system T = (S,I,R,L) for a finite set
of variables V is given by a finite set of states S, a set of initial states I ⊆ S, a transition
relation R ⊆ S ×S, and a label function L : S → BV that maps each state to a variable
assignment L(s) : v→B.

Our aim is to generate Boolean formulas ϕI and ϕR for the initial state condition and the
transition relation of a transition system that can be directly used for model checking. To this
end, we have to use for each variable of the program a corresponding variable that denotes
the value in the next state of the program:

Definition 4 (Next State Variables). The value of a variable x ∈ V in the next macro
step/state is denoted by x′ ∈ V ′. Hence, next(x)=τ assigns the variable x’ the value τ .

The expression JϕKϑ is used in the following and denotes the evaluation1 of a propositional
formula ϕ under a truth assignment represented by ϑ⊆ V, i.e.,

• JxKϑ :⇔ x ∈ ϑ for every variable x ∈ V
• J¬ϕKϑ :⇔¬JϕKϑ
• Jϕ∧ψKϑ :⇔ JϕKϑ∧ JψKϑ
• Jϕ∨ψKϑ :⇔ JϕKϑ∨ JψKϑ

The formulas ϕI and ϕR over some set of variables2 V then encode the following state
transition system T = (S,I,R,L):

• states S
• initial states I := {s ∈ S | JϕIKs = true}
• transitions R := {(s,s′) ∈ S ×S ′ | JϕRKs,s′ = true}
• label function L(s) = s, i.e., the state s ∈ S is the variable assignment L(s).

As seen above, we identify states with their label function. After these general explanations
of the notation used below, we now consider how to define formulas ϕI and ϕR for a given
set of guarded actions. To this end, we only consider guarded actions whose actions are
assignments, since only these guarded actions determine the behavior of a module. The
remaining actions, i.e., assumptions and assertions, are used to construct specifications, and
do therefore not modify the underlying transition system.

The above informal remarks lead to the following formal definition of a state transition
system. The aim is to generate Boolean formulas for the initial state condition and the
transition relation that can be directly used for model checking. We start by defining some
auxiliary functions.

Definition 5 (Reactions per Variable). Assume that for a Boolean3 variable x ∈ V,
we have the guarded actions with immediate assignments (γ1,x = τ1), . . . ,(γp,x = τp) and
with delayed assignments (χ1,next(x) = π1), . . . ,(χq,next(x) = πq). Then, we define the
following Boolean formulas over V ∪V ′, where Initial(x) denotes the initial value of variable
1 The reader may excuse the sloppy use of propositional logic operators here that are used both at
the meta-level and the level of propositional formulas.

2 This means that ϕR has occurrences of variables x ∈ V and corresponding variables x′ while ϕI
has only occurrences of variables x ∈ V.

3 Other types must be represented by several Boolean variables
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x that depends on x’s type and is e.g. false for Booleans. Additionally, we make use of the
substitution 〈ϕ〉V′

V that replaces all occurrences of a variable v ∈ V in ϕ by the corresponding
variable v′ ∈ V ′.

• Default(x) :=
{

Initial(x) : if x is an event variable
x : if x is a memorized variable

• ImmActs(x) :=
∧p
j=1(γj → x = τj)

• DelActs(x) :=
∧q
j=1(χj → x′ = πj)

• InitDefActs(x) :=
(∧p

j=1¬γj
)
→ x = Initial(x)

• NextDefActs(x) :=
〈∧p

j=1¬γj
〉V′

V
∧
(∧q

j=1¬χj
)
→ x′ = Default(x)

Using the above formulas, an initial state condition I and the transition relation R of a
transition system can be constructed as follows:

Definition 6 (Symbolic Representation of Systems). For a synchronous system over
the variables V consisting of inputs Vi, labels and local variables Vl, and output variables Vo,
the transition system T := (S,I,R,L) is defined by the states S = 2V , L(s) := s, the following
initial state condition I, and the state transition relation R.

• I :=
∧

x∈(Vl∪Vo) ImmActs(x)∧
∧

x∈(Vl∪Vo) InitDefActs(x)
• R :=

∧
x∈(Vl∪Vo) ImmActs(x)∧

∧
x∈(Vl∪Vo) DelActs(x)∧

∧
x∈(Vl∪Vo) NextDefActs(x)

Whenever one of the guards γi of an immediate assignment γi⇒ x = τi holds in the definition
of R, then the equation x = τi must hold, since the assignment has an immediate effect.
Analogously, if a guard χi of a delayed assignment χi ⇒ next(x) = πi holds, then the
equation x′ = πi that defines the value for x in the next step by the current step’s value of πi
must hold. The value of x is determined by the default action (Default(x)) if no guard χi
held in the previous step and no guard γi holds in the current step.

Example

Reconsidering the example module ABRO, the following formulas are obtained where the
formulas are split into the computed guarded actions and the default actions. The initial
condition Icl contains the guarded action that sets o to true, the implicit assignment to the
boot flag and to the label variables, and the default reaction in case the assignment to o

does not take place. This condition is used to define the initial states. The transition relation
Rcl defines the transition from one state to another. It contains all guarded actions of the
variables and labels. Additionally, it contains the implicit assignment to the boot flag and
the default reaction for the labels and variables.
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Icl := (¬r∧ (a∧wa∧ b∧wb∨¬wa∧ b∧wb∨¬wb∧ a∧wa)→ o = true)

∧


true→ init = true∧
true→ wa = false∧
true→ wb = false∧
true→ wr = false∧
r∨ (¬a∨¬wa∨¬b∨¬wb)∧ (wa∨¬b∨¬wb)∧ (wb∨¬a∨¬wa)→ o = false


Rcl :=

 init∨¬r∧wa∧¬a∨ r∧ (wr∨wa∨wb)→ next(wa) = true∧
init∨¬r∧wb∧¬b∨ r∧ (wr∨wa∨wb)→ next(wb) = true∧
¬r∧wr∨¬r∧ (a∧wa∧ b∧wb∨¬wa∧ b∧wb∨¬wb∧ a∧wa)→ next(wr) = true∧
¬r∧ (a∧wa∧ b∧wb∨¬wa∧ b∧wb∨¬wb∧ a∧wa)→ o = true


∧


true→ next(init) = false∧
¬init∧ (r∨¬wa∨ a)∧ (¬r∨¬wr∧¬wa∧¬wb)→ next(wa) = false∧
¬init∧ (r∨¬wb∨ b)∧ (¬r∨¬wr∧¬wa∧¬wb)→ next(wb) = false∧
r∨ ((¬a∨¬wa∨¬b∨¬wb)∧ (wa∨¬b∨¬wb)∧ (wb∨¬a∨¬wa))→ next(wr) = false∧
r∨ ((¬a∨¬wa∨¬b∨¬wb)∧ (wa∨¬b∨¬wb)∧ (wb∨¬a∨¬wa))→ o = false



2.3.7 Alternative Representations of Synchronous Systems

There are many representation techniques for synchronous programs [PoEB07] like generation
of equations or an (explicit) transition diagram. These two kinds are somehow extreme cases,
where the size of the equations is polynomial and generates a symbolic description of the
program’s behavior, while the size of the transition diagram is exponential and generates
an explicit enumeration of the possible program states and reactions. In the following, it is
shown how to generate equations. Afterwards, extended finite state machines (EFSMs) are
presented that are a compromise between the extreme cases for representation: An EFSM
explicitly enumerates the control flow states (similar to the transition diagram representation)
while describing the data flow in a symbolic manner (similar to the equations). In general,
its size is therefore also exponential, but in practice, this problem is rarely observed.

Equations

As already mentioned, it is possible to translate synchronous guarded actions into an equation
system by aggregating all guarded actions on the same variable (and the corresponding
default reaction). This is useful for theorem proving since one can then use the equation
system as rewrite system to prove the specification. It is usually not trivial to generate
such an equation system, but a corresponding transformation is already implemented in the
Averest system. The translation of SGAs to equations will generate exactly one equation for
each output, local and label variable. Furthermore, an additional carrier variable must be
added for each variable to which an immediate and delayed assignment is made. The carriers
will simply hold the value until the next point of time and have the same behavior as the
variable x′ ∈ V ′ for x ∈ V in the transition diagram representation. All carrier variables and
all variables written only by delayed assignments require an additional init value for the
first macro step (see [Schn09] for details).

The execution of an equation system under the synchronous model of computation is
then as follows: in every macro step new input variables are read and all of the equations
are evaluated with regards to the newly read values. The resulting right-hand side of each
equation is then assigned to its respective left-hand-side variable.

The equation system for the ABRO example generated by the aif2aif tool of the Averest
system is shown in Figure 2.12. All guarded actions writing the same variables and the
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corresponding default reaction are composed together. Hence, every variable is defined by a
single equation that must be evaluated in each step. Additionally, the initial values for the
delayed written labels, which is false is implicitly given.

control flow:

True ⇒ next(init) = False

True ⇒ next(wb) = ¬r∧wb∧¬b ∨ r∧(wr∨wa∨wb) ∨ init
True ⇒ next(wa) = ¬r∧wa∧¬a ∨ r∧(wr∨wa∨wb) ∨ init
True ⇒ next(wr) = ¬r∧(wr ∨ a∧wa∧b∧wb ∨ ¬wa∧b∧wb ∨ ¬wb∧a∧wa)

data flow:

True ⇒ o = ¬r∧(a∧wa∧b∧wb ∨ ¬wa∧b∧wb ∨ ¬wb∧a∧wa)

Fig. 2.12: Equations for ABRO

Extended Finite State Machines (EFSMs)

Another important transformation is the computation of an extended finite state machine
(EFSM). EFSMs are frequently used as a convenient form to describe programs with po-
tentially infinite data types. Additionally, this description could be useful for interactive
verification in that one can decompose the proof goal with respect to the reachable control
flow states.

A formal definition of an EFSM is as follows:

Definition 7. An extended finite state machine (EFSM) is a tuple A= (Q,I,R,P) where Q
is a finite set of states, I ⊆Q is the set of initial states, and R⊆Q×P×Q is the transition
relation, where P is the set of pairs (Φ,S) where Φ is a Boolean condition and S is a set of
guarded actions.

The meaning of a transition labeled with (Φ,S) is as follows: this transition is enabled iff the
condition Φ holds. In that case, the transition is taken (note that there is no non-determinism,
the synchronous model of computation ensures that at every state only one transition is
enabled), and the actions in S are immediately and synchronously executed in that all actions
are executed whose guard holds.

Example

The EFSM of the ABRO module is shown in Figure 2.13. Obviously, we can associate every
state of the EFSM by the set of active control flow locations in that state. For example, the
states 1, 3, and 4 represent the three different possibilities for the control flow being in the
parallel statement, i.e., either the control flow is in both threads (waiting for a and b), or one
thread already terminated (by reading a or b) and is waiting for the other one to terminate.
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Fig. 2.13: EFSM for ABRO

2.4 Averest

As a long term project, the embedded systems group of the university of Kaiserslautern
implements their research results [BaBS10, BaBS11b, Gemu13a, Baue12, Bran13, GeBS14]
in the Averest system (see http://www.averest.org) for modeling, simulation, synthesis,
verification and HW/SW-codesign. It uses the Esterel-like synchronous language Quartz to
model synchronous/reactive systems [BCEH03, BeGo92].

Design Flow

The design flow used in Averest is shown in Figure 2.14. It contains a compiler that computes
for a given synchronous Quartz program an equivalent set of SGAs that are stored in
Averest Interchange Format (AIF) files. Using an embedding of the Quartz language in
the theorem prover HOL [Schn01a, Schn02], Schneider et al. verified the correctness of the
compile algorithm, i.e. that the semantics of the program is preserved during the translation
[Schn01a, Schn02, ScBS06, Schn09]. Since it is possible to separately compile Quartz modules
[BrSc09, Schn09, ScBS06] and to link them afterwards to AIF systems, one has to distinguish
between modules and linked systems. Modules can be called in other Quartz modules so that
one is able to create libraries for later reuse.
There are several transformations available to modify a generated AIF system description.
For example, the partitioning of compound data types like tuples and arrays to scalar types,
reduction to Boolean types for hardware synthesis, the aggregation of all guarded actions
on one variable into a single guarded action (so that equations are generated), dead code
elimination, the generation of an EFSM, and many more are available.

After suitable transformations, AIF systems can be converted to various target languages.
For example, there are code generators for software synthesis (producing C, Java or SystemC)
or hardware synthesis (producing VHDL and Verilog files). Moreover, a simulator and a code
generator for the well-known model checker SMV are also available in the Averest framework.

http://www.averest.org
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Fig. 2.14: Design Flow of the Averest Framework

2.5 Related Work

This work will extend the Averest system by interactive verification techniques by embedding
the AIFProver. Hence synchronous guarded actions are used as a system description. The use
of guarded actions in general, and even of synchronous guarded actions in particular, is not
new, neither for theorem proving nor for interactive verification or even system descriptions.

In general, guarded actions are well suited to describe systems with different MoCs
[BGSS12, BrSc11, GeSc13c]. Different MoCs are thereby obtained by different ways to select
actions for execution.

It seems to be impossible to use tools for one of these MoCs for guarded actions that
are based on another MoC. In particular, most of the rewrite-based verification tools and
theorem provers, like Unity [ChMi89], SAL [MORR04], Rodin [Abri10], and Murphi [Dill96]
are based on interleaved guarded actions, but the representation for synchronous systems
uses SGAs.

The guarded actions have been suggested by Dijkstra in [Dijk75] as a formalism to reason
about programs and have been used by Alur and Henzingers’ reactive modules [AlHe99]. In
this work, we propose the use of SGAs as a basis for interactive verification of synchronous
programs.

Concerning hardware verification, Staunstrup and Greenstreet already proposed the use of
their ‘Synchronized Transitions’ [StGr88, Stau97] in 1988 as a basis for efficient verification of
hardware designs. The differences between SGAs and Hoare’s parallel commands [Hoar78] are
that SGAs do not have a disjoint set of variables and they communicate over shared variables
(broadcast) instead of synchronous message passing. Using the Larch Prover, a rewriting-based
theorem prover for the Larch language [GaGu89], they were able to verify some non-trivial
hardware designs in a series of papers [StGG90, StGG92, StMe95, MeSt95, Stau97]. In
contrast to our SGAs, Staunstrup and Greenstreets’ synchronized transitions are asynchronous
in the sense that only a subset of the enabled actions is selected for execution. In addition
to the different models of computation, they used the guarded actions primarily as system
descriptions which we think is unreadable for large systems. Thus, we consider guarded
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actions as an intermediate representation obtained by compilation from a better readable
Quartz program.

Darringer [Darr79] proposed in 1979 the use of program verification techniques for the
verification of hardware designs. In particular, he focused on Floyd’s inductive assertions
[Floy67] and symbolic simulation. [ZhHo92] presents an algorithm to translate transistor-level
circuits to programs to apply Hoare-style verification to the verification of switching circuits.

Recent work by Mike Gemünde et al [TBGS14, BGSS13, Gemu13a, BGSS12] extended
the SGAs to clocked guarded action that allow to refine a reaction step by sub-clocks
and represent languages/models like Signal and Concurrent Action Oriented Specifications
(CAOS) [HoAr04].

There are many approaches transforming SGAs to other languages or MoCs: In [BrGS10],
an automatic translation to SystemC by generating a dynamic schedule for the modules in
order to preserve the semantics was presented; and in [BaBS11b] SGAs are translated to
asynchronous dataflow process networks.

The approach in [ScBr08, BrSc08a] refines the translation of SGAs to transition systems
at the level of micro steps. The intention of [ScBr08, BrSc08a] was to use these transition
systems at the micro step level to perform causality analysis by means of theorem proving
and bounded model checking. In [BrSc11] a representation of SGAs by interleved guarded
actions (IGAs) for causality analyses was presented that in fact is the same translation we will
introduce, but the approach presented here also translates the temporal logic specification
and defines some improvements for implementation.

Clearly, the execution of the enabled SGAs in a step follows implicitly a causal ordering to
define a deterministic result. Similarly, confluence must be ensured to guarantee deterministic
results for IGAs.

In contrast to Dijkstra’s guarded commands [Dijk75], IGAs have only a single repetitive
construct consisting of the entire set of IGAs. Hence, our translation targets a subset of
Dijkstra’s guarded commands.

2.6 Specifications

Floyd founded the idea of formal methods and formal verification for computer programs
[Floy67]. He wanted to invent a rigorous standard for proofs about them. Hoare realized this
by inventing the Hoare calculus that formally defines the Boolean conditions satisfied by a
program part in case certain preconditions are met before execution. Nowadays, temporal
logics [ClES83, EMSS91, Emer90] are used for this purpose. Besides others, the Computa-
tional Tree Logic (CTL) [EmCl80] and the Linear Temporal Logic (LTL) [Pnue77a, Emer90]
are important representatives. In this work we will rely on a suitable property specification
language for verification that will be LTL, since it is well-known that branching time logics
like CTL do not lend themselves well for modular verification [KuVa95].

2.6.1 Pre- and Postconditions

Pre- and postconditions as well as assumption and assertions are used to define safety
properties. These properties are usually Boolean conditions describing a state. They can be
easily checked, but the expressiveness is rather weak (equivalent to safety properties).
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2.6.2 Syntax and Semantics of Linear Temporal Logic (LTL)

LTL is a popular formalism for the specification of temporal properties.

Definition 8 (Linear Temporal Logic). For a given set of Boolean variables (propositions)
V, we define the set of LTL formulas by the following grammar:

LTL := Aϕ
ϕ := V
| ¬ϕ
| ϕ∨ϕ
| Xϕ
| [ϕ U ϕ]
|
←−
Xϕ

|
←−
Xϕ

| [ϕ
←−
U ϕ].

The set LTL contains state formulas and the formulas generated from ϕ represent path
formulas.
It is well-known that these operators are sufficient to define LTL, but for convenience, we
may also introduce further operators:

Definition 9.
Gϕ := [ϕ U 0] (always)
Fϕ := [1 U ϕ] (eventual)
[ϕ U ψ] := [ϕ U ψ]∨Gϕ (weak until)
[ϕW ψ] := [¬ψ U (ϕ∧ψ)] (weak when)
[ϕW ψ] := [¬ψ U (ϕ∧ψ)] (strong when)
[ϕ
←−
B ψ] := ¬[¬ϕ

←−
U ψ] (past weak before)

[ϕ
←−
B ψ] := ¬[¬ψ

←−
U ϕ∧¬ψ] (past strong before)

The semantics of LTL is usually given with respect to an infinite path through a transition
system (a Kripke structure).

Definition 10 (Infinite Path). An infinite path is a function π :N→S with (π(t),π(t+1))∈R,
where we denote the t-th state of the path π as π(t−1) for t ∈ N, t > 0.

The semantics of path formulas of a transition system T is defined by the relation (T ,π, t) |=ϕ

that defines if a path formula ϕ holds on position t of a path π of a transition system T
(see e. g. [Schn03] for a full definition). These infinite paths are nothing else than infinite
sequences of assignments to the variables V. The semantics of LTL is typically defined as
follows [Emer90, Schn03]:

Definition 11 (Semantics of LTL).

• (T ,π, t) |= p holds iff p ∈ L(π(t)) for every p ∈ V
• (T ,π, t) |= Xϕ holds iff (T ,π, t+ 1) |= ϕ

• (T ,π, t) |= [ϕ U ψ] holds iff there is a δ such that (T ,π, t+ δ) |= ψ and for all x < δ, we
have (T ,π, t+x) |= ϕ
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• (T ,π, t) |= [ϕ U ψ] holds iff (T ,π, t) |= [ϕ U ψ] or for all x, we have (T ,π, t+x) |= ϕ.
• (T ,π, t) |=

←−
Xϕ holds iff t= 0∨ (T ,π, t−1) |= ϕ

• (T ,π, t) |=
←−
Xϕ holds iff t > 0∧ (T ,π, t−1) |= ϕ

• (T ,π, t) |= [ϕ
←−
U ψ] holds iff there is a δ such that δ ≤ t,(T ,π,δ) |= ψ and for all x with

δ < x≤ t, we have (T ,π,x) |= ϕ

Aϕ holds in a state s of T if all infinite paths π starting in s satisfy (T ,π,0) |= ϕ. Finally, a
transition system T satisfies a LTL formula AΦ if all initial states satisfy Φ, in this case, we
write T |= AΦ.

In [ChMP92, Schn01b, Schn03, MoGS12], a temporal logic hierarchy has been defined in
analogy to the hierarchy of ω-automata. Following [Schn01b], we define the hierarchy of
temporal formulas by the grammar rules of Figure 2.15:

PG ::= V | ¬PF | PG∧PG | PG∨PG
| XPG | [PG U PG] |

←−
XPG | [PG

←−
U PG]

PF ::= V | ¬PG | PF∧PF | PF∨PF
| XPF | [PF U PF] |

←−
XPF | [PF

←−
U PF]

PPrefix ::= PG | PF | ¬PPrefix | PPrefix ∧PPrefix | PPrefix ∨PPrefix
PGF ::= PPrefix

| ¬PFG | PGF∧PGF | PGF∨PGF
| XPGF | [PGF U PGF] | [PGF U PF]
|
←−
XPGF | [PGF

←−
U PGF] | [PGF

←−
U PF]

PFG ::= PPrefix
| ¬PGF | PFG∧PFG | PFG∨PFG
| XPFG | [PFG U PFG] | [PG U PFG]
|
←−
XPFG | [PFG

←−
U PFG] | [PG

←−
U PFG]

PStreett ::= PGF | PFG | ¬PStreett | PStreett∧PStreett | PStreett∨PStreett

Fig. 2.15: Classes of the Temporal Logic Hierarchy

Definition 12 (Temporal Logic Classes). We define the logics TLκ for κ ∈ {G, F, Prefix,
FG, GF, Streett} by the grammar rules given in Figure 2.15, where TLκ is the set of formulas
that can be derived from the non-terminal Pκ (V represents any variable v ∈ V).

TLG is the set of formulas where each occurrence of a weak/strong temporal operator is
positive/negative, and similarly, each occurrence of a weak/strong temporal operator in TLF
is negative/positive. Hence, both logics are dual to each other, which means that one contains
the negations of the other one. TLPrefix is the Boolean closure of TLG and TLF. The logics
TLGF and TLFG are constructed in the same way as TLG and TLF; however, there are two
differences: (1) these logics allow occurrences of TLPrefix where otherwise variables would have
been required in TLG and TLF, and (2) there are additional ‘asymmetric’ grammar rules. It
can be easily proved that TLGF and TLFG are also dual to each other, and their intersection
strictly contains TLPrefix. Finally, TLStreett is the Boolean closure of TLGF and TLFG. While
there are syntactic restrictions on TLStreett, i. e. not every LTL formula is a TLStreett formula,
TLStreett contains for each LTL formula an equivalent formula, and nearly all formulas used
in practice belong to TLStreett [MoSL08]. Moreover, for those formulas not in TLStreett, it is
typically not difficult to find an equivalent one in TLStreett.
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2.7 Verification Techniques

In the following some verification techniques are described. Especially, the work of Manna
and Pnueli must be mentioned [MaPn95b, MaPn92]. They describe the formal verification
of reactive systems with safety specifications.

There exist many verification techniques. Model checking is widely used, because it is fully
automatic. Many improvements are already presented in the literature to avoid or bypass
the implied disadvantages. Techniques and tools before the advent of model checking are
theorem proving and interactive verification. These techniques are originated from Floyd’s
vision and Hoare’s realization of the Hoare calculus.

2.7.1 Model Checking

Model checking [ClGP99] is without any doubt one of the success stories of modern computer
science [GrVe08]. Especially, the invention of Symbolic Model Checking [McMi92a, BCMD92,
McMi93a, MoPS11] based on Binary Decision Diagrams (BDDs) [Aker78, Brya86] allowed
to verify large systems [BCMD92, KuLa93, FGHH05]. However, despite of the tremendous
progress in research made during the last two decades, model checking still suffers from the
state-space-explosion problem, which means that in the worst case, the runtime for model
checking grows exponentially with the size of the system to be verified. In practice, this leads to
enormous requirements for verifying large systems. For this reason, model checking – even in its
restricted versions of bounded [MoRS03, BCCS03a, LBHJ04] and SAT-based model checking
[Brad11, BCCZ99, McMi03, ShSS00, McMi03a] – will in general not be applicable to large
systems. Some approaches try to tackle the problem with computing power by distributing
the verification task to a cluster, e.g. parallel verification [BCSVZ08, BaBCR10, BeCK10],
but in general other techniques to reduce the complexity of a verification task is needed. In the
literature many creative approaches are trackable to encounter the complexity, like Runtime
Verification [MoGS12, FaFM10, FaFM10, BaLS10] where a specification is monitored during
runtime and Program Slicing [Weis79, XQZW05, CFRR99, BiGa96], which decomposes
program statements relevant to a certain slicing criterion that refers to some point(s) of
interest. Besides various abstraction [CGJL03, HJMM04, ChJa12] and reduction techniques
[Long93, Gode95, CEFJ96, EmSi96, ChJa12], inductive [CiGr12, Brad11, HaBS12, RaSS95]
or compositional verification [McQS00, McMi98, McMi99a, BeCC98] is a key to fight the
complexity given by large systems.

2.7.2 Theorem Proving

Interactive theorem proving has been considered as an interesting alternative since the
beginning of formal verification [Gupt92, KeGr99]. Most of the proposed theorem provers
are based on Higher Order Logic (HOL) like Isabelle [Paul94], PVS [OwRS92], VAMPIRE
[KoVo13], and HOL [Gord86]. They usually follow the Logic of Computable Functions (LCF)
style [GoMW79] of theorem provers, i.e., a functional programming language like ML is used
as a meta language. Formulas, proof goals, and theorems are implemented as data types in
ML, and proof rules are implemented as ML functions mapping existing theorems to new
theorems. Since most functional languages offer interactive sessions, one can directly use
these for interactive proof construction.
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LCF style theorem provers [GoMW79] are sound, because they use only a very small
set of deduction rules and axioms. For example, HOL [Gord86] relies on five axioms and
eight basic deduction rules that are directly implemented on the data structure of theorems.
These axioms and basic proof rules refer to the polymorphic λ-calculus that has been chosen
as a foundation of HOL’s logic. All other data types like natural numbers, lists, etc., and
operations on these types like conjunction and addition are implemented as abbreviations of
expressions of the λ-calculus. For these derived types, hundreds of more convenient proof
rules have been implemented and proven on top of the primitive rules.

While this approach makes the theorem provers trustworthy, there is also a price to pay: A
huge amount of interaction is often required for a proof; especially adding new data types to
specify a proof goal is a complicated process. First of all, one has to implement the data type
in terms of existing ones. Additionally, a proof of its non emptiness and the implementation
of useful proof rules for it is required. The amount of work that is required for such an
embedding is still very large even though there is some limited form of automation [Melh89a].
A promising approach is therefore the reduction of interaction by adapting the theorem
provers to specific problems. Model checking and other decision procedures can thereby
be integrated as particular proof rules [ScHo99, Gord00]. Although there was some early
progress for register-transfer level hardware circuits, e.g., [KuSK93a], and general reactive
systems as e.g., the STeP prover [BBCF00], there was little progress on automation for
hardware descriptions at higher abstraction levels [Gord95].

2.7.3 Interactive Verification for High Level Description Languages

Since the system to be verified is typically given in a system description language, one has to
embed that language in the theorem prover as well to formulate the verification problem.
Several authors considered the embedding of different languages like VHDL [Reet95], ELLA
[Boul92a], or Verilog [Gord95, Gord98]. However, often only small fragments of the languages
were embedded and the verification was never supported by convenient proof rules. Embedding
a non-trivial system description language with suitable proof rules requires many years of
work. Thus, it is important to make sure that the right system representation together with a
convenient set of proof rules is determined before these are embedded in an existing theorem
prover. This thesis will determine the structure of the proof goals and rules such that a
forthcoming work is able to completely embed the approach into a theorem prover.

2.7.4 Hoare Calculus

As the system descriptions given by synchronous languages are programs, it is natural to try
to integrate classic software verification methods with the already established model checking
techniques.

It is well-known that axiomatic semantics as given by the Hoare calculus [Floy67, Hoar69,
Grie81, Apt81] are a basic foundation for the formal verification of software. This calculus
provides proof rules for each kind of statement to reflect its axiomatic semantics.

Figure 2.16 shows Hoare’s axioms for a simple sequential programming language. The
verification of algorithms can even be done in a parameterized way that abstracts from
the size of data structures (like array sizes) as well as abstracting from the data types
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nothing :
{Φ} nothing {Φ}

assign :
{[Φ]τx} x= τ {Φ}

sequence : {Φ1} S1 {Φ2} {Φ2} S2 {Φ3}
{Φ1} S1;S2 {Φ3}

conditional : {σ∧Φ} S1 {Ψ} {¬σ∧Φ} S2 {Ψ}
{Φ} if(σ) S1 else S2 {Ψ}

loop : {σ∧Φ} S {Φ}
{Φ} while(σ) S {¬σ∧Φ}

weaken : |= Φ1→ Φ2 {Φ2} S {Φ3} |= Φ3→ Φ4
{Φ1} S {Φ4}

Fig. 2.16: Hoare Calculus for a Sequential Programming Language

themselves (by considering polymorphic types). While systems with complex data flows are
usually difficult to handle using model checking, they can often be easily verified by means
of interactive verification using the Hoare calculus. Conversely, model checking lends itself
better to control-intensive applications, since such systems often require the enumeration
of all reachable states also in an interactive verification. An integration of model checking
and interactive verification based on Hoare calculus or similar methods is therefore highly
desired [JoSe94, KeGr99, ScKr97a].

Being used in interactive verification, these rules allow one to reduce a proof goal of
that statement by generating corresponding proof goals for its sub-statements, so that a
compositional or modular verification is obtained. Some of these rules require additional
information: In particular, the rules for loops require invariant conditions as additional
information that typically has to be provided by the user. While this might appear as a
serious disadvantage of these approaches, it is the key to exploit the knowledge of the user
about her/his system description that does not rely on a brute-force approach like model
checking. For synchronous languages, this seems to be not too difficult since (1) model
checking is already available and (2) the rules of the Hoare calculus ‘only’ have to be adapted
to the considered synchronous language.

Indeed, there are already many approaches to the verification of concurrent programs by
means of Hoare calculi as e.g. those using synchronous message passing to avoid the use of
shared variables [BoHR97, Ding00, CCGO04, RBHH01, ApOl97] and others making use of
critical region constructs [Broo85, RBHH01, ApOl97] for the same purpose. A good overview
on many papers in this area is given in [Andr81a]. Again, all of them consider coarse grained
systems consisting of concurrent sequential programs like in Hoare’s famous CSP [LaSc84].

All of them have in common that their underlying MoC is different to the synchronous
MoC, hence a usage without further modification is not possible. This work will show how to
use or at least how to adapt techniques of the sequential MoC to be used to analyze systems
described in the synchronous MoC.
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Lamport proposed in [LaSc84, Lamp80a] to reason about safety and liveness conditions
instead of pre- and post-conditions of the Hoare calculus. Although we are also interested
in the temporal behavior of the synchronous programs, we aim at using the interactive
verification for the data intensive parts only that be dealt well with the pre-/post-condition
approach. Hence, we still make use of pre- and post conditions as given in the original Hoare
calculus.

2.8 Adapting Interactive Verification to Synchronous Languages

However, none of these approaches can be directly used for the verification of synchronous
programs. For this reason, we have to define a specialized Hoare calculus or similar interactive
verification techniques for the synchronous model of computation. However, this adaptation
is not straightforward: The main problem of this is that the assignment rule of the classic
Hoare calculus implicitly defines a sequential programming model which is not sufficient
for synchronous languages. Instead, the synchronous model of computation divides the
execution of a program into macro steps that in turn consist of a finite number of micro steps
(like assignments). The micro steps of a macro step are executed within the same variable
environment, while all updates to the variables’ values are synchronously performed at the
level of macro steps. Due to complex control flow statements like pre-emption and parallel
statements, these micro step actions of a macro step might be distributed over a large part
of a program.

In [StCO06], a program transformation has been considered where parallel assignments are
considered as an abstraction of sequential programs to save states for model checking. As we
already start from a synchronous program, we have no need to determine which assignments
should be clustered into one parallel assignment, since this is determined by the semantics
of the synchronous programming language. However, a related problem is considered here:
This work defines a program transformation to collect the actions of different threads into a
tuple action so that the concurrency is only available in these synchronous tuple-assignments.
Such tuple-assignments have already been considered by Martin and Tucker [MaTu89] who
used these assignments to reason about the correctness of systolic algorithms. Indeed, they
already introduced the tuple-assignment form that will be used in Chapter 3 to employ for
synchronous programs for the approach. Since synchronous languages did not yet exist when
[MaTu89] was published, they did not discuss program transformations into that normal
form, and directly used such descriptions without discussing their origin.

2.9 Modular Verification

Since reactive systems are often used in safety-critical applications, their functional correctness
is of essential importance. For this reason, simulation and formal verification are routine
steps in their design flows, and in particular, model checking is often used for this purpose.
However, due to the well-known state space explosion problem, a modular or compositional
verification [Roev98, BoRo98] is desired where modules can be replaced by their already
verified properties. Large reactive systems can only be verified by modular or compositional
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approaches despite the tremendous progress on model checking procedures we have seen in
the past two decades. Another reason for modular verification is that modules are defined
for being reused later on, and therefore the effort for formal verification amortizes when one
can simply reuse also the already verified properties.

Recent work of Schneider and Brandt [Schn09, BrSc09] describes a method to compile
single synchronous modules on their own to SGAs that can be later linked together. Modular
compilation was not possible for (imperative) synchronous languages, and since modular
compilation is now available, it is natural to also establish modular verification. Clearly, it
has to follow the semantics of modules and module calls, and this is defined differently for
synchronous languages: While functional languages like Lustre consider modules as functions
without side effects and essentially assume that all modules are started in parallel to all other
modules, languages like Esterel and Quartz allow module calls in arbitrary statements. In
these languages, modules are declared with input and output parameters (variables) so that
the body statement of the module is only allowed to read its input variables and to write to
its output variables. If the module is later on called in a context module, the input parameters
are replaced with expressions of the same type, output parameters are replaced with local or
output variables of the calling module, and thus, the assignments of the called modules then
become assignments of the calling module. The calling module may also make assignments
to its local and output variables, so that the two behaviors are combined. Moreover, module
calls can be delayed to an arbitrary point of time, and a running module may be aborted or
suspended by the context of its calling module.

Also, the simulation of synchronous modules has to be finally aborted so that temporal
logic specifications referring to infinite behaviors cannot be completely answered. The results
presented in this work are not only useful for modular verification: in [ABKV03], the authors
considered the problem to make specifications for the simulation of reactive systems, which is
difficult since the simulation has to be aborted after some finite time, so that properties that
refer to the infinite behavior of the system cannot be completely answered. The results can
be also used for simulation in pre-emption contexts or to verify temporal logic specification
with bounded model checking or runtime verification [MoGS12].

Another way to deal with this problem is the use of compositional or modular verification
[ClLM89a, GrLo91, HaLR93, AAHM99, LaGr98, RBHH01], where one first verifies some
properties for single modules without their later context, and then makes later on use of
these properties when the entire system is verified. Clearly, compositional verification is not
new; many different approaches have already been developed including the assume-guarantee,
assumption-commitment or rely-guarantee styles of compositional reasoning (see [RBHH01]).
Moreover, the distinction between open and closed systems leads to the notion of module
checking [KuVa96, KuVW01, Gode03] where one considers properties that hold even if the
environment later on restricts input traces to some subset.

Concerning related work on modular verification of Esterel programs, I found only one
paper of Merceron [Merc96] as related work. In contrast to this work, her paper does not
consider the translation of synchronous programs to transition systems, and only considers
the application of existing preservation results to the modular verification, which do neither
consider substitution of parameters, nor delayed starting points, nor abortion/suspension.

Other papers like [HaLR93] consider the decomposition of a global specification ϕ of
a parallel composition M1 ‖M2 to local specifications ϕ1 and ϕ2 such that M1 |= ϕ1 and
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M2 |= ϕ2 implies M1 ‖M2 |= ϕ. This is a very important problem that is however not related
to the here encountered problems: it is assumed that a specification ϕi of a module Mi has
already been verified, but now the module is called in a general context (not just parallel
composition) where parameters are substituted by expressions, and where the module’s
behavior is completed by assignments of the context. Thus, the problem is to determine
preservation results for the verified specification ϕi of a module Mi and there is no need to
decompose ϕ to the ϕis.

In [CBKT13] a symbolic decomposition of a transition relation by a locality check using
decision diagrams is presented. They work directly on the low level description of a transition
relation, this work instead uses synchronous guarded actions as description.

Outline

In the following Chapter, the definition of a Hoare calculus for Quartz on the source-code
level is discussed. It is shown that a definition of a Hoare-like rule for every statement is
cumbersome and that a normal form that collects the behavior of a macro step at a single
program part allows easily to define such a calculus. Unfortunately, the main result of this
chapter will be the impossibility of translating every Quartz program to this normal form.
Hence, an other approach is presented in Chapter 4 and extended by the following chapters.





Chapter 3

Interactive Verification of Synchronous Programs at
Source-Code Level

In this chapter, the definition of a Hoare calculus at source-code level of Quartz is discussed.
Introducing a Hoare calculus seems to be an easy task at the first glance: the rules only
need to be extended for the synchronous statements, and even concurrent execution was
considered for Hoare rules in the past [OwGr76a, OwGr76b, ApOl97, RBHH01]. The SOS
rules defining the semantics of Quartz are a good starting point for that. Firstly, the idea of
defining such rules is sketched. However, it will be explained in Section 3.1 that this is not at
all straightforward. The main problem presented in Section 3.1.1 is thereby the presence of
statements for concurrency in a form that has not yet been considered for Hoare calculus.

Having identified these problems, an alternative approach consisting of a normal form for
Quartz programs and Hoare rules for these programs is shown in Section 3.2. The usefulness
of these method is discussed in Section 3.2.4 by verifying an parallel algorithm. The main
result of this chapter is presented in Section 3.2.5 that proves that the translation to the
normal form is not possible without adding additional variables to the programs in general.
The reason therefore is that there are some combinations of statements that introduce
problems similar to the goto statement in sequential programs [Dijk68, KoFu06]. Besides the
general transformation, two transformations for restricted classes of synchronous programs
are given in Section 3.2.6 where it is not necessary to introduce the additional variables.
These transformations led to the approach presented in Chapter 4.

3.1 Adapting the Hoare Calculus for Quartz Programs

This section sketches the basic idea of using the SOS rules to define the Hoare rules. In
sequential programming languages, each statement updates a global state in the order of
the execution of the statements. This allows a compositional approach/definition of the
Hoare rules for these languages. In the synchronous MoC, several statements are executed
synchronously in a macro step and all influence the execution independently of the order
in which they occur in the source code, as a result of the data-dependent execution order.
Hence, the idea of defining Hoare rules for Quartz is based on collecting the behavior of
a macro step (all micro-step actions) and identifying the end of a macro step first. Then,
reasoning about the whole macro step and the execution of delayed assignments is done.
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This results in the requirement of two different rule sets for instantaneous statements and
composed statements.

The synchronous MoC requires that the variable environment does not change during
execution of micro steps, and synchronous updates of all variables have to be performed at
the beginning of a macro step. The assignment rule of Hoare calculus immediately updates
variables after each assignment, which is an encoding of the sequential MoC that is not
compatible with the synchronous MoC. Instead of having a pre-condition before executing a
statement and a post-condition that is fulfilled after the execution of that statement, it is
required that the pre-condition holds in the first macro step of a statement and the post
condition holds in the last macro step of that statement. Hence, for instantaneous statements,
both points of time are the same and there exists just a single satisfied condition and only a
composed statement that consumes time has a pre- and post-condition. This directly reflects
the difference of the two MoCs.

The ideas for the rules are presented in Figure 3.1. The precondition ϕ holds in the first
step of the statement S and the post-condition Ψ holds in the last step of the statement S.
Hence, these conditions are the same for instantaneous statements.

ϕ Ψ

S

Fig. 3.1: Idea for Macro Step Rules

3.1.1 Difficulties to Define a Hoare Calculus for Quartz

The first attempts to define a Hoare calculus for synchronous languages made clear very
early that difficult problems have to be solved, and the results given in this section show
that a direct definition of a Hoare calculus at the level of macro steps is not easily possible:

• The variable environment does not change during execution of micro steps, and syn-
chronous updates of all variables have to be performed at the beginning of a macro step.
In contrast, the assignment rule of Hoare calculus immediately updates variables after
each assignment, which is an encoding of the sequential execution of actions that is not
compatible with synchronous concurrency.

• Several assignments may be triggered during the same macro step (e.g. by the parallel,
abort and suspend statements), and these assignments may belong to different sub-
statements. As the rules of Hoare calculi are compositional and follow the syntax tree
of the program, this would require to traverse the entire syntax tree of the program
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for every reaction step in order to reach out for enabled assignments. Hence, the local
reasoning typically used in Hoare logic does no longer work, and must be replaced by a
global view on the program.

• Also the consideration of the delayed assignments that are executed logically after the
immediate assignments to consider their effects, requires a reiteration over the syntax
tree.

• Synchronous programs read inputs in every reaction step, while sequential programs
considered in Hoare calculus do typically not read inputs.

• Synchronous Quartz programs determine unique values for all output and local vari-
ables for every macro step. In case no assignment determines a value for a variable, a
corresponding reaction to absence determines it.

• The execution of statements may or may not require time, depending on the value of
inputs. Thus, the determination of the parts of a program that belong to the current
macro step is again a proof task that has to be handled in Hoare calculus.

• Reincarnation of local variables is a very tricky problem that has to be handled in the
Hoare calculus as well. To this end, variable environments have to be considered that
keep track of the values of the different reincarnations of a variable that exist at the
same time. While compilers know how to deal with schizophrenia, the very difficult work
[ScBS06, Schn09] would have to be re-implemented entirely in the Hoare calculus rules.

• Causality problems have to be detected and solved (if possible) to avoid consistency
problems or potential non-determinism in the potential Hoare rules. While causality
problems are well-understood and compilers know how to handle them, the existing
procedures would have to be re-implemented in a Hoare calculus as well.

3.2 Adapting the Hoare Calculus for Quartz in a Normal Form

As already described, it is not straightforward to define a Hoare calculus for synchronous
languages. The translation to sequential programs for verification with the Hoare calculus has
also serious drawbacks, as the control flow of the original program is completely destroyed
by the translation. Hence, even though the classic Hoare calculus is applicable this way, the
necessary user interaction, e.g. to provide additional information/invariants, becomes very
inconvenient.

Instead of defining rules that represent the behavior of each statement that additionally
have to collect micro step actions, an alternative approach that is based on a normal form
is presented here. It was published in [GeSc12] and represents a compromise between the
two mentioned approaches of translating to sequential programs and defining Hoare rules
for each statement. The approach operates in two steps, the first stage transforms a given
Quartz program to a normal form such that all micro step actions are collected into a single
assignment statement. Thereby, the rest of the syntactic structure of the synchronous program
should be retained. Programs obtained this way are called to be in sequential synchronous
tuple assignment (SSTA) normal form. We show that in principle all Quartz programs can be
automatically transformed into this form, but this transformation require additional variables,
and even though a manual rewriting often produces better code for verification as a naive
approach that follows the C-synthesis.



38 3 Interactive Verification of Synchronous Programs at Source-Code Level

It is important to note that this normal form allows the preservation of most of the
program’s control structures, especially the loops, and therefore, it allows the use of their
invariants for the verification with the Hoare calculus. This way, interactive verification based
on a generalized Hoare calculus is conveniently used. One should also note that this normal
form is not a canonical (unique) normal form.

The transformation solves most of the problems mentioned in Section 3.1.1. Since all
assignments in a SSTA form program are collected at a single place of the program, iterations
over the syntax tree to find the triggered actions of a macro step can be avoided. Additionally,
write conflicts are easily detected and reincarnations of local variables are easily identified as
well. The values of delayed assignments can be evaluated and will be assigned to the variables
as soon as a pause statement is reached. We assume in the following that the considered
programs have no causality conflicts, because causality is checked during compilation.

3.2.1 Definition of Sequential Synchronous Tuple-Assignment Form

The main idea of this section is based on the SSTA form that represents a synchronous
program as a sequential program that makes use of synchronous tuple-assignments.

Definition 13 (Synchronous Tuple-Assignments (STAs)). Given that xi and yi are
pairwise different left-hand side expressions of the language Quartz and x1 = τ1, . . . , xm = τm
and next(y1) = π1, . . . , next(ym) = πm are assignments that are causally ordered such that
there are no read-after-write conflicts, i.e. that τi only has occurrences of x1,. . . ,xi−1, then
we call the following statement a synchronous tuple-assignment:

(x1, . . . ,xm).(y1, . . . ,yn) = (τ1, . . . , τm).(π1, . . . ,πn)

Using STAs, we are able to aggregate assignments xi = τi and next(yi) = πi that are
executed in one macro step into a single tuple assignment. Thus, we wish to rewrite a given
synchronous program such that in every macro step, at most one STA will be executed that
defines the entire data flow of that macro step.

Position of the STA in a Reaction Step

The position of the STAs has a great impact on the required rules. Hence, it is important to
determine the best position for them. An ideal position would be the direct coupling of them
with a pause statement, because then only one additional rule is necessary.

Unfortunately, the example in Figure 3.2 shows that a direct couplings (STA then pause)
is not possible without an unwanted rewriting of the program structure or additional variables:

• It is not possible to shift the assignment of c = 2 (Line 10); into the loop without adding
an additional variable. Let us assume that we are in the loop in the last macro-step and
the loop condition does not hold, hence we have to execute the assignment for c, but
after execution of this assignment (and all other micro step actions of the current macro
step) we reach the corresponding pause statement (as a result of the definition of the
desired form), which finishes the current macro-step. Hence, we do not leave the loop in
this step and in the next step the loop condition may hold again (since it is an input),
which leads to a wrong computation.
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1 while(i){
2 c=1;

3 l0: pause;
4 if(j) {

5 a=1; l1: pause; b=1;

6 } else {

7 a=2; l2: pause; b=2;

8 }

9 }

10 c=2;

11 l3: pause;

Fig. 3.2: Example to Determine the Position of a STA

• For the example in Figure 3.2 it is also impossible to shift the execution of the last
macro-step behind the loop, because therefore the last step of the loop body must
be computed, but the two branches (Lines 5 and 7) of the if-then-else statement are
not distinguishable (without unwanted merging of control- and data-flow or additional
variables) and so it is impossible to execute these micro-steps after leaving the loop.

Hence, without rearranging the whole program or adding additional variables it is impossible
to get the desired form for this example. In the next section, we describe the arranging of
micro-step actions into single execution units not directly but followed by a pause statement
such that only a single STA is executed in each macro step. Hence, the normal form is defined
as:

Definition 14 (SSTA Form). A synchronous program is in sequential synchronous tuple-
assignment (SSTA) form if all its actions are STAs and between the execution of two STAs
at least one pause statement is executed.

The SSTA from does not allow two STA be executed in the same macro step, hence it
implicitly prohibit the parallel statement.

3.2.2 Extension of Hoare Calculus for Programs in SSTA-Form

After applying a SSTA transformation that will be introduced in Section 3.2.6 and in
Section 3.2.7 the concurrency available in one macro step of the original synchronous program
has been reduced to a single STA that synchronously updates all variables. For example,
Figures 3.24, 3.25, and 3.26 show examples of original and transformed statements.

The remaining statements after applying the transformation are the usual statements
of a sequential programming language, we can make use of the Hoare rules of Figure 2.16
except for the assignment rule. The assignment rule is replaced by a more general new rule
for STAs that represents the formal semantics of a STA:

Definition 15 (Tuple-Assignment Rule).

STAAssign : {
[[
. . . [Φ]τ1

x1
. . .
]τn

xn

]π1,...,πn

y′
1,...,y

′
n

} (x1, . . . ,xm).(y1, . . . ,yn) = (τ1, . . . , τm).(π1, . . . ,πn) {Φ}
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The meaning of the above rule is as follows: First of all, note that the effect of the immediate
assignment xi = τi is already seen by the evaluation of the other right hand side expressions
τj with j > i as well as for all expressions πk. Moreover, the delayed assignments are encoded
by a concurrent substitution so that the values of the y′k do not have an impact on the
evaluation of the right hand side expressions and they are not accessible until the next pause
statement is reached.

Definition 16 (Pause Rule).

pause : {
[
[. . .Φ. . .]τ1...τn

i1,...in

]y′
1...y

′
n

y1...yn

} pause {Φ}

The meaning of the pause statement is to define the end of the current macro step and the
start of the next one. The corresponding Hoare calculus rule has to update the values of the
input variables ik and finally the values of all next assignments y′k has to be assigned to the
variables yk. Our new rules are quite similar to the original assignment rule and indeed they
contain the assignment rule as a special case.

SSTA-Form and Pre-emption Statements

It is possible to define Hoare calculus rules for the pre-emption statements so that also pre-
emption statements will be preserved. It is however also possible to remove these statements
by modifying either the actions inside a STA, the loop conditions, or by surrounding parts
of the code with simple loop or if-then-else statements. All these steps are similar to the
generation of guarded actions during compilation, where the pre-emption statements are
removed, too.

weak suspend {

(a,b).() = (1 ,1).();

l1: pause;
(b).(c) = (2).(3);

l2: pause;
().(c) = ().(3);

} when(i);

Fig. 3.3: Before Elimination

(a,b).() = (1 ,1).();

do {

l1: pause;
(b).(c) = (2).(3);

} while(i);
do {

l2: pause;
().(c) = ().(3);

} while(i);

Fig. 3.4: After Elimination

For instance, removing a weak suspend statement (see Figure 3.3) requires to embed all
contained pause statements and the associated STA for that macro step in a loop with the
suspend condition. In this way, the transformed program (see Figure 3.4) behaves like the
original one, because the weak suspend statements demand that as long as the condition
holds, the control flow is suspended while the actions of the current macro step are executed.
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The additional loops are also no problem for the Hoare calculus, because their invariants are
trivial.

In case of a strong suspend statement, only the pause statements must be surrounded
by a loop (see Figure 3.5), because this statement demands that as long as the condition
holds, the control flow is suspended and no actions are executed.

(a,b).() = (1 ,1).();

do {

l1: pause;
} while(i);
(b).(c) = (2).(3);

do {

l2: pause;
} while(i);
().(c) = ().(3);

Fig. 3.5: SSTA Quartz Program after Elimination of Strong Suspend

Abortion statements can be replaced by if-then-else statements and the modification of all
loop and suspend conditions in the scope of an abort statement. In general, we conclude
that the choice between removing or preserving the pre-emption statements seems not to be
relevant for an interactive verification by means of the Hoare calculus.

3.2.3 Comparing a Simple and a Manual SSTA Transformation

It is not difficult to see that every synchronous program can be translated to an equivalent
program in SSTA form by using additional boolean variables for the locations. This is in
analogy to the translation of control flow to data flow by the elimination of goto statements
[BoJa66, AsMa71, BrSt72, Elgo76, Mill75], and it is essentially what happens when compilers
translate synchronous programs to intermediate code like guarded actions [Schn09, BrSc11]:
compilers make use of the location variables to encode the control flow of the program by
adding assignments to these location variables. These assignments are, however, nothing else
but simulated goto statements. As goto statements are considered harmful for structured
programming [Dijk68, Dijk72], a reduction that works without these additional variables is
desired. Moreover, the introduction of these variables is often unnecessary and it makes the
verification by the Hoare calculus more difficult [KoFu06]. In particular, these assignments
complicate the required invariants that the user must provide during the verification. Hence,
an automatic transformation of synchronous programs to STA form obtained by translating
control flow to data flow using assignments to location variables is not desired. Before
describing some automatic transformations, a manual transformation into STA form is
used to show the feasibility of the approach that preserves the control flow statements for
verification. Therefore, this manual transformation is compared to the approach used in
the synthesis to C-code. In the following, this transformation is described in more detail.
Moreover, a transformation to SSTA form that preserves most control statements induces
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also a new kind of code generation for sequential languages. It will be shown that the manual
rewriting creates better code for verification than the naive transformation.

Unfortunately, Section 3.2.5 will prove that a transformation to SSTA form in general
is impossible. Thus, some synchronous programs can not be transformed into SSTA form
without adding new variables. Nevertheless, the Sections 3.2.6 and 3.2.7 will show that there
exists transformations into the SSTA form for most Quartz programs.

Simple SSTA Transformation based on the Idea of the C-Synthesis

A simple transformation to STA form is based on the EFSMs generated by the compiler.
The advantage of the EFSM is that the actions of the macro step are already collected in the
states of the EFSM. Indeed, one may interpret a state of the EFSM as another representation
of a STA. Hence, a transformation to a STA form can be obtained by representing the EFSM
as a synchronous program. For example, one may just use a loop that switches to the current
control flow state in each step. However, such a SSTA form program would again translate
the control flow to the data flow by assignments of the location variables. This procedure is
nothing new, because the synthesis to sequential code, e.g. C code, is done in a similar way.
Therefore, this transformation suffers from the same problems as the original Hoare calculus
applied to synthesized sequential code since all control flow structures have been removed.
Instead, it is shown that the manual transformation to STA form is preferred, because here
it is possible to preserve most of the original syntax.

Example

For a better understanding, we consider a small example. The Quartz module in Figure 3.6
is an implementation of an algorithm to compute Fibonacci numbers. The program receives
a natural number inp as input, and computes the natural number f and the Boolean event
rdy as output. In its first macro step, the program receives the index inp of the Fibonacci
number to be computed. During the computation, the program assigns in every macro step
one Fibonacci number to output f. The program signalizes the end of the computation by
the event rdy. In that case, the output f should contain the desired value.

The corresponding EFSM is shown in Figure 3.7. The EFSM has three states, where
State 0 is the initial state and State 2 is the final state. In each macro step, all actions of the
current state are executed according to their data dependencies.

For example, the action n≤ 0⇒ f = 0 of State 0 states that if n is less than or equal to
zero, then 0 is immediately assigned to variable f in this state. After the execution of all
actions, the next state is determined by the transitions and their corresponding conditions.
It is important to know that all conditions of a state’s outgoing transitions are disjoint as a
result of the deterministic behavior of synchronous programs.

The result of the above mentioned procedure to generate program code in SSTA form
is shown in Figure 3.8. As can be seen, where the program has been completely rewritten.
Unfortunately, the local loop is replaced by a loop that contains the whole program and the
global loop would also cover all local loops (even nested) if there would be more than one
loop. To use this program for verification with the Hoare rules for STA, an invariant for the
loop is required, but invariants are usually manually given. The devloper, however, might not
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module Fib(nat ?inp ,f,event !rdy) {

nat k,g,n;

n = inp;

if(n <= 0)

f=0;

else {

k = 1;

g = 0;

f = 1;

while(k != n) {

next(g) = f;

next(f) = f+g;

next(k) = k+1;

l: pause;
}

}

emit(rdy);
}

Fig. 3.6: Computing Fibonacci Numbers in Quartz

State 0

true ⇒ n=inp

n≤ 0 ⇒ emit(rdy)
n≤ 0 ⇒ f=0

n> 0 ⇒ k=1

n> 0 ⇒ g=0

n> 0 ⇒ f=1

n> 0 ⇒ next(g)=f
n> 0 ⇒ next(f)=f+g
n> 0 ⇒ next(k)=k+1

State 1
n == k ⇒ emit(rdy)
n 6= k ⇒ next(g)=f
n 6= k ⇒ next(f)=f+g
n 6= k ⇒ next(k)=k+1

State 2

n 6= k∧n> 0

n == k

n == k

n 6= k∧n≤ 0

n 6= k

Fig. 3.7: EFSM of Module Fib (Figure 3.6)
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module FSA(nat ?inp ,f,event rdy){

nat k,g,n,l;

do {

case
(l==0) do

(n,rdy ,k,g,f).(g,f,k,l) =

(inp ,n<=0,1,0,(n >0?1:0)).

(f,f+g,k+1,(n>0&n!=k?1:2));

(l==1) do
(rdy).(g,f,k,l) =

(n==k).(f,f+g,k+1,(n!=k?1:2));

default
nothing;

pause;
} while (l!=2);

}

Fig. 3.8: Automatically Generated STA Code for Module Fib

have any clue for the global loop, but could give an invariant for the local loop. Even worse
is the fact that the case statement contains a clause for each reachable control flow state.

module FSM(nat ?inp ,f,event !rdy){

nat k,g,n;

if(n<=0)
(n,f,rdy ).() = (inp ,0,true).();

else {

(n,k,g,f).(g,f,k,l) =

(inp ,1,0,1).(f,f+g,k+1 ,2);

while(k!=n) {

pause;
if(k!=n)

().(g,f,k,l) = ().(f,f+g,k+1,2);

else
(rdy ).() = (true).();

}

}

}

Fig. 3.9: Manually Transformed SSTA Code for Module Fib

In contrast, a manually generated SSTA code for module Fib is shown in Figure 3.9. Assuming
that the code was correctly transformed by the user, this code has the advantage that only
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the actions are duplicated to the STAs to solve the problems discussed in Section 3.1.1 while
the control flow has been completely preserved.

The verification of the automatically generated code using the Hoare calculus requires an
invariant for the while loop that contains the whole program. In contrast, the verification
of the manually translated code requires only an invariant for a loop comparable with the
original loop. Clearly, the automatically generated code always contains only a single loop
and therefore merges all loops of the given program into one which makes the use of loop
invariants quite difficult.

3.2.4 Experimental Results

The manual rewrite approach was applied to some classic sequential algorithms modeled
in Quartz. Among other examples, an algorithm to compute Fibonacci numbers (see Sec-
tion 3.2.3), the extended Euclidean algorithm, and Bubblesort were considered. These
programs were transformed manually to SSTA form, and verified in the same way the
sequential programs are verifiable without any problems. The SSTA form programs were not
much longer than the original programs, and the already known classic proofs did work also
for the synchronous programs. Hence, these examples substantiated the approach.

Of course, the advantage of the approach is that it is now possible to verify algorithms
where several actions are executed in parallel. Therefore, the verification of the parallel
algorithm for expression tree contraction was done.

Parallel Expression Tree Contraction

In [KaRa88, Meta97] a parallel algorithm for the evaluation of expression trees that runs
in time O(log(N)) for expression trees with O(N) leaf nodes is given. The input of this
algorithm is an rooted expression tree, where the inner nodes correspond to expressions
of addition (ADD) or multiplication (MUL) and the leaves correspond to constant values.
During the evaluation of the expression, the tree is transformed and finally collapsed to a
single node containing the result of the evaluation. The expression tree for the expression
(x1 + (x2 ∗ ((x3 +x4) +x5))) is given in the following, where xi with i ∈ {1..5} is a constant.

+

root

x1 ∗

x2 +

+

x3 x4

x5
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The Shunt Operation

The algorithm is based on tree contraction that is based on the shunt operation. The shunt
operation is a pruning of a leaf followed by a shortcutting of the leaf’s parent. In Figure 3.10,
the shunt operation is applied to the leaf labelled with e.

r

eps ep

e se

 eps

r

s′e
\

Fig. 3.10: Shunt Operation

The Idea of the Algorithm

The idea of the algorithm is to repeatedly apply shunt operations in parallel to as many
nodes as possible in each iteration step. To circumvent conflicts between the shunt operations,
the shunt operations are first applied to all odd numbered leaves that are the left children of
their parents, and afterwards to the odd numbered leaves that are the right children of their
parents. In that way, half of the leaves and the same number of inner nodes are removed in
each iteration and all applied shunt operations do not interfere. In Figure 3.11, the pseudo
code of this tree contraction algorithm is given (see [KaRa88]).

1) Label the leaves in order from left to right.
2) for dlog(n)e operations do:
a) Apply shunt in parallel to all odd numbered leaves

that are the left children of their parents.
b) Apply shunt in parallel to all odd numbered leaves

that are the right children of their parents.
c) Divide the indices of the leaf labels by two.

Fig. 3.11: Tree Contraction Algorithm

This algorithm was implemented in Quartz (see Figure 3.12) and transformed it into STA
form manually (see Figure 3.13). Finally, the correctness of the implementation was proven.

Parallel Expression Tree Contraction in Quartz

In the implementation, expressions are stored in an array expr that holds tuples with
components opc, prt, sib, val, lft, a, b and bsy with the following meanings:
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• opc indicates either the root node (ROOT), a constant value (CST) or an operation
(ADD or MUL)
• prt is the index of the parent node
• sib is the index of the sibling node
• val is the value of a leaf which must have op-code opc≡ CST
• lft: if opc 6≡ ROOT holds, then this indicates whether it is a left child
• a,b are integers that specify the meaning of the expression so that if the expression is
recursively evaluated to a value v, the value is a ·v+ b

• bsy is a flag that indicates whether an array entry is in use

In addition to the expression tree, the algorithm also requires an array leaves that contains
the indexes of the leaf nodes from left to right (for the above example the array leaves

contain the indexes for the nodes x1 to x5 of the array representation for the expression
tree). This array leaves is used to iterate the leaves of the expression tree.

Assumptions and Invariants

Since the initial values stored in the arrays are not restricted, it must be ensured that the
represented data structure is really a tree and that the array leaves really refers to its leaf
nodes. Therefore, we start with an initial assumption ensuring these consistency conditions,
and prove that these properties remain valid during the execution of the algorithm:

Lemma 1. The array Σ representing the expressions tree is a rooted, ordered binary tree
with the following properties:

• single root:
∃r ∈Σ . (r.opc≡ ROOT)∧ r.bsy∧∀e ∈Σ ¬e.bsy∨ (e.opc 6≡ ROOT)
• binary tree:
∀a,b ∈Σ with (a= b.sib)∧a.bsy∧ b.bsy . (a.prt= b.prt)
∧@c ∈Σ (a 6= c 6= b)∧ (a.prt= c.prt)∧ c.bsy
• siblings:
∀e ∈Σ with ¬((e.prt.opc≡ ROOT)∧ (e.opc 6≡ ROOT))∧
(e.opc≡ CST)∧e.bsy .∃!s.(s= e.sib)∧s.bsy
• left/right:
∀e ∈Σ with ¬((e.prt.opc≡ ROOT)∧ (e.opc 6≡ ROOT))∧
(e.opc 6≡ ROOT)∧e.bsy .a.lft 6= a.sib.lft
• constants are leaves:
∀a ∈Σ @b ∈Σ (a.opc≡ CST)∧ (b.parent= a)

The first property states that the expression tree has a single root node. The second formula
states that only two nodes have the same parent. The next two formulae ensure that each
node, except the root and in the last step also its single child, have exactly one sibling and
the value of the field lft of each node is consistent. The last formula states that all constant
nodes have no children.

In addition to the properties of the expression tree Σ, we have similar conditions on the
array leaves:
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macro N = 20; // number of possible expression nodes

macro L = 8; // number of possible leaves of the expression

module EvalExpr(

[N](nat{OpNo} ∗ nat{N} ∗ nat{N} ∗ int ∗ bool ∗ int ∗ int ∗ bool) ?e,

[L]nat{N} ?lf , int !y,event !rdy) {

[N](nat{OpNo} ∗ nat{N} ∗ nat{N} ∗ int ∗ bool ∗ int ∗ int ∗ bool) expr;

[L]nat{N} leaf; // list of leafs

for(i=0..N−1) expr[i] = e[i]; // copy the inputs to local variables

for(i=0..L−1) leaf[i] = lf[i];

for(i=0..log(L)−1) { // evaluation in time O(log(L))

for(shuntLeft =0..1) { // two phase approach

for(j=0..(L−1)/exp(2,i+1)) { // enumerates all even leafs

let(lj = leaf [2∗j])
let(l = expr[lj])

if(lj!=0 & l.bsy & (( shuntLeft ==0) <−> l.isLeft )) {

let(ls = l.sibling)

let(a1 = l.a)

let(b1 = l.b)

let(a2 = expr[ls].a)

let(b2 = expr[ls].b)

let(a3 = expr[l.parent ].a)

let(b3 = expr[l.parent ].b)

let(x = l.val) {

next(l.bsy)= false; // delete leaf l

next(expr[l.parent ].bsy)= false; // delete parent of leaf l

next(expr[ls]. parent) =expr[l.parent ]. parent;

next(expr[ls]. sibling )=expr[l.parent ]. sibling;
next(expr[ls]. isLeft) =!expr[expr[l.parent ]. sibling ]. isLeft;

next(expr[expr[l.parent ]. sibling ]. sibling) = ls;

if (expr[l.parent ].opc==ADD) {

next(expr[ls].a) = a2 ∗ a3;

next(expr[ls].b) = b3 + a3 ∗ (a1 ∗ x + b1 + b2);

} else {

next(expr[ls].a) = a2 ∗ a3 ∗ (a1 ∗ x + b1);

next(expr[ls].b) = b3 + a3 ∗ b2 ∗ (a1 ∗ x + b1);

} } } }

if(shuntLeft ==1)
for(j=0..(L/exp(2,i+1))−1)

next(leaf[j]) = leaf [2∗j+1]; // relabel the remaining leaves

}

pause;
}

let(root = expr[leaf [0]])

y = root.val ∗ root.a + root.b;

emit(rdy);
}

Fig. 3.12: Expression Tree Evaluation - Quartz Implementation
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Lemma 2. The array leaves contains all leaves of the given expression tree Σ from left to
right and the leftmost leaf is leaves[0]. Moreover, the following properties are satisfied:

• uniqueness:
∀i, j with (i 6= j)∧Σ[leaves[i]].bsy∧Σ[leaves[j]].bsy .
(leaves[i] 6= leaves[j])
• only constants:
∀i with Σ[leaves[i]].bsy . Σ[leaves[i]].opc≡ CST
• completeness:
∀e ∈Σ with e.opc≡ CST∧e.bsy.∃i.e= leaves[i]

This lemma states that the array leaves contains only pairwise different elements that are
constants and no other constants exist in the expression tree.

Correctness Proof

The correctness proof with the Hoare calculus is surprisingly simple. The transformed SSTA
code is shown in Figure 3.13. Due to readability, the STAs are not written as tuple assignments
and instead the start and end of the STAs in the code is marked by comments. One can see
that the structure is similar to the original code, only some of the actions are duplicated
and/or were moved.

The only interesting issue in the correctness proof was the necessary invariant for the
contained loop statement. This invariant states that the evaluation of the root node does
not change during the execution. With the above mentioned assumptions, it is provable that
each shunt operation is applied to a distinct sub-tree, hence, it is sufficient to show that for
the parent of the parent of the shunt target the evaluation remains the same.

For illustration, we assume without loss of generality that the expression tree contains a
sub-tree as shown in Figure 3.10. Note that swapping of eps and ep only leads to a negation of
the value in their lft field. The array representing this expression tree contains the following
entries:

oe pe se ve le ae be te:

os pe e vs ¬le as bs tse:

op r sp vp lp ap bp tpe:

ops r pe vps ¬lp aps bps tsp:

After the execution of the shunt operation on e, these entries are modified as follows (changes
are marked):

oe pe se ve le ae be fe′:

os r sp vs lp an bn ts′e:

op r sp vp lp ap bp fp′e:

ops r se vps ¬lp aps bps ts′p:
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if (0 <= log(L)−1) {

for(i=0..log(L)−1) {

for(shuntLeft =0..1) {

{ // ∗∗∗ STA 1 start

if(i==0 & shuntLeft ==0){

for(i=0..N−1) expr[i] = e[i];

for(i=0..L−1) leaf[i] = lf[i];

}

for(j=0..(L−1)/exp(2,i+1)) {

let(lj = leaf [2∗j])
let(l = expr[lj])

if(lj!=0 & l.bsy & (( shuntLeft ==0) <−> l.isLeft )) {

let(ls = l.sibling)

let(a1 = l.a)

let(b1 = l.b)

let(a2 = expr[ls].a)

let(b2 = expr[ls].b)

let(a3 = expr[l.parent ].a)

let(b3 = expr[l.parent ].b)

let(x = l.val) {

next(l.bsy) = false; // delete l

next(expr[l.parent ].bsy) = false; // delete parent

next(expr[ls]. parent) = expr[l.parent ]. parent;

next(expr[ls]. sibling) = expr[l.parent ]. sibling;

next(expr[ls]. isLeft) = !expr[expr[l.parent ]. sibling ]. isLeft;

next(expr[expr[l.parent ]. sibling ]. sibling) = ls;

if (expr[l.parent ].opc==ADD) {

next(expr[ls].a) = a2 ∗ a3;

next(expr[ls].b) = b3 + a3 ∗ (a1 ∗ x + b1 + b2);

} else {

next(expr[ls].a) = a2 ∗ a3 ∗ (a1 ∗ x + b1);

next(expr[ls].b) = b3 + a3 ∗ b2 ∗ (a1 ∗ x + b1);

} } } }

if(shuntLeft ==1)
for(j=0..(L/exp(2,i+1))−1)

next(leaf[j]) = leaf [2∗j+1];
} // ∗∗∗ STA 1 end

pause;
} }

{ // ∗∗∗ STA 2a start

let(root = expr[leaf [0]])

y = root.val ∗ root.a + root.b;

emit(rdy);
} // ∗∗∗ STA 2a end

} else
{ // ∗∗∗ STA 2b start

for(i=0..N−1) expr[i] = e[i];

for(i=0..L−1) leaf[i] = lf[i];

let(root = expr[leaf [0]])

y = root.val ∗ root.a + root.b;

emit(rdy);
} // ∗∗∗ STA 2b end

Fig. 3.13: Module Body in STA Form
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with an and bn defined as follows:

• in case of an addition node (op ≡ADD):
an = ap ∗as and bn = bp+ap(ae ∗ve+ be+ bs)

• in case of a multiplication node (op ≡MUL):
an = ap ∗as(ae ∗ve+ be) and bn = bp+ap ∗ bs(ae ∗ve+ be)

The difference of the evaluation for the sub-tree with root nodes r′ and r, respectively, (for
case op ≡ADD only) is computed as follows:

eval(r′)− eval(r) = a′r ∗v′r + b′r−ar ∗vr + br

= v′r−vr (ar and br are unchanged)
= (an ∗vs+ bn+aps ∗vps+ bvs)
−(ap(ae ∗ve+ be+as ∗vs+ bs)
+bp+aps ∗vps+ bvs)

= ap ∗as ∗vs+ap(ae ∗ve+ be+ bs)
+bp−ap(ae ∗ve+ be+ bs)− bp
−ap ∗as ∗vs

= 0

Hence, an iteration step does not change the result of the evaluation, because the difference
of the evaluation is 0 and with Lemma 1 and Lemma 2 it is provable that there are no
overlapping changes.

3.2.5 Impossibility of Transforming General Quartz Programs to SSTA-Form

After having shown the usefulness of the approach this section will prove that there is no
transformation that allows to rewrite arbitrary Quartz program into SSTA-form without
adding additional variables. The introduction of additional variables is comparable in many
ways to the elimination of goto statements in sequential programs that has been intensively
discussed [BoJa66, AsMa71, BrSt72, Kosa73, Kosa76, Mill75, Elgo76] in the past. By the
mentioned results, it turned out that every program with goto statements can be rewritten
to an equivalent program without goto statements using only ‘structured’ statements like
assignments, sequences, conditionals and loops. However, this program transformation requires
the introduction of new local variables to translate the control flow to the data flow. This
creates problems for the verification task as described in [KoFu06]. In particular, goto
statements are simulated by assigning a corresponding local variable a value that encodes a
particular location of the program. As the structure of the original program is thereby almost
completely destroyed, it was a natural question whether the elimination of goto statements
could still be done without using additional local variables. The question was negatively
answered by different authors [AsMa71, BrSt72, Kosa73, Kosa76].

These proofs could not applied directly to synchronous programs since several ideas
used there do not work for synchronous programs. In particular, the control-flow problem
described in [BrSt72] cannot be created with synchronous programs. On the other hand,
the problematic atomic action used in [AsMa71] that modifies the inputs during execution
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cannot be implemented with synchronous programs. However, it is possible to adapt the
idea of the proof given in [AsMa71] in order to prove that parallel statements cannot be
eliminated (without adding new variables or merging control and data flow). Thus, the
program transformation to SSTA-form does not exist for arbitrary programs.

Ashcroft Manna Example Program

Ashcroft and Manna presented in [AsMa71] a program that cannot be implemented by
structured statements without additional variables to store its control flow. Inspired by that
program, the program shown in Figure 3.14 cannot be transformed into SSTA-form1 without
additional variables.

module AshcroftManna(nat{3} ?i, nat{2} !o) {

bool x;

o = 1;

while(!x){
while(i==0&!x){

w1: pause;
o = 1;

}
w2: pause;
o = 1;

if(!x){
while(i==1 & !x){

w3: pause;
o = 0;

} w4: pause;
o = 0;

}
}



||



do {

w5: pause;
} while(i!=2);
w6: pause;
w7: pause;
x = true;



}

Fig. 3.14: A synchronous program that cannot be transformed to SSTA-Form.

The input of the program is a potentially infinite sequence consisting of values {0,1,2} and
the output is a sequence of the same length consisting of the values 0 and 1. An extended
finite state machine that can be compiled from the given program with the Quartz compiler
is shown in Figure 3.15.

As can be seen, the program reads the integer variable i and writes to an integer output
variable o in every macro step. Initially, it enters locations w1, w5 and the assignment o=1 is
executed. After the initial point of time, the module terminates two or three steps after i=2
holds. Moreover, if i=0 holds, then o=1 holds at the next but two points of time. Just as

1 Before explaining this program, it should be emphasized that this program was the simplest one
to construct with that property.
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well, if i=1 holds, then o=0 holds at the next but two points of time, which are important
properties.

The module given in Figure 3.14 satisfies some temporal logic specifications listed in
Lemma 3 below, and their proof can be easily made by ‘inspecting’ Figure 3.15 or using a
verification tool.

Lemma 3. Module AshcroftManna satisfies the following temporal logic properties where the
abbreviation active := init∨w1∨. . .∨w7 is used:

• S1: assert A G (i=2 −> A X X (G¬active∨X G¬active))
• S2: assert A G (i=0 −> A X X (o=1∨¬active))
• S3: assert A G (i=1 −> A X X (o=0∨¬active))

Specification S1 states that the program terminates two or three steps after i=2 holds.
Specification S2 states that two steps after input i equals zero, the output equals one or the
program is already terminated. The last specification is analog to the previous one.

For the following, it is important to recall that the control flow of the program remembers
implicitly the last two inputs. Moreover, note that the current action of the program does
not depend on the current input, but only on the previous but two inputs.

A transformation to SSTA form requires to eliminate the parallel statement, because the
SSTA form implicitly forbid the use of the parallel operator (otherwise two or more STAs
are executed in between two pause statements).

Examples for the Translation of Programs containing Parallel Statements

In particular, parallel statements are not always problematic. For example, it is no problem
to replace the statement{pause;}||{pause;} with the behaviorally equivalent statement
pause. Even the following program

{while(ϕ) l1: pause;}||{while(ψ) {l2: pause; l3: pause;}}

that is close to the program in Figure 3.14 is reduce-able to SSTA-form without adding
additional variables by removing the parallel statements as shown in Figure 3.16. This figure
also shows how powerful the parallel operator is. The idea of the translation is that the
outer-most loop is restarted as long as the control flow is inside both parallel threads (Line
16). As soon as one thread terminates, the remaining one is completely executed inside
the loop body (Lines 7,12,17,24,29). The termination condition of each thread, which is
either ¬ϕ or ¬ψ ensures that the other-most loop (with condition ϕ∧ψ) is left too (Lines
10,14,22,29,33).

However, just a single pause statement behind one of the loops makes it impossible to
remove the parallel statement, which is however difficult to prove, but represents the basic
idea for the proof of the following theorem.

Theorem 1 (AshcroftManna). There exists no transformation that allows to rewrite
arbitrary Quartz program into SSTA-form without adding additional variables.
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Fig. 3.15: Extended finite state machine of module AshcroftManna

Proof of Theorem 1

To derive a contradiction, assume that there exists such a transformation the generates the
Quartz program P1 in SSTA form that would be equivalent2 to the program in Figure 3.14.
Hence, P1 must terminate two or three steps after input i equals two and it must generate

2 The notion of equivalence used here is language equivalence, i.e. for all input traces the output
traces of equivalent programs have to be the same.
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1 do{
2 if (ϕ∧ψ){ // inside both loops?

3 l12: pause;
4 if (ϕ){ // still inside both loops?

5 l13: pause;
6 if (ψ∧¬ϕ) // leaving left

7 while(ψ){ // executing right loop

8 l2: pause;
9 l3: pause;

10 } // ψ does not hold

11 else if (¬ψ∧ϕ) // leaving right

12 while (ϕ) // executing left loop

13 l1: pause;
14 // ϕ does not hold

15 else
16 nothing; // restart execution

17 } else { // leaving left & continue with right one

18 l3: pause;
19 while(ψ){
20 l2: pause;
21 l3: pause;
22 } // ψ does not hold

23 }

24 } else // only inside a single loop

25 if (ψ)

26 while(ψ){
27 l2: pause;
28 l3: pause;
29 } // ψ does not hold

30 else
31 while(ϕ)
32 l1: pause;
33 // ϕ does not hold

34 } while (ϕ∧ψ);

Fig. 3.16: SSTA Representation for the Example

the same output sequence for o as the original program. The program is in SSTA form that
implicitly forbid the use of the parallel operator.
For the following discussion, we consider an input trace for the input i that is a potentially
infinite sequence of integer values such that the k-th value in the sequence is the value of the
input variable i in the k-th macro step. Hence, we may refer to points of time by referring
to a suffix of such a sequence. We then refer to a point of time w, when at this point of time
input i will receive the first value of the sequence w.

Since the runtime of our program depends on the input sequence, P1 must consist of at
least one loop. In particular, for every input sequence, there is a uniquely determined loop
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that is neither contained in another loop nor followed by another loop during the execution
of the program with the considered input trace. We call that loop the final loop for this
input sequence (similar to the original approach in [AsMa71]). Note that the parallel operator
allows to run two loops in parallel, which is used in the module AshcroftManna, but not
possible for programs in SSTA form.

To make the following considerations more concise, the following shorthand notation is
introduced:

Definition 17 (Final Loop Termination). P1: α ↪→ β means that if program P1 is run
with the input sequence α, it terminates the final loop executed for this input sequence at a
point of time where the current input is the first value of the suffix β of α.

Then the following lemma holds:

Lemma 4. Let while(σ) S be the final loop whose body statement is first entered at the point
of time where the last value of sequence α ∈N∗<2 is read. For every n ∈N, there is a sequence
γ ∈N∗<2 with |γ|= n such that for all sequences β ∈N∗<2, we have P1: αβγ2δ ↪→ ηγ2δ where
η is a potentially empty suffix of αβ and δ ∈ N∗<3 with 2 ≤ |δ| ≤ 3 are the inputs of the
remaining macro steps until the program terminates.

Note that for the above mentioned input sequence αβγ2δ module AshcroftManna terminates
at the last point of time of αβγ2δ (two or three steps after reading the input i= 2). Since P1
is equivalent to AshcroftManna, it must also terminate at this point of time.

Proof Idea

According to the above lemma, P1 terminates its final loop even at time ηγ2δ so that the
computation of P1 must run for further |ηγδ|+ 1 macro steps. Since the length of γ can be
made arbitrarily long, P1 must execute a further loop which is a contradiction to the fact
that the final loop has already terminated. Hence, P1 cannot exist.

Proof of Lemma 4

Proof. The proof of the lemma is done by induction on n. In the base case, we have to prove
that for all β ∈ N∗<2, we have P1: αβ2δ ↪→ η2δ where η is a potentially empty suffix of αβ.
This is trivial, since the final loop must terminate at least at the final position of the input
sequence, since the entire program P1 terminates at that point of time. The last |δ| inputs
are arbitrary and the previous inputs are not longer accessible and so it is impossible that
the final loop ends in a step where one of them is read. This results to the fact that in the
step the final loop terminates at least the suffix 2δ is left.

For the induction step, we may assume that the induction hypothesis is true for some
number n ∈ N, i.e. we have γ ∈ N∗<2 with |γ|= n such that

(1) ∀β ∈ N∗<2.∃η ∈ N∗<2. P1: αβγ2δ ↪→ ηγ2δ

We will show that the following proof goal holds:

(G1) ∃γ′.
∣∣γ′∣∣= n+ 1∧∀β ∈ N∗<2.∃η ∈ N∗<2. P1: αβγ′2δ ↪→ ηγ′2δ

To this end, we define a suitable witness γ′ by considering the following cases:
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Case 1: In this case, we assume the following

(2) ∀β ∈ N∗<2. |β|> 0→∃η ∈ N∗<2. P1: αβγ2δ ↪→ ηγ2δ∧|η|> 0,

i.e. for all sequences β ∈N∗<2, even more than γ, namely ηγ2δ with |η|> 0 is left. We can
therefore define3 γ′ := 0γ, since the final loop terminates before reaching γ. Using γ′ := 0γ
as a witness of (G1) reduces our proof goal to (G2) ∃η ∈ N∗<2. P1: αβγ′2δ ↪→ ηγ′2δ for
an arbitrary sequence β. To prove this, we instantiate β0 in our case assumption (2) and
obtain with a certain η with |η|> 0 the fact (3) P1: αβ0γ2δ ↪→ ηγ2δ. Since η is nonempty
and a suffix of αβ0, η is of the form η′0, so that we have proved that P1: αβ0γ2δ ↪→ η′0γ2δ,
i.e. P1: αβγ′2δ ↪→ η′γ′2δ holds. Hence, we can use η′ as a witness to prove (G2).

...

while(σ) {// this is the final loop
...
w0:pause;
...

w5:pause;
...

w7:pause;
}

...
wx:pause;
wy:pause;
...

α

β ′

0

β ′′

1

γ0

γ0

o=?

Fig. 3.17: Situation Described in the Proof of Lemma 4.

Case 2a: If (2) is not true, it follows from its negation that the following fact holds:

(4) ∃β ∈ N∗<2. |β|> 0∧P1: αβγ2δ ↪→ γ2δ.

Hence, there are nonempty sequences β that are entirely consumed by the final loop
reached by α. Assume one of these sequences β ends with 0, i.e. assume that β = β′0
holds. Then, we conclude (5) P1: αβ′0γ2δ ↪→ γ2δ by (4). In this case, we define γ′ := 1γ,
so that our proof goal is reduced as follows for some arbitrary β′′ ∈ N∗<4:

(G3) ∃η′′′ ∈ N∗<2. P1: αβ′′1γ2δ ↪→ η′′′1γ2δ.

3 Note that the proof can also be made with the definition γ′ := 1γ.
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This means, we have to prove that the final loop does not consume the occurrence of the
value 1 before γ for arbitrary β′′ ∈ N∗<2. To prove (G3), we instantiate β′′1 in (1), and
obtain (6) P1: αβ′′1γ2δ ↪→ η′′γ2δ for some η′′.
We now prove that (7) |η′′|> 0 holds: If η′′ would be empty, it would follow by (6) that
(8) P1: αβ′′1γ2δ ↪→ γ2δ would hold. Hence, due to (5) and (8), the input sequences
αβ′0γ2δ and αβ′′1γ2δ will both terminate the same final loop (entered first by the last
value of α) when reading the first value of γ2δ. Clearly, the locations reached after reading
the sequences αβ′ and αβ′′ can be different, say w5 and w7, respectively, so that the
situation described is shown in Figure 3.17.
Note that the location wx is reached right after termination of the final loop by reading
the first value γ0 of the sequence γ2δ. Since the program P1 is deterministic, this location
is the same for both input sequences.
Now recall that input i=0 implies that in the next but two steps the output o is set to
one, and that input i=1 implies that in the next but two steps the output o is set to
two. For this reason, the inputs i=0 and i=1 read in the sequences αβ′0γ2 and αβ′′1γ2
right before γ that lead to the moves to locations w5 and w8 respectively, must lead to a
one and two as output respectively, at the location wy. However, at location wx and wy,
the reaction must only depend on the current inputs and can therefore not depend on
whether this location has been reached from w5 or w8. For this reason, if P1 should be
equivalent to AshcroftManna, we conclude that (7) |η′′|> 0 holds.
Since we now know that (7) |η′′|> 0 holds, and that η′′ is a suffix of αβ′′1, it must be of
the form η′′ = η′′′1, so that η′′′ can be used as witness to prove (G3) by the aid of (6).

Case 2b: This case is analogous to Case 2a, where we assume that none of the sequences β
mentioned in (4) ends with zero, thus they are of the form β′1. We then define γ′ := 0γ
and proceed with the proof analogously to the previous case.

Hence, the program P1 and with it the assumed transformation does not exists. This means
the program in Figure 3.14 is not representable by another Quartz program without adding
additional variables or using the parallel operator. Hence, Theorem 1 holds.

This result makes the transformations presented in the next section (that were acquired
before Theorem 1 was proven) less important. Nevertheless, they allow to represent a subset
of all possible Quartz programs to be represented in SSTA form. Hence, for these program the
presented approach is applicable. The approach presented in the following chapter emerged
from the following transformations. Hence, I will describe these transformations, but will
omit the complicated correctness and completeness proofs, since the approach presented in
Chapter 4 obviate the need for them.

3.2.6 Transformations for a Quartz Subset to SSTA-Form

According to Theorem 1, it is not possible to eliminate parallel statements without adding
additional variables or using the parallel operator. Moreover, the use of delayed assignments
or abort statements in the program P1 does not change the result since the inputs induce
the next but two outputs of module AshcroftManna. As a result of this proof, it is also
impossible to transform every program into SSTA-form in general. Nevertheless, we are able
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to transform all Quartz programs not containing parallel statements into SSTA-form which is
shown in the following. Afterwards, we present another approach, which is able to transform
some Quartz programs containing parallel statements.

Source Code Transformation Rules

In the following, we assume that the micro steps are already causally ordered by a previ-
ous causality analysis as well as the auxiliary functions mkGA(Φ), surface(Φ), inst(Φ) and
residue(Φ) defined in [Schn09] are given. The function mkGA(Φ) generates a causally ordered
list of guarded actions representing the statement Φ and handles all schizophrenia problems
by renaming local variables. This is essentially the compiler described in full detail in [Schn09].
A statement is split by the functions surface(Φ) and residue(Φ) into the surface (all micro
step actions that have to be executed at starting time) and the statement that have to be
executed in the next macro step. Finally, inst(Φ) determines if the given statement consumes
time or not.

Provided that ε is a Boolean value and Φ is a Quartz statement, then the following
function is defined to simplify the transformation:

mkSTA(ε,Φ) :=
{

nothing, ε= true

mkGA(Φ) , ε= false

Unlike the function mkGA(Φ), the function mkSTA(ε,Φ) computes the list of guarded actions
only in the case the Boolean parameter ε does not hold. Additionally, we use the function
splitS(Φ) := (surface(Φ) , inst(Φ) , residue(Φ)) as a shortcut.

Finally, we define the function CMA(ε,(Υ,ι,Φ),Ψ,Σ) to collect all micro actions into
STA-blocks. Parameters of this function are the following:

• ε is a Boolean flag that indicates that all micro actions for the current macro step have
already been executed (this does neither hold in the first macro step of the program nor
in the first macro step of an abort statement).

• Υ contains all micro step actions of the current macro step.
• ι denotes whether the current statement consumes time (in case ι is neither true nor
false, a case distinction is made by the last rule).

• Φ is the statement that is executed in the next macro step (the residual).
• Ψ defines a statement that has to be executed in every macro step of the current statement
(used for abort statements).
• Σ is the statement that has to be executed after/during leaving the current statement.

The function CMA contains for each Quartz statement a case (defined by the pattern
matching of Θ). It uses the function splitS(Φ) to decompose the current macro step from the
following macro steps. For ι= true the micro steps contained in Υ represent the behavior of
the whole macro step and will be compiled to a STA in each case of the function CMA.

Proposition 1. Given a Quartz statement Φ that does not contain a parallel statement, the
SSTA-form of the statement Φ is computed by the function

Transform2STA(Φ) := CMA(false,splitS(Φ) ,nothing,nothing)

.
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• assignment case: CMA(ε,(Υ,true,φ),Ψ,Σ) :=
mkSTA(ε,Υ ; Ψ) ; pause; mkSTA(ε,φ; Ψ ; Σ),
with φ ∈ {nothing, [next]x = τ}

• loop case: CMA(ε,(Υ,true,Φ1;while(σ){Φ2}),Ψ,Σ) :=
CMA(ε,(Υ,true,Φ1),Ψ,surface(while(σ){Φ2}; Σ)) ;
while(σ){

CMA(true,splitS(Φ2) ,Ψ,if(σ) surface(Φ2)elseΣ)
}

• sequence case: CMA(ε,(Υ,true,Φ1; Φ2),Ψ,Σ) :=
CMA(ε,(Υ,true,Φ1),Ψ,surface(Φ2; Σ)) ;
CMA(true,splitS(Φ2) ,Ψ,Σ)

• abort case: CMA(ε,(Υ,true,[weak] abort Φ1 when immediate(σ)),Ψ,Σ) :=
mkSTA(ε,Υ ; Ψ) ;
[weak] abort

CMA(true,(Υ,true,Φ1),Ψ ;if(σ)Σ,Σ) ;
when immediate(σ)

• suspend case: CMA(ε,(Υ,true,[weak] suspend Φ1 when immediate(σ)),Ψ,Σ) :=
mkSTA(ε,Υ ; Ψ) ;
[weak] suspend

if(σ) pause;mkSTA(false,Υ ;Ψ) ;
CMA(true,(Υ, inst(Φ1) ,Φ1),Ψ,if(¬σ)Σ) ;

when immediate(σ)

• termination case: CMA(ε,(Υ,false,nothing),Ψ,Σ) := mkSTA(ε,Υ ; Ψ ; Σ)

• if-then-else case: CMA

(
ε,

(
Υ,ι,

{
Φ1, σ

Φ2, otherwise

)
,Ψ,Σ

)
:=

mkSTA(ε,Υ ; Ψ);
if(σ) CMA

(
true,(Υ, [ι]trueσ ,Φ1),Ψ,Σ

)
else CMA

(
true,(Υ, [ι]falseσ ,Φ2),Ψ,Σ

)
• if-then-else case: CMA(ε,(Υ,ι,Φ),Ψ,Σ) :=

if(ι) CMA(ε,(Υ,true,Φ),Ψ,Σ)
else CMA(ε,(Υ,false,Φ),Ψ,Σ)

Fig. 3.18: Transformations for all Statements

Example

Figure 3.19 shows a Quartz program before (left-hand side) and after (right-hand side)
applying the above defined transformation.
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module example1 (int !a, bool ?i, ?j){

weak abort {
a= 1;`1 : pause;
while(i)

if(j) {a= 2;`2 : pause;}
else {a= 3;`3 : pause;}

a= 4;
}when immediate(j);


⇒

SSTA



[
a= 1

]
if(¬j) {
`1 : pause;
while(i∧¬j)

if(j) {[
a= 2

]
else[

a= 3
]

if(¬j) pause;[
a= 4

]
}

}
}

Fig. 3.19: Example Transformation for weak abort

3.2.7 Handling Pre-emption

The function Transform2STA does not eliminate the abort and suspend statements, hence
there are two ways from this point on to define a Hoare calculus for the SSTA-form: either
we eliminate these statements or we introduce additional rules for them in the above
transformation. The latter is quite simple, because the program is already in SSTA-form. To
remove suspend statements, replace all STA-blocks Ξ after a pause statement in the scope
of a weak suspend statement with condition β by:

Ξ; while(β){pause;Ξ}

For a strong suspend statement the block must be replaced by:

while(β){ pause;}Ξ

The transformation of weak abort statements with condition β is also simple: Add ¬β as a
conjunction to all loop conditions in the scope of the statement and add in front of all pause
statements and all program blocks in its scope a if(¬β) that ranges to the end of a block.
These if-statements jump to the end of the abort statement iff the condition β holds.

Conclusion

It was proven in Section 3.2.5 that not every program can be transformed into SSTA-form
without adding additional variables. In this section a transformation was sketched that
allow to transform all Quartz programs without parallel statement (there was no case
definition for the parallel statement) to SSTA form. Clearly, there are programs with parallel
statements that can also be transformed to SSTA-form, e.g. the programs presented in
Section refsec:proofnoSSTATRans. Translating some of these programs will be explained in
the following.
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Transformation based on EFSM

The previous section defines a transformation of Quartz programs to SSTA-form at source-
code level. This transformation is incomplete, in particular, there is no rule for the parallel
statement, which is unsatisfactory since this lack prevents us from using Hoare calculus
for the verification of parallel components. After some attempts to directly define such a
transformation on source-code level, it was identified that the compilation to EFSMs already
available in the Averest compiler is a good basis to start with: During the compilation into an
EFSM, the compiler already handles problems like adding reaction-to-absence assignments,
introduction of copies of local variables due to schizophrenia problems, and the resolution of
causality problems. The result does not contain preemption nor parallel statements and have
a simple structure, because all statements are reduced to SGAs. Thus, it is natural to use
the EFSM output as a starting point for the program transformation into SSTA-form. This
leads directly to the approach presented in this section.

Quartz 
Program EFSM

SSTA
Program

SSTA
Program

The aim is to translate this EFSM to a SSTA-form program by application of some patterns
(see Figure 3.20) that reflect the control flow of the statements. Of course, due to the results
in Section 3.2.5, this translation can also not be complete, but it is possible to handle some
programs with parallel statements. This is very important since the parallel composition
is, in practice, the key to a compositional verification, since most components of reactive
systems run concurrently to each other.

On the other hand, the translation to EFSMs unfortunately destroys some information
such that the new transformation is not more powerful than the previous transformation (as
demonstrated by the example of Figure 3.21). Hence, both transformations are incomparable
in terms of applicability, so that a combination of both is desirable.

The transformation to SSTA-form makes use of graph rewriting using the patterns shown
in Figure 3.20. During the course of graph rewriting, sub-graphs and the contained guarded
actions are replaced with parts of a program in SSTA-form. For that purpose, all dependencies
of the trigger condition (lower case letters) and the corresponding action list/statements
(capital letters) of a transition have to be translated into statements making use of a STA.
In the following, some comments on the rules of Figure 3.20 are given:

• The sequence Rule (a) reduces all sequences in the EFSM to sequences in SSTA code.
Thereby the number of control flow states in the EFSM is reduced.
• Rule (b) duplicates a control flow state of the EFSM, which is sometimes necessary to

make other rules match. Hence, the rule increases the number of control-flow statements.
• Rule (c) is applicable and reduces these transitions to a single one by the use of the if-

then-else statement. The order of the cases is arbitrary since the guards of the transitions
are mutually disjoint.

• Rule (d) is used to unroll loops which is needed, because in sequential programs without
goto-statements only one loop entrance is possible. Hence, this rule transforms an EFSM
that includes a cycle with more than one entrance.
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Fig. 3.20: Graph Rewriting Rules
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module counterExample (bool b,c,x){
abort

loop
if(b) `1 : pause;
else if(c) `2 : pause;

else `3 : pause;
} when(x);
}

1

a

A
b
B

2

c

C
d
D

3

e

E
f
F

Fig. 3.21: Completeness Counter Example

• A self-loop transition is replaced by Rule (e), which introduces a while-loop statement
whose body statement is the old transition’s statement. The trigger condition of the
new transition is true, because it is the only outgoing transition of the node and if the
original trigger condition does not hold, the while loop is not entered and thus, nothing
is changed.

• Rule (f) allows one to reduce step by step a sequence of an arbitrary length contained in
an abort statement. Abort statements have a typical structure in the EFSM graph: All
states contained in a abort statement have an outgoing transition with the same trigger
condition and the same target node that does not consumes time.

• In this manner, the pre-emption Rule (g) is able to reduce a cycle in the EFSM that
has several outgoing transitions that do not consume time into a SSTA code part. The
condition ¬b is the condition of the abort statement.

3.2.8 Expressiveness

The set of rules given in Figure 3.20 is not complete. For example, EFSMs that have sub-
graphs, whose nodes are connected with each other node, cannot be translated. An example
of such an EFSM is shown in Figure 3.21, and unfortunately there are synchronous programs
that generate this kind of EFSMs. Nevertheless, the rules handle most cases that occur in
practice, and completeness is not possible in general due to the result of Section 3.2.5.

The advantage of the approach presented here is that the compiler automatically reduces
every serializable statement that is not parallel-free to an equivalent parallel-free-like form.

Definition 18 (Parallel-Free Statements). A Quartz statement that does not contain a
parallel statement is parallel-free.

Definition 19 (Serializable Statements). A Quartz statement is serializable iff there
exist an equivalent parallel-free statement.

Figure 3.22 contains some examples for serializable statements and in Figure 3.23 the structure
of the equivalent statement for the statements in Figure 3.22 is given. The only difference is
the condition φ, which equals a&b for the first example and a for the remaining two.
It is complicated to define rules on source-code level that handle such serializable statements.
The presented approach contains these rules implicitly, because the EFSM output of all three
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module ma1 (bool?a, ?b, into) {
{

while(a& b){
next(o) = o+ 1;
`1 : pause;

}
} ‖ {

immediate abort {
while(b){

next(o) = o+ 1;
`2 : pause;

}
} when(¬a);

}
}

module ma2 (bool?a, ?b, into) {
{

while(a){
do {

next(o) = o+ 1;
`1 : pause;

} while(a& b);
}

} ‖ {
while(a){

next(o) = o+ 1;
`2 : pause;

}
}

}

module ma3 (bool?a, into) {
immediate abort {
{

while(true){
next(o) = o+ 1;
`1 : pause;

}
} ‖ {

while(a){
next(o) = o+ 1;
`2 : pause;

}
}

} when(¬a);
}

Fig. 3.22: Examples for serializable Statements

φ

o’ = o+1

`1,2
φ

o’ = o+1

¬φ

¬φ

module ma (bool?a, ?b, into) {
while(φ){

next(o) = o+ 1;
`1,2 : pause;

}
}

(a) EFSM Output Structure (b) Equivalent Code Structure

Fig. 3.23: EFSM Output and Equivalent Statement

programs have the structure shown on the left-hand side of Figure 3.23, which is translatable
with the loop rule. There are many more examples for serializable statements like these e.g.
two parallel if-then-else statements, all parallel instantaneous statements and all parallel-free
statements.

Proposition 2. Every parallel-free statement is translatable to SSTA form with the source-
code transformation (Proposition 1).

Lemma 5. Some serializable statements are translatable to SSTA form with the EFSM-based
transformation.

The set of rules for the EFSM-based transformation is not complete (see Figure 3.21),
hence programs that contain parallel statements and are serializable to the program given in
Figure 3.21 are serializable statements that the EFSM-based transformation cannot transform.
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On the other hand Figure 3.22 and Figure 3.24 show some programs that are serializable
and translatable.

3.2.9 Evaluation

module expl1 (bool ?i,y){
bool a,b,x;
{

if(x) y = true;
`1 : pause;
x= a;
a= y;
} ‖ {

if(i) x= true;
if(y)
{ `2 : pause;}

else a= true;
`3 : pause;
y = b;
}
}

module expl2 (int[20] x,bool ?stop){
int[20]y;
y = 10−x;
abort

do
`1 : pause;
next(x) = x+ 1;
next(y) = y−1;
`2 : pause;

while(x > 10);
when(stop);
}

Fig. 3.24: Examples One and Two
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Fig. 3.25: EFSM Graphs of Examples One and Two

In this section, the application of the rules is shown by two example programs. Figure 3.24
shows two Quartz programs whose EFSMs are drawn in Figure 3.25. The first example has
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if(¬x∧¬y∧¬i) {
(a).() = (true).();
pause;
(y,a,x).() = (b,y,a).()
} else {

if(i) (x,y).() = (true, true).()
else if(x∧¬i) (y).() = (true).();
else if(() ¬x∧y∧¬i)().() = ().();
pause;
(a,x).() = (y,a).();
pause;
(y).() = (b).();
}

(y).() = (10−x)();
pause;
if(stop) ().() = ().();
else {

().(x,y) = ().(x+ 1,y−1);
pause;
if(stop) ().() = ().()
else {

if(¬(x < 10)) ().() = ().()
else while(¬stop∧x < 10){

().() = ().();
pause;
if(stop) ().() = ().();
else {

().(x,y) = ().(x+ 1,y−1);
pause;
if(stop) ().() = ().();
else if(¬(x < 10)) ().() = ().();

} } } }

Fig. 3.26: SSTA Code of Examples One and Two

an input variable i, and an inout variable y. Hence, i and y are readable and additionally y

is also writable in the module body. Additionally the local variables a, b and x are used. In
the parallel statement both threads read and write the variables x and y and both threads
write the variable a. The second example contains a pre-emption statement that is able to
abort the execution of the contained loop.

The result of the compilation to EFSMs is given in Figure 3.25, and the final programs
in SSTA-forms are given in Figure 3.26. After adding some assertions and the translation to
SSTA-form, the programs can be verified with the classical Hoare calculus and the additional
rules for STAs and the pause statement.

Summary

There are many approaches to generalize the Hoare calculus to the verification of concurrent
programs. However, none of them can be directly used for the verification of synchronous
programs. Since synchronous programs can be translated to sequential programs, it is clear
that the classic Hoare calculus can – in principle – be applied after such a compilation.
However, since these translations destroy most of the syntax and since the use of the Hoare
calculus is driven by the syntax, this way of using the Hoare calculus is obviously not
reasonable.

For this reason, the synchronous programs are not synthesized to sequential programs to
apply Hoare calculus rules, but they are rewritten into a normal form where all assignments
of a macro step are combined in a single STA and no parallel operator is used. Applying this
transformation manually retains most of the syntax of the synchronous programs so that
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the programs are kept in a readable form that is necessary for the application of interactive
verification.

The transformation to SSTA form solved the problems identified during first attempts
of directly define a Hoare calculus for synchronous programs. These problems are solved,
because the SSTA programs behave like sequential programs. The only difference is that
all assignments in a macro step are synchronously performed by the STA. All control flow
statements behave as in the sequential programming model, and in particular, their control
flow conditions are evaluated in the same variable environment as the assignments contained
in the corresponding. Focusing on SSTA form programs, only suitable Hoare-like rules for
the tuple assignments and the pause statements have to be defined. These rules axiomatize
the synchronous model of computation.

The usefulness of the approach was shown by verifying some simple sequential examples.
A more challenging example for the approach was the verification of a parallel algorithm for
the evaluation of arithmetic expressions. This example emphasizes the general advantage
of the Hoare calculus, namely that much larger and more abstract (in terms of data types)
programs can be verified than by the use of model checking.

However, a method for interactive verification of arbitrary Quartz programs is searched.
The proof of Theorem 1 showed that the approach based on the SSTA form isn’t expressive
enough therefore. Nevertheless, two example transformations were presented to show different
ways of generating programs in SSTA form and inspire the approach presented in the next
chapter. However, using these transformation to apply the defined Hoare rules require a
formal correctness proof that was omitted here, since the correctness of these transformation
does not have an impact on this thesis.



Chapter 4

Interactive Verification based on an Intermediate
Representation

In this Chapter, the approach already published in [GeSc12a] for the interactive verification
of synchronous systems is presented. The approach is based on two system representations
(see Figure 4.1): the system to be verified is given as a synchronous Quartz program that
is considered for the selection of proof rules. Then the available compiler of the Averest
system is used to translate the program to the intermediate AIF representation which is
essentially a set of synchronous guarded actions. The proof rules chosen by the user are
applied to this equivalent representation. Since the obtained set of guarded actions contains
not only assignments, but also assumptions and assertions, the guarded actions are not only
used as system description, but also as proof goals. The user considers then the original
source code and the assertions of the current proof goal to select a suitable proof rule. By
the rule application, the set of guarded actions (an AIF file) is decomposed into smaller
AIF files where – in analogy to the Hoare calculus – program parts are eliminated and only
assumptions and assertions are left.
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Fig. 4.1: Idea of the Approach

Due to a back-annotation via control flow locations, there is still a direct relation between the
two system representations. This way, the user can still consider the more readable program
code while the implementation of the proof system on top of the guarded actions allows
much more flexible decomposition of the verification goals.
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One can easily see that the rules are somehow inspired by rules of the Hoare calculus:
The control flow is eliminated by introduction of assumptions and assertions to achieve local
provability of verification conditions. In particular, any Hoare triple {Φ} S {Ψ} asserting
that postcondition Ψ holds after termination of an non-instantaneous statement S if pre-
condition Φ holds at starting time of S, can be expressed by adding the guarded actions
(enter (S)⇒ assume(Φ)) and (term(S)⇒ assert(Ψ)) to the set of guarded actions com-
piled of the statement S. The Hoare calculus rules can then be easily implemented by the
rules defined in this chapter.

In contrast to the Hoare calculus that is fully driven by the syntax of the program,
the rules do not necessarily need to follow the program’s syntax. Instead, the used rules
focus on different decomposition techniques. For example, it is also possible to make use of
techniques like program slicing [XQZW05, Tip95, ACHL09] by removing all guarded actions
that write to variables that are not relevant for the proof. Other decomposition strategies
may enumerate possible data values as suggested by McMillan e.g. in [McMi99b]. Similar to
the presented approach, he focused on a combination of model-checking and theorem proving,
but he had a stronger focus on model-checking. In contrast, here model-checkers are just one
of several other proof procedures that can be used to check the proof tasks. McMillan also
considered refinement relations that relate events in abstract and refined models, circular
compositional proof rules and in particular rules for temporal case splitting as well as data
type reduction and symmetry reduction. This work does not claim to define the final set of
rules, and instead serves as basis set to be incrementally extended by adding new rules by
need.

The summary of the approach is: the source code is used to select the proof rules, but
the rules are applied to the corresponding set of guarded actions. The use of the two system
representations (program source code and guarded actions) has many advantages:

• Difficult problems like schizophrenia problems are already solved by the compilation to
guarded actions and need no longer be dealt with by the proof rules (which is a great
advantage compared to the SOS rules and the idea described in Chapter 3 that have to
deal with these issues).

• Due to a back-annotation via the control-flow locations, there is a strong relation between
the guarded actions and the source code. Thus, the user can identify the relevant program
parts for a proof goal by considering the source code.

• Using guarded actions instead of the original source code allows one more flexible
decompositions of proof goals. In particular, there is no need to follow the syntax of the
program.

• The compilation to guarded actions itself has been verified, hence the use of guarded
actions instead of the Quartz code is therefore no correctness problem.

• Available data structures and libraries of our Averest system can be shared between
compilation and verification, e.g., to optimize the code generation.

• Compared to the rich syntax at the statement level, guarded actions have a simple syntax
and therefore lead to simple and only a small number of rules.

• Since guarded actions may also be considered as conditional rewrite rules, the use of term
rewriting is naturally integrated in our rules. Thus, efficient theorem proving procedures
are much easier to implement for guarded actions than for parallel program statements.
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The outline of this chapter is as follows: in Section 4.1, we describe the approach published
in [GeSc12a] and show the usefulness in Section 4.1.4. Afterwards, Section 4.2 extends the
presented approach to handle temporal logic specifications given in linear temporal logic
(LTL). Therefore, the notion of proof goal is extended and the rules presented in Section 4.1
are adapted.

4.1 Interactive Verification of SGAs Based on Pre- and
Postconditions

We start with the definition of a proof goal and some functions used in the definition of the
proof rules.

The compiled guarded actions contain besides the behavior of the program all defined
assumption and assertions. Hence, the compiled AIF is directly usable as proof goal. Addi-
tionally, the part of the program currently represented by the proof goal must be bookmarked
by the set of regarded control flow labels, since this information can not be computed from
the AIF file. Hence, a proof goal is defined as follows:

Definition 20 (Proof Goal). Given a Quartz program S and the corresponding compiled
set of guarded actions G with control flow locations L. The pair (G,L) is a proof goal.

For the definition of the proof rules, the following definitions are used:

Definition 21 (Control Flow Predicates). Given a proof goal (G,L), we define

• in(G,L) :=
∨
`∈L

` holds if the control flow is currently at a location inside L and

• inNxt(G,L) is the disjunction of the guards γ of the control flow actions1 of G
(γ⇒ next(`) = true) with ` ∈ L. Thus, inNxt(G,L) holds if the control flow enters
next some of the locations in L.

Based on these two definitions, there are four natural moves of the control flow:

• inst(G,L) := ¬in(G,L)∧¬inNxt(G,L)
• enter (G,L) := ¬in(G,L)∧ inNxt(G,L)
• term(G,L) := in(G,L)∧¬inNxt(G,L)
• move(G,L) := in(G,L)∧ inNxt(G,L)

inst(G,L) holds if the program cannot enter a location of L from outside, thus its execution
is instantaneous, i.e., it does not take time. enter (G,L) holds if the control flow is currently
outside L, but will enter it next. term(G,L) holds if the control flow is currently inside L,
but will leave it next. Finally, move(G,L) holds if the control flow makes an internal move
inside L.

An important decomposition technique for synchronous systems is the decomposition
into surface and depth which is formalized on the basis of guarded actions as follows:

1 We note here that all control flow actions generated by the compiler are of the form
(γ⇒ next(`) = true) where ` is a control flow location.
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Definition 22 (Surface and Depth). Given a proof goal (G,L), we define its surface
srfc(G,L) and depth dpth(G,L) as follows, where sat(ϕ) means that ϕ is satisfiable:

• srfc(G,L) := {((γ⇒ α)) ∈ G | sat(¬in(G,L)∧γ)}
• dpth(G,L) := {((γ⇒ α)) ∈ G | sat(in(G,L)∧γ)}

Checking the satisfiability of program expressions is in general undecidable so that we have
to approximate the above sets by means of heuristics. In case of srfc(G,L), this is not difficult
since ¬in(G,L) can only be satisfied when all ` ∈ L are made false. Thus, we can simply
replace each occurrence of a label ` ∈ L in each guard γ with false and propagate the Boolean
constants. If the resulting formula is false, the action is not in the surface, otherwise we keep
it (as conservative approximation) in the surface (even though the remaining guard may not
be satisfiable). In a similar way, we can also approximate the depth by checking whether a
guard can be satisfied when one of the locations in L holds: Typical guards are of the form
`∧ϕ∨ψ where neither ϕ nor ψ contain `, so that these formulas have a satisfying assignment
only if there is a satisfying assignment where ` holds. The conditions ϕ,ψ that stem from
control flow conditions of the program are typically satisfiable.

Example

For example, replacing all occurrences of wa,wb,wr in the guarded actions of ABRO by
false yields:

control flow:

init => next(wa)=true
init => next(wb)=true
false => next(wr)=true

data flow:

false => o=true
assertions:

false => s0:assert(a|b)

Thus, the surface consists of the first two control flow actions while the depth consists of
all guarded actions. Splitting proof goals into their surfaces and depths is a very important
decomposition that is also a key in the compilation of synchronous programs [Schn09].

4.1.1 Enumerating Control Flow States

A simple, but nevertheless effective strategy for decomposition is to enumerate the control
flow states and to prove the assertions of a macro step locally in the generated states. This
yields essentially an extended finite state machine (EFSM) that can alternatively be directly
generated by the Averest compiler in that surfaces and depths are repeatedly computed.
Checking a safety property can then often be done by checking the property locally in each
state taking into account the assumptions and immediate assignments made in that state.
In more difficult cases, a stronger property may have to be checked this way that implies
the given safety property. Strengthening the proof goal is a typical step that requires user
interaction.
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Enumerating the reachable control flow states is often practically feasible, although this
procedure is exponential in the number of control flow locations in the worst case, and thus
exponential in the size of the synchronous program. In many cases, a complete enumeration
is not necessary, and the defined proof rules allow one to make much shorter proofs. Many
additional techniques can be used as well, and it is planned to extend the set of proof rules
over time, incorporating e.g. techniques based on program slicing as discussed in [ACHL09].

Example

In case of the ABRO example, Figure 2.13 shows its corresponding EFSM with five control
flow states that are defined by assignments of the control flow locations init,wa,wb, and
wr. In each state, the data flow actions are listed that can be activated in that state, and
the transitions between the states are labeled by Boolean conditions that have to hold for
enabling the transition.

For example, to prove assertion s0 of the ABRO example, the guard of the assertion has
to be considerd: As can be seen in Figure 2.11, its guard obviously requires that either a or
b holds. Hence, the assertion is trivially proven without enumerating all reachable states.

Another example could be that the guard of the control flow location wr is implied
by the guard of o, hence the assertion assert (o→next(wr)) is proven trivially by a
propositional logic checker, after rewriting next(wr) with its definition. Checking the
temporal logic specifications is more difficult and is handled later in this chapter.

4.1.2 Local Provability

In the following, we assume the existence of a procedure2 check(ϕ) that will yield one of the
following results for a given Boolean program expression ϕ:

check(ϕ) :=


1 : if ϕ was proved to be valid
0 : if ϕ was proved to be invalid
⊥ : otherwise

Note that the formulas ϕ given to the mentioned procedure check(ϕ) are quantifier-free
Boolean program expressions. It is clear that the use of SMT solvers is recommended.

The overall task of the following proof rules is to decompose a proof goal (G,L) into
subgoals (G1,L1), . . . ,(Gp,Lp) until these can be automatically proved. Note that the set
of labels Li of a sub-goal (Gi,Li) identifies the part of the program S that is currently
considered in the subgoal. This is often a useful hint for the selection of the right proof rules.

Proving a safety property locally means checking it in each of the reachable control flow
states of the EFSM. In order to make a local proof, all assumptions and assertions of a
particular state have to be collected:

Definition 23. Given a proof goal (G,L), we define

• asm(G,L) :=
∧
{ϕ | ((true⇒ assume(ϕ))) ∈ G} is the conjunction of all assumptions in

G having the trivial guard true.
2 Note that the satisfiability of program expressions is undecidable, so that the result ⊥ of check(ϕ)
is unavoidable.
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• asm∗(G,L) is defined as the fixpoint of the following iteration:
– asm0(G,L) := asm(G,L)
– asmi+1(G,L) :=

∧
{cond(α) | ∃γ. ((γ⇒ α)) ∈ G ∧ check(asmi(G,L)→ γ) = 1}

where cond(α) is defined as follows:

cond(α) :=


ϕ : if α≡ assume(ϕ)
x= τ : if α≡ (x= τ)
true : otherwise

• asr(G,L) :=
∧
{γ→ ϕ | ((γ⇒ assert(ϕ))) ∈ srfc(G,L)}∧∧
{next(γ)→ next(ϕ) | ((γ⇒ assert(ϕ))) ∈ dpth(G,L)} that captures all

proof obligations.

The set asm(G,L) is used to collect all assumptions that hold at starting time of (G,L), since
their guards are (syntactically) true. The formula asm∗(S) is more general in that also the
transitive closure and the executed immediate assignments are collected in that condition.
The task of the proof rules is to achieve that the assertions given in the program become
locally provable in the following sense:

Definition 24 (Local Provability). A proof goal (G,L) is locally provable if the following
holds:

check(asm∗(G,L)→ asr(G,L)) = 1

A typical assertion given in a program will usually not be locally provable since it depends
not only on the assumptions and immediate assignments of a particular state, but also
on invariants that are established by the entire execution of the program. For this reason,
the proof rules have the important task to add further assumptions and assertions in each
decomposition step so that the finally obtained proof goals (Gi,Li) become locally provable.

4.1.3 Proof Rules

The decomposition rules for a synchronous system (G,L) are given in Figures 4.2 and 4.4.
The rules are to be read as follows: below the line, expressions like (G,L)W f(. . .) denote
that proof goal (G,L) is decomposed into the subgoals listed above the line by applying the
function f with listed arguments to (G,L). Moreover, calls to check(ϕ) are listed above the
line that have to hold for a successful rule application (otherwise, the function fails).

In addition to the already defined control flow predicates, surfaces and depths, we also
assume function prop(ϕ) for constant propagation. Finally, [ϕ]τx denotes that all occurrences
of x in ϕ are replaced by τ .

Here are some explanations of the rules:

• Solver checks whether the current subgoal is locally provable according to Definition 24.
• Simplification eliminates all guarded actions with unsatisfiable guards.
• Branching makes a case distinction (for a conditional statement) with the given condition
σ. Special cases of this rule without splitting the set of locations are the CaseDistinction
rule, which allows a Boolean case distinction and the MultipleCases rules, which allows a
general case distinction. Note that it is important that σ only holds at starting time, i.e.,
in the surface.
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Solver check(asm∗(G,L)→ asr(G,L))
(G,L)W Solve()

Simplification
({((γ⇒ α)) ∈ srfc(G) | check(asm∗(G,L)→ γ) 6= 0}∪

{((γ⇒ α)) ∈ dpth(G) | check(asm∗(G,L)→ next(γ)) 6= 0},L)
(G,L)W Simp()

Branching

check(asm∗(G ∪{(true⇒ assume(σ))},L)→ enter (G1,L1)) = 1
check(asm∗(G ∪{(true⇒ assume(¬σ))},L)→ enter (G2,L2)) = 1

(G1∪{(enter (G1,L1)⇒ assume(σ))},L1)
(G2∪{(enter (G2,L2)⇒ assume(¬σ))},L2)

(G,L)W Branch(σ,L1)

with L1 ⊆ L, L2 = L\L1 and

• G1 := {(γ⇒ α) ∈ G | prop
([

[γ]1l∈L1

]0
l∈L2

)
6= 0} and

• G2 := {(γ⇒ α) ∈ G | prop
([

[γ]0l∈L1

]1
l∈L2

)
6= 0}

CaseDistinction
(G ∪{(enter (G,L)⇒ assume(σ))},L)

(G ∪{(enter (G,L)⇒ assume(¬σ))},L)
(G,L)W Case(σ)

MultipleCases

check(
∨

i=1..nσi) = 1
(G ∪{(enter (G,L)⇒ assume(σ1))},L)

. . .

(G ∪{(enter (G,L)⇒ assume(σn))},L)
(G,L)W Cases([σ1, . . . ,σn])

HypothesisIntroduction
check(asm∗(G ∪{(true⇒ assume(γ))},L)→ ϕ) = 1

(G ∪{(γ⇒ assume(ϕ))},L)
(G,L)WHypothesize(γ,ϕ)

ProveAssertion
check(asm∗(G ∪{(true⇒ assume(γ))},L)→ ϕ) = 1

(G ∪{(γ⇒ assume(ϕ))},L)
({assertID : (γ⇒ assert(ϕ))}∪G,L)W Prove(assertID)

Fig. 4.2: Proof Rules (part I)
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• HypothesisIntroduction introduces a new hypothesis ϕ by checking the validity of the
given formula and adding it afterwards to the set of guarded actions as an assumption.

• Once an assertion ϕ has been proven, it can be used as assumption by the ProveAssertion
rule.

• The Invariant rule is similar to the invariant rule of the Hoare calculus. It is thereby
assumed that the proof goal (G,L) contains as top level statement a loop with invariant
γ and that the termination condition of the loop body is χ. Thus, we check that γ
holds initially, and that γ also holds after each termination of the considered loop
body. We may assume γ whenever the loop is iterated which is encoded by χ (end of
loop body) and move(G,L) (we are still in the loop or do not terminate). Notice that
χ∧move(G,L) = false holds in the step where the loop is left.

• The SequenceSplit rule splits the current goal into two subgoals such that the considered
subsystems are executed in a sequence, i.e., the second one starts as soon as the first one
terminates. The given condition δ is proved after the first part of the sequence terminates,
and can be used as an assumption for the second part. In Figure 4.3 an overview of this
rule is given.

• The Slicing rule allows one to split the goal into two independent goals by slicing out the
guarded actions that are enabled by control flow locations contained in the argument set
L1.

(G1,L1)

assert(x)

assume(x)

(G2',L2)

(G1;G2,L){
{

L1

L2

Fig. 4.3: Sequence Rule Overview

• The ConeOfInfluence rule removes all guarded actions that do not influence the assertions
(FV(ϕ) denotes thereby the set of free variables of ϕ).
• The Weakening rule allows us to weaken/strengthen the pre-/postcondition.

Some of the proof rules are similar to the Hoare calculus, but they are not directly driven by
the program’s syntax. In many cases, it is therefore reasonable to proceed similar to Hoare
calculus proofs and therefore make use of the back-annotation with regard to the original
program.
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Invariant
check(asm∗(G,L)→ γ) = 1

(G ∪{(enter (G,L)∨χ∧move(G,L)⇒ assume(γ))}∪{(χ⇒ assert(γ))},L)
(G,L)W Invar(γ,χ)

where χ is the termination condition of the considered
top-level loop body. In case th loop is left (term(G,L)
holds) the condition χ∧move(G,L) is evaluated to false.

SequenceSplit
(G1∪{(¬inNxt(G1,L1)⇒ assert(δ))},L1)

(G2d∪G2s∪{(enter (G2,L2)⇒ assume(δ))},L2)
(G,L)W Sequence(L1, δ)

where L1 ⊆ L, L2 = L\L1 and

• G1 := {((γ⇒ α)) ∈ G | prop
([

[γ]1l∈L1

]0
l∈L2

)
6= 0},

• G2s := {(γ∧ enter (G,L2)∧¬enter (G1,L1)⇒ α) |
((γ⇒ α)) ∈ surface(G,L)∧prop

([
[γ]0l∈L1

]1
l∈L2

)
6= 0}

and
• G2d := {((γ⇒ α))∈ depth(G,L) | prop

([
[γ]0l∈L1

]1
l∈L2

)
6= 0}

Slicing
({((γ⇒ α)) ∈ G | prop

([
[γ]1l∈L1

]0
L\L1

)
6= 0},L1)

({((γ⇒ α)) ∈ G | prop
([

[γ]0l∈L1

]1
l∈L\L1

)
6= 0},L\L1)

(G,L)W Slice(L1)

ConeOfInfluence ({((γ⇒ α)) ∈ G | (FV(γ)∪FV(α))∩FV(asr(G,L)) 6= ∅},L)
(G,L)W Reduce()

Weakening

check(asm∗(G,L)→ ϕ) = 1
check(term(G,L)∧ψ→ asr(G,L)) = 1

({(enter (G,L)⇒ assume(ϕ))}∪G ∪{(term(G,L)⇒ assert(ψ))},L)
(G,L)WWeaken(ϕ,ψ)

Fig. 4.4: Proof Rules (part II)

4.1.4 Evaluation

To validate this approach, the verification of some classic sequential algorithms like computing
Fibonacci numbers, the extended Euclidean algorithm, and sorting algorithms like Bubblesort
were considered.
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macro DataWidth = 8;

module CPUInterface (

bv{16} ?instr , // instruction to be performed now

nat pc, // program counter

event nat !adrMem , // address for memory access

event bv{DataWidth} dataMem , // data for memory access

event readMem ,writeMem , // whether data is read or written to memory

event reqMem ,ackMem ,doneMem , // signals for memory transaction

[8]bv{DataWidth} Reg // scalar registers

)

Fig. 4.5: ABACUS Interface

Additionally, the equivalence of two descriptions of a simple microprocessor called ABACUS3

was proven. One description is a definition of its instruction set (ScalarBehav.qrz given
in Figure 4.6) and the other one was a simple non-pipelined hardware implementation
(ScalarHW given in Figure 4.8).

The CPUs process 16 bit instruction words on 8 bit data words. Each CPU has eight
registers. The interface given in Figure 4.5 consists of a program counter pc and a memory
access interface with address variable adrMem, data channel dataMem, flags for reading
(readMem), writing (writeMem) from/to the memory and flags (reqMem, ackMem, and doneMem)
to implement the memory protocol.

The module CompareCPUs in Figure 4.7 was defined to check the equivalence. It defines
local variables for the CPUs’ interfaces, executes both CPUs in parallel and compares the
evaluation of the same instr in a third parallel thread. This thread demands that all
contained assertions are satisfied in each macro step and therefore defines the equivalence of
the processor descriptions.

One important step for the verification we identified was that the execution of the Quartz
system has similarities to a global loop, even though the outermost statement is a parallel
composition. The reason is that the parallel composition of two loops with the same length
and execution behavior cannot be distinguished from a single loop at the level of guarded
actions. Hence, the proof required an invariant for this implicit loop. The invariant itself is
not very difficult and has many similarities with the safety condition already included in the
module CompareCPUs (see Figure 4.10).

The proof of the equivalence was very simple, no model-checker was required to this
end. Instead, only simple term rewriting was sufficient. The proof roughly made use of the
invariant rule and made then case distinctions on all available machine instructions. Even
though more than 40 subgoals were obtained, all of them were much smaller than the original
goal since one can focus on the execution of a particular instruction. For the behavioral
implementation (ScalarBehav) these subgoals usually only contain the actions for three
assignments, as given in Figure 4.9 for the unsigned multiplication.

3 Both descriptions are examples from the lecture ’computer systems’ at the University of Kaiser-
slautern.
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bv{DataWidth} overflw; // overflw register (completing result)

bv{2∗ DataWidth} AluOut; // intermediate result of ALU operations

bv{6} opc; // opcode of instr

nat{8} rd,rs1 ,rs2; // register indices taken from instr

bv{4} cst; // constant operand of I−type instructions

bv{7} fnc; // constant operand of S−type instructions

bv{10} adr; // jump address of J−type instruction

bool vct; // whether it 's a vector instruction

next(pc) = 0;

loop {

waitInstr: pause;

// instruction decode

opc = OpCode(instr);

rd = bv2nat(DestReg(instr ));
rs1 = bv2nat(SrcLReg(instr ));
rs2 = bv2nat(SrcRReg(instr ));
cst = ConstOp(instr);

fnc = FctCode(instr);

adr = JumpAdr(instr);

vct = VctFlag(instr);

// execute current instruction

case
// arithmetic instructions with register operands , like:

(opc==ADD & !vct) do {

AluOut = int2bv(bv2int(Reg[rs1]) + bv2int(Reg[rs2]),2∗ DataWidth );
next(overflw) = UpperWord(AluOut );

next(Reg[rd]) = LowerWord(AluOut );

}

.

.

.

// arithmetic instructions with constant operands

.

.

.

// comparison instructions

.

.

.

// logic instructions

.

.

.

// load and store instructions

.

.

.

// branch and jump instructions

.

.

.

default nothing;

// update of program counter

if(opc!=BEZ & opc!=BNZ & opc!=JMP & opc!=J)

next(pc) = pc+1;

}

Fig. 4.6: Behavioral Implementation of ABACUS
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macro DataWidth = 8;

module CompareCPUs (bv{16} ?instr)

{

nat pc1 , pc2;

event nat adrMem1 , adrMem2;

event bv{DataWidth} dataMem1 , dataMem2;

event readMem1 ,writeMem1 ,readMem2 ,writeMem2;

event reqMem1 ,ackMem1 ,doneMem1;

event reqMem2 ,ackMem2 ,doneMem2;

[8]bv{DataWidth} Reg1 ,Reg2;

sb: ScalarBehav(instr ,pc1 ,adrMem1 ,dataMem1 ,

readMem1 ,writeMem1 ,reqMem1 ,

ackMem1 ,doneMem1 ,Reg1);

||

sh: ScalarHW(instr ,pc2 ,adrMem2 ,dataMem2 ,

readMem2 ,writeMem2 ,reqMem2 ,

ackMem2 ,doneMem2 ,Reg2);

||

always{
assert (pc1 == pc2 &

adrMem1 == adrMem2 &

dataMem1 == dataMem2 &

readMem1 == readMem2 &

writeMem1 == writeMem2 &

reqMem1 == reqMem2 &

ackMem1 == ackMem2 &

doneMem1 == doneMem2 );

for (i = 0 .. 7)

assert (Reg1[i] == Reg2[i]);

}

}

Fig. 4.7: Module CompareCPUs

bv{DataWidth} overflw; // overflw register (completing ALU result)

bv{6} opc; // opcode of instr

bv{7} fnc; // function code or 7−bit constant

nat{8} rd; // destination register

bv{10} adr; // jump address of J−type instruction

bv{DataWidth} opS; // value to be stored

bv{DataWidth} opL ,opR; // ALU operands

bv{2∗ DataWidth} AluRes; // ALU result

bv{DataWidth} LoadRes; // Load result

bool CondRes; // result of branch condition

next(pc) = 0;

loop {

waitInstr: pause;
Decode(instr ,Reg ,overflw ,opc ,fnc ,rd,opL ,opR ,opS ,adr);

Execute(opc ,fnc ,opL ,opR ,AluRes ,CondRes );

MemAccess(pc ,opc ,fnc ,opS ,AluRes ,LoadRes ,

adrMem ,dataMem ,

readMem ,writeMem ,reqMem ,ackMem ,doneMem );

WriteBack(pc ,opc ,fnc ,adr ,rd,AluRes ,LoadRes ,CondRes ,Reg ,overflw );

}

Fig. 4.8: Hardware Implementation of ABACUS
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AluOut=nat2bv(bv2nat(Reg[rs1 ])∗bv2nat(Reg[rs2 ]));
next(overflw) = UpperWord(AluOut );

next(Reg[rd]) = LowerWord(AluOut );

Fig. 4.9: Example: Multiplication Assignments of Behavioral Processor

The remaining subgoals are solved by term rewriting alone. Only for the memory access that
involves a protocol, several case distinctions had to be done on the variables ackMem and
doneMem combined with the application of the Invariant and Sequence rules.

During the verification process, several errors were identified in the implementation. First
of all, signed and unsigned arithmetic operations were swapped. Then, it was identified that
the instructions BNZ and BEZ used a wrong register for the comparison. After removing the
bugs, the verification process was easily done and could be also used to verify the same
processors with other word sizes.

Conclusions

So far the use of synchronous guarded actions as a basis for the implementation of interactive
theorem provers for the verification of synchronous programs was considered. To this end,
the original program is used to select suitable proof rules, but these rules were applied at
the level of synchronous guarded actions that were obtained by compiling the program.
The verification system is interactive, and can therefore avoid state-space explosions. Like
the Hoare calculus, it can be extended in many ways, e.g. by abstracting from the size of
data structures (like array sizes) as well as abstracting from the data types themselves (by
considering polymorphic types). In the following section, this approach is extended to support
LTL specifications.

4.2 Interactive Verification of SGAs for LTL

In this section, the approach presented in Section 4.1 and [GeSc12a] is extended to temporal
logic specifications given in LTL. LTL specifications are only defined for infinite paths, hence
the considered system must not terminate. Assuming that a system does not terminate, the
approach presented in Section 4.1 is already applicable to handle temporal logic specifications,
because an assertion (γ ⇒ assert(ϕ)) represents then the specification A G (γ← ϕ),
where γ and ϕ are Boolean and represent a simple safety property. Therefore, this section
modifies existing rules to handle other temporal logic specifications appended on a proof
goal. Additionally, rules for rewriting are added. Therefore, a set of rules for already known
facts about LTL formulae, rewriting rules and transformation rules will be defined.

The idea is to decompose a temporal logic specification until a propositional goal must be
proven or another rule is applicable. Hence, the defined rules using the unrolling of temporal
operators to distill the conditions for the current regarded macro step.

In the following, the proof rules will be motivated by describing an example and some
simple rules. Afterwards, some simple decomposition rules are presented. These rules are
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Proof "CompareCPUs" None;;

(∗Instr Cases∗)
let instr = GetQName (" instr ");;

let MkInstrSegEqu expr bL =

BtvEqu(BtvAppend (BtvConst bL ,BtvSegment (GetBtv <| expr ,9,0)),

GetBtv <| expr );;

let instr000000 i = MkInstrSegEqu i [false;false;false;false;false;false];;
let instr000001 i = MkInstrSegEqu i [false;false;false;false;false;true];;
...

let instr100111 i = MkInstrSegEqu i [true;false;false;true;true;true];;

(∗List of all Instructions∗)
let insrL = List.map (fun i −> i instr) [instr000000 ;...; instr100111 ];;

let InstCases = (List.map mkmap insrL)[otherwiseMap insrL ];;

let fn_SYNC = Str2BoolExpr "instr {6:0} == 0b0000000 ";;

let rec mkRegEqu reg1 reg2 n =

(Str2BoolExpr ("Reg1 ["+( n.ToString ())+"] == Reg2 ["+(n.ToString ())+"]"))::(

if (n=0)

then [( BtvEqu(BtvNext (BtvArrAcc (reg1 , GetNat <| QName2VarExpr behav_rd)),

BtvNext(BtvArrAcc (reg2 , GetNat <| QName2VarExpr hw_rd ))))]

else mkRegEqu reg1 reg2 (n−1)) ;;

let INVAR = MkListConj (

[

Str2BoolExpr "next(pc1 )==next(pc2 )";
Str2BoolExpr "adrMem1 == adrMem2 ";

Str2BoolExpr "dataMem1 == dataMem2 ";

Str2BoolExpr "readMem1 == readMem2 ";

Str2BoolExpr "writeMem1 == writeMem2 ";

Str2BoolExpr "reqMem1 == reqMem2 ";

Str2BoolExpr "ackMem1 == ackMem2 ";

Str2BoolExpr "doneMem1 == doneMem2 ";

][( BtvEqu (

BtvNext (BtvArrAcc (QName2ArrExpr reg1 , QName2NatExpr behav_rd)),

BtvNext(BtvArrAcc (QName2ArrExpr reg2 , QName2NatExpr hw_rd ))))

]);;

MkInitialization ();;

Invariant INVAR LOOPTERM ();;

Sequence [] (List.map (BoolNext <| BoolVar) [l1;l4;l7]

(List.map (fun n −> NatEqu (QName2NatExpr n, NatConst [false]))[ pc1;pc2])
(StripConj INVARSTEP ));;

Solve ();;

Cases InstCases ;;

PrnGoal ();; //40 Proof goals

ALL_AbstractArrayEquality reg1 reg2;;

ALL_Solve ();; //13 Proof goals left

(∗Skipped: Handling of type−casts (11 goals) and Mem access (2 goals)∗)

Fig. 4.10: Proof for CompareCPUs
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based on facts about LTL that were presented already by many authors [McQS00, BeCC98,
RBHH01, KuVW01]. Here, these facts are used and integrated to show that the approach
is also applicable to temproal logic specifications. Then, the running example is verified in
detail.

4.2.1 Proof Goal Extension

In contrast to the approach presented in Section 4.1, the here defined rules operate on
proof goals augmented by a LTL specification. In the following, we assume that synchronous
systems are given as an equation system.

Definition 25 (Proof Goal). Given a Quartz program S, the corresponding compiled set
of guarded actions G with control flow locations L and a LTL specification ϕ. The construct
(G,L) |= ϕ is a proof goal and requires that term((G,L)) does not hold.

Similar to the rules in Section 4.1 the here defined rules operate on proof goals and decompose
them to a list of (sub-)goals. Obviously, the following rules are valid:

Definition 26 (Decompose). Decompose():

(G,L) |= γ

(G,L) |= γ∨ψ
(G,L) |= ψ

(G,L) |= γ∨ψ
(G,L) |= γ (G,L) |= ψ

(G,L) |= γ∧ψ

For a disjunction it is enough to show that a single operand holds. The operands of a
conjunction are provable independently.

4.2.2 Trivial Rules

In the following some simple rules are presented to motivate the following rules.

Specifications with Always and Eventual

{(true⇒ x = true)} ∈ G
(G,L) |= Gx

{(true⇒ x = true)} ∈ G
(G,L) |= Fx

{(γ⇒ x = true)} ∈ G ∧ (G,L) |= Gγ
(G,L) |= Gx

{(γ⇒ x = true)} ∈ G ∧ (G,L) |= Fγ
(G,L) |= Fx

The first rule states that Gx is satisfied if G contains a guarded action that sets x and has as
guard true. For the second rule it is enough if the variable is satisfied once (and the system
does not terminate). Similar circumstances are given for the next two rules. The first requires
that there is a guarded action that set the variable x, then it is enough to show that the
guard holds always. The second rule requires that the guard is eventually satisfied to prove
Fx.
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Specifications with Strong and Weak Until

The following two rules are not complete, but might easy a proof. The reason therefore is
that ϕ may not hold always but just until ψ holds.

(G,L) |= Gϕ
(G,L) |= [ϕ U ψ]

(G,L) |= Fψ∧ (G,L) |= Gϕ
(G,L) |= [ϕ U ψ]

The first rule states that it is enough to show that the left operand of a weak until is always
satisfied. The second rule requires for the strong until additionally that the second operand
is eventually satisfied.

(G,L) |= ψ

(G,L) |= [ϕ U ψ]
(G,L) |= ψ

(G,L) |= [ϕ U ψ]
These two rules require that the second operand of the until operator is directly satisfied,
in that case the first operand does not matter in both cases and the behavior of both
until-operators is equivalent.

4.2.3 Basic Rules

More complex rules, which are already defined in Section 4.1, are usable too:

Definition 27 (AllCases).

{(G
.
t{(enter((G,L))⇒ assume(x)=τ)},L) |= ϕ | τ ∈ Values(x)}

(G,L) |= ϕWAllCases(x)

Instead of proving a single proof goal representing all possible values of a variable x. One
may prove several proof goals each representing one of the possible values of x.

Definition 28 (Cases).

check(
∧
i=0...nσi) = 1

{(G
.
t{(enter((G,L))⇒ assume(x)=σi)},L) |= ϕ | i ∈ {0 . . .n}}

(G,L) |= ϕW Cases([σ0, . . . ,σn])

Instead of proving a single proof goal representing all possible values of a variable x. One
may prove several proof goals each representing possible values of x.

Substitution of Variables

The given guarded actions are equations that can be used for rewriting:

(true⇒ x = τ) ∈ G ∧ (G,L) |= [ϕ]τx
(G,L) |= ϕW ReWrite(x)

Another possibility is the introduction of an equation in the assumption to define the relation
between a variable and its behavior:

(true⇒ x = τ) ∈ G ∧ (G,L) |= x = τ → ϕ

(G,L) |= ϕWDefOf(x)
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Unrolling of Temporal Operators

In the literature, like [Schn03], some recursion laws for the until operators are given:

[ψ U γ] = γ∨ψ∧X [ψ U γ] [ψ U γ] = γ∨ψ∧X [ψ U γ]
[ψ
←−
U γ] = γ∨ψ∧

←−
X [ψ

←−
U γ] [ψ

←−
U γ] = γ∨ψ∧

←−
X [ψ

←−
U γ]

These rules transform the specification into a part that must be satisfied in the current
state and a part containing further temporal operators. The advantage is that using these
rules and the decomposition rules it is possible to decompose a proof goal to Boolean goals.
Following this, we define the following rules:

Definition 29 (Unrolling Specifications). Given a proof goal (G,L) |= ϕ, the rules to
unroll a specification are defined as:

(G,L) |= γ∨ψ∧X [ψ U γ]
(G,L) |= [ψ U γ]WNextWUntil()

(G,L) |= γ∨ψ∧X [ψ U γ]
(G,L) |= [ψ U γ]WNextSUntil()

(G,L) |= γ∨ψ∧
←−
X [ψ

←−
U γ]

(G,L) |= [ψ
←−
U γ]WNextPWUntil()

(G,L) |= γ∨ψ∧
←−
X [ψ

←−
U γ]

(G,L) |= [ψ
←−
U γ]WNextPSUntil()

(G,L) |= ¬γ∧ψ∨
←−
X [ψ

←−
B γ]

(G,L) |= [ψ
←−
B γ]WNextPWBefore()

(G,L) |= ¬γ∧ψ∨
←−
X [ψ

←−
B γ]

(G,L) |= [ψ
←−
B γ]WNextPSBefore()

Hence, unrolling E |= G(ϕ) leads to E |= ϕ∧XG(ϕ), and for E |= Fϕ the result is E |= ϕ∨XF(ϕ).
Obviously, the generated proof goal for the F-operator is satisfiable either by showing

that ϕ holds in the current step or XFϕ holds in the current step, which means that the next
step satisfies Fϕ.

Correctness

The correctness of the rewriting and unrolling rules for LTL specifications are easily provable
by the Quartz module given in Figure 4.11 (see www.Averest.org/examples/Verification/
TheoremProving/LTL), where Aϕ is the original specification and Aψ the result of the rule
application.

www.Averest.org/examples/Verification/TheoremProving/LTL
www.Averest.org/examples/Verification/TheoremProving/LTL
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module CheckLTLFacts(bool a,b,c,d,. . .) {

nothing;
} satisfies {

spec: assert A (ϕ↔ ψ)

}

Fig. 4.11: Module to Verify LTL Decomposition Rules

Inital Point of Time

Additionally, proof goals (G,L) |=0 ϕ representing the initial point of time (InitGoals) are
introduced as a special case of a proof goal that allow one to handle past operators efficiently.
Note that proof goals referring to arbitrary points of time (GenGoals) are not allowed to
refer to the initialization equations, and proof goals that refer to the initial point of time
are moreover allowed to make use of additional proof rules like those for eliminating past
temporal operators.

The following two rules concerning the initial point of time:

(G,L) |=0 ϕ∧ (G,L) |= Xϕ
(G,L) |= ϕW TimeCases()

This rule splits a proof goal into one goal referring to the initial point of time and all other
points in time.

(G,L) |= ϕ

(G,L) |=0 ϕW InitToGen()

This rule translates an InitGoal to an GenGoal.

Induction

Now it is possible to define two different induction rules, both require an always operator as
outermost operator in the specification. Then the following two rules split the proof goal in
an induction hypothesis and a step case.

(G,L) |= ϕ∧ (G,L) |= ϕ→ Xϕ
(G,L) |= GϕW Induction()

(G,L) |=0 ϕ∧ (G,L) |= ϕ→ Xϕ
(G,L) |= GϕW InitInduction()

Elimination of Past Temporal Operators for InitGoals

Definition 30 (Past Operator Elimination). Given a proof goal (G,L) |= ϕ, the rules to
eliminate past temporal operators are defined as:

(G,L) |=0 γ∨ψ
(G,L) |=0 [ψ

←−
U γ]W InitPWUntil()
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(G,L) |=0 γ

(G,L) |=0 [ψ
←−
U γ]W InitPSUntil()

(G,L) |=0 ¬γ
(G,L) |=0 [ψ

←−
B γ]W InitPWBefore()

(G,L) |=0 ¬γ∨ψ
(G,L) |=0 [ψ

←−
B γ]W InitPSBefore()

The first two rules remove the past-until operators by requiring that the second operand (γ)
holds in the initial state. The weak variant allows additionally that only the first operand
holds (ψ). In the next two rules the same circumstances are described for the past-before
operators.

Example

In this section the specifications of the ABRO example are verified.

Proof of Specifications s1 and s2

The specifications s1 and s2 are provable by substitution of o in the specification. The result
of applying the substitution on s1 and introducing the definition for the other variables leads
to:

next(init) = False ∧
next(wb) = ¬r∧wb∧¬b ∨ r∧(wr∨wa∨wb) ∨ init ∧
next(wa) = ¬r∧wa∧¬a ∨ r∧(wr∨wa∨wb) ∨ init ∧
next(wr) = ¬r∧(wr ∨ a∧wa∧b∧wb ∨ ¬wa∧b∧wb ∨ ¬wb∧a∧wa) |=
¬r∧a∧wa∧b∧wb ∨ ¬r∧¬wa∧b∧wb ∨ ¬r∧¬wb∧a∧wa →
¬(

¬next(r)∧next(a)∧next(wa)∧next(b)∧next(wb) ∨
¬next(r)∧¬next(wa)∧next(b)∧next(wb) ∨
¬next(r)∧¬next(wb)∧next(a)∧next(wa)

)

A case distinction for the left hand side of the implication leads to the following three sub
goals that prove the property:

¬r∧a∧wa∧b∧wb∧¬next(wa)∧¬next(wb)∧next(wr)|= ¬False

¬r∧¬wa∧b∧wb∧¬next(wa)∧¬next(wb)∧next(wr)|= ¬False

¬r∧¬wb∧a∧wa∧¬next(wa)∧¬next(wb)∧next(wr)|= ¬False



88 4 Interactive Verification based on an Intermediate Representation

Proof of an Example Lemma

It is possible to prove the following lemma:

• Lemma0: (G,L) |= G(wa→
←−
X [¬a

←−
U (r∨init)])

The first step is the application of the InitInduction rule. The base case is trivial since wa is
false at the initial point of time. In the induction step one has to show:

(G,L) |= (wa→←−X [¬a←−U (r∨init)])→ (next(wa)→←−X [¬next(a)←−U (next(r)∨next(init))]).

Moving
←−
X inwards, where

←−
Xnext(v) = v for all variables v ∈ V holds:

(G,L) |= (wa→
←−
X [¬a

←−
U (r∨init)])→ (next(wa)→ [¬a

←−
U (r∨init)])

Afterwards, a substitution of next(wa) and a simplification step are done to get:

(G,L) |= (wa→
←−
X [¬a

←−
U (r∨init)])∧(¬r∧wa∧¬a∨r∧(wr∨wa∨wb)∨init)→ [¬a

←−
U (r∨init)]

Applying NextPWUntil and discharge the generated left-hand side of the disjunction and
simplify the result leads to:

(G,L) |=

 wa→
←−
X [¬a

←−
U (r∨init)])∧

(¬r∧wa∧¬a∨r∧ (wr∨wa∨wb)∨init)∧
¬r∧¬init

→ (¬a∧
←−
X [¬a

←−
U (r∨init)])

This is further simplified to:

(G,L) |= (wa∧¬r∧¬init∧¬a∧
←−
X [¬a

←−
U (r∨init)])→ (¬a∧

←−
X [¬a

←−
U (r∨init)])

Hence, the lemma holds.

Proof for Specification s3

The following lemmata are proven to ease the proof of Specification s3:

• Lemma1: (G,L) |= G(wa∧¬wb→
←−
X [b
←−
B r])

• Lemma2: (G,L) |= G(wb∧¬wa→
←−
X [a
←−
B r])

In the following, only the proof of Lemma1 is presented, because the proof for Lemma2 is
completely symmetric. The first step is again the application of the InitInduction rule, to
obtain the trivial base case (since wa does not at the initial point of time) and the following
induction step:

(G,L) |= (wa∧¬wb→
←−
X [b
←−
B r])→ (next(wa)∧¬next(wb)→

←−
X [next(b)

←−
B next(r)])

The result after driving
←−
X inwards:

(G,L) |= (wa∧¬wb→
←−
X [b
←−
B r])→ (next(wa)∧¬next(wb)→ [b

←−
B r])

A rewrite step of next(wa) and next(wb) leads to:
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(G,L) |=

 wa∧¬wb→
←−
X [b
←−
B r]∧

¬r∧wb∧¬b∨r∧ (wr∨wa∨wb)∨init∧
¬r∧wa∧¬a∨r∧ (wr∨wa∨wb)∨init

→ [b
←−
B r])

After a case distinction on init the case init=false remains:

(G,L) |=

 ¬init∧wa∧¬wb→
←−
X [b
←−
B r]∧

¬r∧wb∧¬b∨r∧ (wr∨wa∨wb)∧
¬r∧wa∧¬a∨r∧ (wr∨wa∨wb)

→ [b
←−
B r])

Another case distinction on r allows us to eliminate the case r=true, because it contains
contradicting assumptions (wr∨wa∨wb) and ¬(wr∨wa∨wb). The case r=true is:

(G,L) |=
(
¬init∧¬r∧wa∧¬a∧¬(wb∧¬b)∧

¬wb→
←−
X [b
←−
B r]

)
→ [b

←−
B r])

Then, an unrolling of the past-before operator gives:

(G,L) |=
(
¬init∧¬r∧wa∧¬a∧¬(wb∧¬b)∧

¬wb→
←−
X [b
←−
B r]

)
→ (¬r∧ (b∨

←−
X [b
←−
B r])))

Since, ¬r is contained in the assumptions, the following is left to prove after a discharge step
of b:

(G,L) |=
(
¬init∧¬r∧wa∧¬a∧¬b∧¬(wb∧¬b)∧

¬wb→
←−
X [b
←−
B r]

)
→
←−
X [b
←−
B r])

Another case distinction proves the lemma: The case ¬wb proves the sub goal and the case
wb leads to the contradicting assumptions b and ¬b.

The prove of Specification s3 is quite simple with the help of the above lemmas:

(G,L) |= G(o→ ([a
←−
B r]∧ [b

←−
B r]))

After decomposing the conjunction the following two sub goals are created:

(G,L) |= G(o→ [a
←−
B r])

(G,L) |= G(o→ [b
←−
B r])

In the following only the first sub-goal is considered further, because the second is provable
analogously. Rewriting the variable o and several case distinctions leads to:

(G,L) |= G(¬init∧wa∧wb∧¬r∧a∧b→ [a
←−
B r])

(G,L) |= G(¬init∧¬wa∧wb∧¬r∧a→ [a
←−
B r])

(G,L) |= G(¬init∧wa∧¬wb∧¬r∧b→ [a
←−
B r])

The application of the rule NextPWBefore to all sub-goals that immediately remove the
conjunct ¬r solves the first and the last sub-goal. The second sub-goal is reduced to:

(G,L) |= G(¬init∧¬wa∧wb∧¬r∧a∧¬b→
←−
X [a
←−
B r])

This allows us to use the above proven lemma (Lemma1) to solve it. In the dual case, Lemma2
must be used for the same purpose. Hence, this specification holds.
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Conclusion

This chapter presented two approaches to interactively verify synchronous systems represented
by guarded actions. The first approach is used to prove that the assertions contained in
the AIF file are valid in each state of the system and the second approach is used to show
that given LTL specifications are satisfied by the system. The presented results allow to
implement an interactive verification tool based on a preliminary set of basic rules that could
be extended by demand. Such an extension will be shown in the next chapter, where rules
for module calls and preemption statements are given.



Chapter 5

Modular Verification by Decomposition of Synchronous
Programs

This chapter describes rules for a special purpose – the specialization to modular verification
of synchronous programs and was published in [GeSc13a, GeMS13]. In particular, techniques
that allow us to reuse verification results done for modules without knowing the environment
are presented. To this end, two major problems have to be solved: First, a module call may
replace the formal input parameters by expressions which corresponds with a substitution
of variables in the symbolic transition relation. In particular, this affects the starting point
and contained pre-emption conditions of the module and can therefore dramatically affect
the behavior of the module. For this reason, the temporal specifications have to be modified
accordingly. A proof shows that this transformation defines a simulation preorder modulo
substitution. Second, if a synchronous module is verified without its later context, outputs may
not be completely determined (since the calling module may add further actions on the outputs
of the called module). It is not difficult to see that the open system obtained by modular
compilation simulates the closed system obtained by the linker, and therefore, all universal
temporal properties are preserved. Furthermore, the behavior of synchronous modules may
be temporarily suspended or finally aborted due to requests of their environment/calling
module. Hence, if a temporal logic specification has already been verified for a synchronous
module, then the available verification result can typically only be used if neither suspension
nor abortion will take place. Therefore transformations on temporal logic specifications to
lift available verification results for synchronous modules without suspension or abortion
to refined temporal logic specifications are defined that take care of these pre-emption
statements. In particular, the impact of a pre-emption statement of a contained module S
is described. It is clear that temporal properties that hold for S may no longer be valid
for the entire statement. It will be explained how to reuse available verification results for
the statement S, which leads to the central question answered by this chapter: ‘What is
deducible for (weak) abort S when(σ) or (weak) suspend S when(σ), when S satisfies
a temporal property ϕ?’. Therefore transformations are defined to map a temporal logic
formula ϕ to modified temporal logic formulas Θwk

ab (ϕ,σ), Θst
ab(ϕ,σ), Θwk

sp (ϕ,σ), Θst
sp(ϕ,σ) such

that these formulas hold for weak abort S when(σ), abort S when(σ), weak suspend
S when(σ), and suspend S when(σ), respectively, provided that S satisfies ϕ. It is clear
that these formulas are equivalent to ϕ if σ is false, and that ‘as much as possible’ of ϕ
should be retained. This way, one can establish modular verification of synchronous modules
in contexts where pre-emptions are used.
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The results finally determine proof rules for the verification of module calls in imperative
synchronous programming languages like Esterel and Quartz.

5.1 Modular Verification of Synchronous Programs

Languages like Esterel [BeGo92] and Quartz [Schn09] allow module calls in arbitrary state-
ments. Modules are declared with input and output parameters (variables) so that the body
statement of the module is only allowed to read its input variables and to write to its output
variables. If the module is later on called in a context module, the input parameters are
replaced with expressions of the same type, output parameters are replaced with local or
output variables of the calling module, and thus, the assignments of the called modules
then become assignments of the calling module. Of course, the calling module may also
make assignments to its local and output variables, so that the two behaviors are combined.
Moreover, module calls can be delayed to an arbitrary point of time, and a running module
can be aborted or suspended by the context of its calling module.

This semantics of module calls therefore leads to the following problems that have to be
dealt with by interactive verification rules for modular verification:

• Partially Determined Behaviors: Since the calling module is allowed to add actions
on the output variables (but not on the local variables) of the called module, it may
‘complete’ partially defined output traces of the called module. For this reason, a modular
verification cannot state anything about the value of an output variable in case the called
module does not assign a value to that output variable (we assume that there are no
write conflicts with the calling module).
• Substituted Behavior: Since formal input/output parameters of the called module are
substituted by expressions in a module call, the original behavior of the called module
specializes in some way. For example, testing equality of two inputs may become constantly
true or false (in case the same expression is instantiated for both inputs), so that some
transitions are completely removed. The relationship between formal inputs established
by this substitution can however be much more complicated. We prove in this chapter
that this induces a simulation relation modulo substitution, which is enough to establish
a preservation theorem for universal temporal logic similar to classic results [ClGL92,
ClGL94a, LGSB95].

• Modified Temporal Behavior: Since module calls are allowed in every statement, a module
may be started not only at the initial point of time, but also at a later point of time.
Additionally, pre-emption statements may abort or temporarily suspend the execution
of a module. For these reasons, the temporal logic specifications already verified for a
module have to be adapted accordingly for a module call. We reduce this problem to the
previous one in that we define a general context for the module that is instantiated by
the module call.

The following sections will solve the above explained problems independently. Afterwards,
the results of these problems are joined to reach the overall goal: interactive verification rules
for modular verification of synchronous programs.
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5.1.1 Partially Determined Outputs

In the following section we introduce the notion of closed and open systems including their
differences, and a running example for the whole chapter.

Closed System

As explained, synchronous programs lend themselves well for formal verification, since one can
easily translate synchronous programs to state transition systems so that all formal methods
for transition systems can be applied. Section 2.3.6 shows how symbolic representations of
the transition systems can be directly obtained via a compilation to synchronous guarded
actions, so that formal verification methods can be directly applied. Following these steps
the complete environment is fixed for these programs to get a specific behavior. In the
following those systems are called closed systems, meaning that the context/environment is
completely known. However, due to the state explosion problem, we have to deal with the
enormous complexity of the obtained verification problems, and therefore we are interested
in a modular verification. Modules obtained by modular compilation are called open systems.
The environment of these systems is not known (completely) and one has to assume the most
general behavior for them.

The difference of these systems is represented in a different handling of the default reaction.
Since output variables of a called module are replaced in the module call by local or output
variables of the called module, it is possible that the calling module may also write to the
output variables of the called module. Therefore, if the called module (the regarded open
system) does not assign a value to one of its output variables at a certain point of time,
we cannot apply the default action as it is done in a closed system. Instead, we have to
omit the default action for outputs in open systems that have to be considered for modular
verification. Note, however, that the default actions have to be added for local variables of
the called modules since these are not visible in the calling module.

Example

For example, consider the following Quartz program that we will use as a running example
throughout the chapter:

module rfEdgeDet(event bool ?i,!u){

event bool p;

loop {

next(p) = i;

if(i∧¬p) u=true;
if(¬i∧p) u=false;
w: pause;

}

}

The guarded actions that are obtained for this program are the following ones:

• true ⇒ next(init) = false
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• (init ∨ w) ⇒ next(w) = true
• (init ∨ w) ⇒ next(p) = i

• (init ∨ w) ∧ i ∧ ¬p ⇒ u = true
• (init ∨ w) ∧ p ∧ ¬i ⇒ u = false

In addition to these explicit actions, there are also default actions that determine the values
when no guard action for a variable determines its value. Note that (init ∨ w) is invariantly
true, since init is true at the initial point of time, and w holds always after the initial
point of time. Hence, after the initial point of time, p always holds the previous value of i,
and therefore u is made true if there is a rising edge on i, and it is made false if there is
a falling edge on i. If neither is the case, the default action takes place which resets u to
false since u is an event variable.

Reconsidering the generation of a transition system introduced in Section 2.3.6 for the
example module rfEdgeDet to generate the closed system, the following formulas are obtained
where the formulas are split into the computed guarded actions and the default actions.

Icl :=
(

((init∨w)∧i∧¬p→ u)∧
((init∨w)∧p∧¬i→¬u)

)

∧


(true→¬p)∧
(true→¬w)∧
(true→ init)∧
((¬init∧¬w)∨ (i↔ p)→¬u)



Rcl :=


((init∨w)∧i∧¬p→ u)∧
((init∨w)∧p∧¬i→¬u)∧
(init∨w→ next(p) = i)∧
(init∨w→ next(w))∧
(true→ next(init) = false)


∧

 (¬(init∨w)→¬next(p))∧
(¬(init∨w)→¬next(w))∧
(next((¬init∧¬w)∨ (i↔ p))→¬next(u))


Figure 5.1 shows the state transition diagram of the encoded transition system for the closed
system, where the reader may ignore the dashed transitions and states (they are added for
the open system later). States drawn with double lines are initial states (where init holds),
and the label of the state denotes its variable assignment. Reachable states without outgoing
transitions are omitted for reasons of clarity and comprehensibility. Hence, there are two
initial states and six reachable states.

Open System

Having explained the construction of symbolic transition relations for closed systems, it is
almost obvious how to obtain a symbolic transition relations for open systems: All to do is
to leave out the parts that model the default action for the output variables. However, the
default action for local variables must be retained (like p and w in our running example).

Definition 31 (Symbolic Representation of Open Systems). For a synchronous pro-
gram with input variables Vi, label and local variables Vl and output variables Vo, we define
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Fig. 5.1: Explicit State Transition Diagram of System rfEdgeDet

the initial state condition Iop and the state transition relation Rop of the corresponding open
system as follows:

Iop :≡
∧

x∈Vl∪Vo

ImmActs(x)∧
∧

x∈Vl

InitDefActs(x)

Rop :≡
∧

x∈Vl∪Vo

ImmActs(x)∧
∧

x∈Vl∪Vo

DelActs(x) ∧
∧

x∈Vl

NextDefActs(x)

Note that the only change is that the default actions are restricted to the local variables Vl,
while in a closed system, these actions are also performed on the output variables. This is
necessary, since the calling module may add further assignments to output variables which
would then contradict to the default actions1. Therefore, output variables are not completely
determined in the open system in these cases.

Hence, the open system’s transition system for the rfEdgeDet example is given by the
formulas in Figure 5.2.

The resulting transition system is shown in Figure 5.1 where this time the dashed states
and transitions are added due to the deletion of the default actions.

It is clear that in general the removal of the default actions yields a transition system
with more states and more transitions. Hence, we consider the following first result:

Lemma 6. Let the two transition systems T1 = (S1,I1,R1,L1) and T2 = (S2,I2,R2,L2) be
given where S1 ⊆S2, I1 ⊆ I2, R1 ⊆R2, and L1(ϑ) =L2(ϑ) holds for any state ϑ ∈ S1. Then,
there exists a simulation relation � between T1 and T2.

Proof. Simply define the simulation relation � as follows: ϑ1 � ϑ2 :⇔ ϑ1 = ϑ2, i.e. � is the
identity relation. It is then clear that the properties of a simulation relation are fulfilled, i.e.,
we have

1 We assume here that the system with the called module will not suffer from write conflicts.
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Iop :=
(

((init∨w)∧i∧¬p→ u)∧
((init∨w)∧p∧¬i→¬u)

)
∧

 (true→¬p)∧
(true→¬w)∧
(true→ init)



Rop :=


((init∨w)∧i∧¬p→ u)∧
((init∨w)∧p∧¬i→¬u)∧
(init∨w→ next(p) = i)∧
(init∨w→ next(w))∧
(true→¬next(init))


∧
(

(¬(init∨w)→¬next(p))∧
(¬(init∨w)→¬next(w))

)

Fig. 5.2: Transition System rfEdgeDet for the open system

• ϑ1 � ϑ2 implies that for every variable x ∈ V, we have x ∈ ϑ1 iff x ∈ ϑ2
• for all ϑ1,ϑ

′
1 ∈ S1 and every ϑ2 ∈ S2 with ϑ1 � ϑ2 and (ϑ1,ϑ

′
1) ∈ R1, there is a state

ϑ′2 ∈ S2 with ϑ′1 � ϑ′2 and (ϑ2,ϑ
′
2) ∈ R2. By definition of �, it is clear that we choose

ϑ′2 := ϑ′1 to see this.
• for every initial state ϑ1 ∈ I1, there is an initial state ϑ2 ∈ I2 with ϑ1 � ϑ2: clearly, we
choose ϑ2 := ϑ1 to prove this.

By construction of Icl,Rcl,Iop and Rop, it is clear that we have Icl ⊆ Iop and Rcl ⊆Rop, so
that we can apply the above lemma. Hence, the open system simulates the closed system,
and therefore, we have the following theorem (see [GrLo91] for a definition of ACTL∗):

Theorem 2. Let Top and Tcl be the open and the closed transition system obtained for a
synchronous program P. For every universal temporal logic formula ϕ ∈ ACTL∗ with Top |= ϕ,
we then also have Tcl |= ϕ, i.e., we have the following proof rules (where ϑ is any state in
Scl):

Top |= ϕ

Tcl |= ϕ

Top,ϑ |= ϕ

Tcl,ϑ |= ϕ

Illustrating Example

Considering the running example rfEdgeDet and its corresponding closed system Tcl and
open system Top to illustrate the use of the above proof rules. It is not difficult to verify that
the open system Top satisfies the following specifications:

• Φ0 := A G (¬i ∧ X (i→ u))

• Φ1 := A G (i ∧ X (¬i→¬u))

Φ0 states that u must be true whenever there is a rising edge on i, and Φ1 states that u
must be false whenever there is a falling edge on i. In this case, the specifications are very
close to the implementation, which is in general, of course, not necessary. By Theorem 2, we
know that these specifications are also valid for each system obtained from Top by adding
new guarded actions that restrict the behavior, such as Tcl.
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The reverse implication is in general not true: There are temporal logic formulas that
hold in Tcl, but not in Top. Since the closed system sets u whenever a rising edge on i is
detected, and to false either by the default action or by the assignment triggered when a
falling edge on i is detected, and the fact that in between two rising edges, a falling edge
must occur, it is possible to verify that the following specifications hold for Tcl:

• Φ2 := A G [¬u U ( ¬i ∧ X i)]

• Φ3 := A G (u→ X [¬u U (i ∧ X¬i)])

Φ2 states that u is false until there is a rising edge on i, and Φ3 states that whenever u

holds, it will remain false until there is a falling edge on i. Note that this holds in the closed
system due to the default action on u that takes place whenever there is neither a rising nor
a falling edge on i. The default action is however not present in the open system Top, and
therefore arbitrary values are allowed there for u in these cases. Hence, neither Φ2 nor Φ3
holds for the open system Top.

This can be seen in the transition system given in Figure 5.1: a counterexample for Φ2 is
the path π := {init,u},{w,u}ω, where sω expresses the infinite repetition of s to obtain an
infinite path. Using {init},{w,u}ω, we are also able to find a counterexample starting in an
initial state of the closed system (but we need to use at least one transition of Top, since Φ2
does hold in Tcl). The path π is also a counterexample for the specification Φ3.

5.1.2 Simulation Modulo Substitution

Since module calls are allowed in arbitrary statements, it is possible that a module call is
started after the initial point of time or inside a pre-emption statement that can abort or
suspend the called module. In [Schn09, BrSc09], a general interface for modular compilation
has been introduced to handle these cases. In essence, the modular compilation of a given
module M with interface I is based on the consideration of the Quartz program given in
Figure 5.3 that embeds the module in a compilation context. As can be seen, this compilation
context consists of a nesting of abortion and suspension statements, and additionally, a wait
statement is placed in front of this nesting. Hence, the entire statement waits until st holds,
then calls the module, and if during the execution of the module one of the pre-emption
conditions abrt, wabrt, susp, or wsusp holds, then the corresponding pre-emption takes
place. The pre-emption conditions abrt, wabrt, susp, and wsusp as well as the start condition
st used in this interface are new input signals. In a later module call, the calling module
provides conditions for these variables that are used by the linker to replace the preliminary
pre-emption conditions.

Clearly, the synchronous guarded actions obtained by the compiler will therefore refer to
abrt, wabrt, susp, wsusp and st in addition to the variables declared in the module. For the
running example rfEdgeDet, the obtained guarded actions are listed in Figure 5.4. Besides
the already mentioned variables (st,abrt,wabrt,susp, and wsusp) also some new label
variables are introduced, which represent that either the module is not yet started (nst) or a
(strong) suspension takes place during the module’s start (lss and lws).
Furthermore, a module call defines a substitution of the input variables (including the above
variables for the compilation context) and so we have to consider the effect of substituting
input variables of the called module by expressions defined in the calling module. In the
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module ModularVerificationWrapper(I,

event ?st , ?wabrt , ?abrt , ?wsusp , ?susp)

{

nst: immediate await(st);
lws: immediate weak suspend{

lss: immediate suspend{
immediate weak abort{

immediate abort{
M(I);

} when(abrt);
} when(wabrt);

} when(susp);
} when(wsusp);

}

Fig. 5.3: Wrapper to Define a Compilation Context

true ⇒ next(init) = false
w∧ (wsusp∨susp) ⇒ next(w) = true

¬(abrt∨wabrt∨wsusp∨susp)∧ (lss∨lws∨st∧ (nst∨init)∨w) ⇒ next(w) = true
(init∨nst)∧¬st ⇒ next(nst) = true

((init∨nst)∧st∨lws)∧wsusp ⇒ next(lws) = true
lss∧ (wsusp∨susp)∨susp∧¬wsusp∧ (lws∨st∧ (nst∨init)) ⇒ next(lss) = true

¬(abrt∨wabrt∨wsusp∨susp)∧ (lss∨lws∨st∧ (nst∨init)∨w) ⇒ next(p) = i

i∧¬p∧¬abrt∧¬susp∧ (lss∨lws∨st∧ (nst∨init)∨w) ⇒ u = true
p∧¬i∧¬abrt∧¬susp∧ (lss∨lws∨st∧ (nst∨init)∨w) ⇒ u = false

Fig. 5.4: Context Interface Extension of the Open System rfEdgeDet

following, we consider the effect of this substitution on the state transition system: To this
end, assume that formulas ϕI and ϕR over the variables V are given that represent the
initial states and the transition relation of a state transition system TV . Now consider a
substitution % that maps a variable x ∈ V to an expression %(x) over a set of variables U . The
formulas %(ϕI) and %(ϕR) then represent the following state transition system TU := %(TV)
over the variables U :

• S := 2U
• I := {ϑ⊆ 2U | J%(ϕI)Kϑ = true}
• R := {(ϑ,ϑ′)⊆ 2U ×2U | J%(ϕR)Kϑ,ϑ′ = true}
• L(ϑ) = ϑ, i.e., the state ϑ⊆ 2U is the set of variables that hold in ϑ.

We first prove the following lemma:

Lemma 7 (Substitution Lemma). Given a propositional formula ϕ over variables V, a
substitution % that maps the variables V to formulas over the variables U , and an assignment
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ϑ : U → B of truth values. Then, we have J%(ϕ)Kϑ = JϕKϑ%
for the assignment ϑ% : V → B

defined by ϑ%(x) := J%(x)Kϑ.

Proof. The proof is done by a simple induction on ϕ:

• If ϕ is a variable, say ϕ≡ x ∈ V, then

J%(ϕ)Kϑ = J%(x)Kϑ = ϑ%(x) = JxKϑ%
= JϕKϑ%

,

thus the proposition holds.
• For a negation ϕ≡ ¬ϕ1, we have

J%(ϕ)Kϑ= J%(¬ϕ1)Kϑ= J¬%(ϕ1)Kϑ= ¬J%(ϕ1)Kϑ
IH= ¬Jϕ1Kϑ%

= J¬ϕ1Kϑ%
= JϕKϑ%

• For a conjunction ϕ≡ ϕ1∧ϕ2, we have

J%(ϕ)Kϑ= J%(ϕ1∧ϕ2)Kϑ = J%(ϕ1)∧%(ϕ2)Kϑ
= J%(ϕ1)Kϑ∧ J%(ϕ2)Kϑ

IH= Jϕ1Kϑ%
∧ Jϕ2Kϑ%

= Jϕ1∧ϕ2Kϑ%
= JϕKϑ%

For this reason, there is a mapping of states ϑ ⊆ 2U to states ϑ% ⊆ 2V , and we define the
relation (ϑ,ξ) ∈ σ :⇔ ξ = ϑ%, and prove that this relation is somehow a simulation relation
between TV and TU :

Lemma 8. Let TV = (SV ,IV ,RV ,LV) be a transition system given by the symbolic repre-
sentations of its initial states ϕI and its state transitions ϕR over the variables V. For any
substitution % of the variables V by expressions over some set of variables U , we define the
transition system TU = (SU ,IU ,RU ,LU ) by the initial states %(ϕI) and its state transitions
%(ϕR). Then, the following holds for TV and TU :

• For every state ϑ∈ SU , there is a corresponding state ϑ% ∈ SV defined by ϑ%(x) := J%(x)Kϑ.
• For every initial state ϑ ∈ IU , there is a corresponding initial state ϑ% ∈ IV defined by
ϑ%(x) := J%(x)Kϑ.
• For every transition (ϑ,ϑ′) ∈RU , there is a corresponding transition (ϑ%,ϑ′%) ∈RV .

Proof. The first proposition is clear since for every ϑ⊆ U , we can compute ϑ%(x) := J%(x)Kϑ,
i.e., the subset ϑ% ⊆ V that satisfies x ∈ ϑ%⇔ J%(x)Kϑ = true. For the second proposition, we
have to prove that this mapping of states from SU to SV preserves membership in the initial
state set, which is seen as follows:

ϑ ∈ IU ⇔ J%(ϕI)Kϑ = true⇔ JϕIKϑ%
= true⇔ ϑ% ∈ IV

Similarly, we have for the third proposition:

(ϑ,ϑ′) ∈RU⇔ J%(ϕR)Kϑ,ϑ′ = true
⇔ JϕRKϑ%,ϑ′

%
= true

⇔ (ϑ%,ϑ′%) ∈RV
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We may also define an equivalence relation on the states of TU : ϑ1 ≈% ϑ2 :⇔ ϑ1
% = ϑ2

%,
i.e., two states are equivalent if the evaluation of all variables with respect to % matches:
ϑ1 ≈% ϑ2 :⇔∀x∈ V. J%(x)Kϑ1 = J%(x)Kϑ2 . By construction, all equivalent states are associated
with the same state ϑi% of TV , so that the quotient structure [Schn03] TU|≈%

is simulated by
TV . Below, we present a proof without the quotient structure construction.

Thus, if π : N→SU is a path in TU , then there is a corresponding path π% in TV that is
obtained by π%(t) := (π(t))%.

Theorem 3 (Preservation of Universal Specifications). Given state transition systems
TV = (SV ,IV ,RV ,LV) and TU = (SU ,IU ,RU ,LU ) over variables V and U , respectively, such
that TV and TU are represented by the initial state conditions ϕI and %(ϕI) and the transition
relations ϕR and %(ϕR), respectively (where % is a substitution of variables V to expressions
over variables U). Then, the following holds:

1. for every state ϑ and every ACTL∗ state formula ϕ, we have (TV ,ϑ%) |=ϕ⇒ (TU ,ϑ) |= %(ϕ)
2. for every path π and every ACTL∗ path formula ϕ, we have (TV ,π%) |= ϕ⇒ (TU ,π) |= %(ϕ)

We therefore have the following proof rules:

TV |= ϕ

TU |= %(ϕ)
TV ,ϑ% |= ϕ

TU ,ϑ |= %(ϕ)

Proof. The proof is done by an induction on ϕ, where we assume without loss of generality
that the formula is in negation normal form:

• If ϕ is a propositional formula, then

(TV ,ϑ%) |= ϕ⇔ JϕKϑ%
= true

⇔ J%(ϕ)Kϑ = true
⇔ (TU ,ϑ) |= %(ϕ)

• For a path quantifier, we have

(TV ,ϑ%) |= Aϕ⇔ for all paths π% starting in state ϑ%,
we have (TV ,π%) |= ϕ

IH⇒for all paths π starting in state ϑ,
we have (TU ,π) |= %(ϕ)

⇔ (TU ,ϑ) |= A%(ϕ)
⇔ (TU ,ϑ) |= %(Aϕ)

Note here that every path π in TU is the image of a path π% in TV obtained via %.
• The remaining cases for state formulas ¬ϕ, ϕ∧ψ and path formulas ¬ϕ, ϕ∧ψ, Xϕ,

[ϕ U ψ], and [ϕ U ψ] follow directly from the induction hypothesis.

5.2 Lifting Verification Results for Pre-emption Statements

In the previous section the pre-emption context was simulated by introducing new input
variables for the verification task. Hence, some assumptions about the context were made
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during the verification of a module. In this section, however, we lift a given verification result
(G,L) |= ϕ where G does not consider any pre-emption statement and contains the label L to
new results:

• (Θwk
ab (M,σ),L) |=Θwk

ab (ϕ,σ),
• (Θst

ab(M,σ),L) |=Θst
ab(ϕ,σ),

• (Θwk
sp (M,σ),L) |=Θwk

sp (ϕ,σ), and
• (Θst

sp(M,σ),L) |=Θst
sp(ϕ,σ),

where Θwk
ab (M,σ), Θst

ab(M,σ), Θwk
sp (M,σ), Θst

sp(M,σ) are immediate weak abort M
when(σ), immediate abortM when(σ), immediate weak suspendM when(σ), and
immediate suspendM when(σ), respectively. Thus, concerning pre-emption statements,
the results presented here are stronger since they allow us to introduce pre-emption in the
module even if it has not been considered there from the beginning.
The outline of this section is as follows: first we define the pre-emptions Θwk

ab (G,σ), Θst
ab(G,σ),

Θwk
sp (G,σ), and Θst

sp(G,σ) for a set of guarded actions G. Then, the transformations Θwk
ab (ϕ,σ),

Θst
ab(ϕ,σ), Θwk

sp (ϕ,σ), and Θst
sp(ϕ,σ) are defined and correctness proofs are given. To this end,

we illustrates this approach by an example.

5.2.1 Pre-emption Statements

In the following, we describe the semantics of the four different pre-emption statements used
in Quartz2 (immediate (weak) abort, immediate (weak) suspend).

Definition 32 (Pre-emption of Synchronous Systems). Given guarded actions G of a
synchronous system over input Vi, label Vl, state Vs, and output variables Vo. Then, the
weak/strong abortion and weak/strong suspension with a condition σ is obtained by modifying
the guarded actions as follows to obtain synchronous systems Θst

ab(G,σ), Θwk
ab (G,σ), Θst

sp(G,σ),
and Θwk

sp (G,σ), respectively.

pre-emption control flow data flow
(γ⇒ next(`) = true) ∈ G (γ⇒ α) ∈ G

strong abort σ Θst
ab(G,σ) ¬σ∧γ⇒ next(`) = true ¬σ∧γ⇒ α

weak abort σ Θwk
ab (G,σ) ¬σ∧γ⇒ next(`) = true γ⇒ α

strong suspend σ Θst
sp(G,σ) (¬σ∧γ)∨ (`∧σ)⇒ next(`) = true ¬σ∧γ⇒ α

weak suspend σ Θwk
sp (G,σ) (¬σ∧γ)∨ (`∧σ)⇒ next(`) = true γ⇒ α

The table shows that the guarded actions of the data flow are only modified by the strong
pre-emption statements since weak pre-emption allows data actions to take place at the time
of pre-emption. Moreover, weak and strong abortions have the same effect on the control
flow. Abortion statements disable all assignments to control flow labels ` so that the control
flow leaves the system in case of abortion. During a suspension, the control flow is kept and
does not move to other labels.
2 We only consider the immediate variants of these statements in this section (and will omit from
now on the immediate keyword) that observe the pre-emption condition also in the first macro
step of the statement while other variants omit the starting point of time. All results presented
here can be easily transferred to the omitted delayed variants as well.
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Any pre-emption context represented by the transition system T ′ := (S ′,I ′,R′,L′) changes
the behavior only if σ holds. Hence on a path π where no pre-emption takes place (∀i.π(i) 6|= σ),
the behavior of T ′ is equivalent to the original transition system T := (S,I,R,L). Hence, it
is clear that we have S ⊆ S ′, I ⊆ I ′ and R⊆R′, which allows us to apply Lemma6.

5.2.2 Making LTL Specifications Preemptive

In general, a temporal logic formula ϕ that holds in a synchronous system given by its guarded
actions G will no longer be valid in one of the systems Θst

ab(G,σ), Θwk
ab (G,σ), Θst

sp(G,σ), and
Θwk

sp (G,σ).

Example

For example, the system

G =
{

true⇒ next(`) = true,
`⇒ c= i

}
with Vi = {i}, Vl = {`}, and Vo = {c} is modified to

Θst
ab(G,abrt) =

{
¬abrt⇒ next(`) = true
¬abrt∧ `⇒ c= i

}
.

Therefore, the LTL specification A G (c↔i) that holds on G is no longer satisfied in
Θst

ab(G,abrt). However, a specification like A [(c↔ i) U abrt] holds, which states that c is
equivalent to i until an abortion takes place.

In the following, we define transformations Θst
ab(ϕ,σ), Θwk

ab (ϕ,σ), Θst
sp(ϕ,σ), and Θwk

sp (ϕ,σ)
for temporal logic formulas ϕ so that we establish the following modular proof rules. These
rules allow us to reason about a satisfied temporal logic property (e.g. Θst

ab(ϕ,σ)) of a system
in a pre-emption context (e.g. Θst

ab(G,σ)), in case the property ϕ has already been proved
for G. Since the rules will be used in an interactive verification tool that considers systems
defined by guarded actions, these rules are defined directly on guarded actions. Nevertheless,
the correctness proofs will use the equivalent representation of transition systems that was
defined in a previous section.

(G,L) |= ϕ

(Θst
ab(G,σ),L) |=Θst

ab(ϕ,σ)
(G,L) |= ϕ

(Θwk
ab (G,σ),L) |=Θwk

ab (ϕ,σ)

(G,L) |= ϕ DFNxtEvtFree(G)
(Θst

sp(G,σ),L) |=Θst
sp(ϕ,σ)

(G,L) |= ϕ

(Θwk
sp (G,σ),L) |=Θwk

sp (ϕ,σ)

The upper part defines the assumptions of the rule, the lower part defines the conclusions
that hold by the rule. The condition DFNxtEvtFree(G) and the transformation Θst

sp(ϕ,σ) are
explained in Section 5.2.4.

To this end, it is assumed without loss of generality that the given specification ϕ is in
negation normal form and the next operators are shifted inwards such that next operators
only occur in front of a variable, its negation or a next operator.
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5.2.3 Transformation for Strong Abortion

An abortion can stop the execution of a system in every step. Hence, a preemptive specification
should express that either the specification ϕ has already been satisfied or that the execution
was aborted in a step before the specification was fulfilled (or violated). These thoughts lead
to the following definition.

Definition 33 (Transformation Θst
ab(ϕ,σ)). The transformation Θst

ab(ϕ,σ) that generates
an abort-sensitive specification for Aϕ is defined recursively as

Θst
ab(ϕ,σ) :=


σ∨ϕ, if ϕ is propositional
σ∨X(Θst

ab(ψ,σ)), if ϕ= Xψ

[Θst
ab(ψ,σ)⊗Θst

ab(γ,σ)], if ϕ= ψ⊗γ with ⊗ ∈ {U,U}
Θst

ab(ψ,σ)⊗Θst
ab(γ,σ), if ϕ= ψ⊗γ with ⊗ ∈ {∧,∨}.

The crucial point of the definition is that we have to forbid the use of a variable after an
abortion took place, which is achieved in that all recursive calls will finally introduce a
disjunction with σ. The definition states that for the next operator, the specification ϕ= Xψ
must lead to a specification that requires that the execution is aborted in the current or
next step since σ holds or ψ holds in the next step. Thus, the specification ϕ := [ψ U γ] (and
[ψ U γ] respectively) requires that ψ holds in every step until (eventually) γ or σ holds (the
condition σ is added implicitly by the recursive calls). Note that it is impossible to abort
the left-hand side of a (strong) until without aborting the right-hand side, too. The same
is valid for the Boolean operators because σ is added simultaneously on both sides. For a
propositional formula ϕ, we have for example Θst

ab(Gϕ,σ) = [ϕ U σ] and Θst
ab(Fϕ,σ) = F(ϕ∨σ).

Correctness

To prove the correctness of the proof rule related to the above transformation, we will make
use of the following lemmata.

Lemma 9 (Containment of ϕ). The transformation preserves the original specification if
no pre-emption takes place, i.e., Θst

ab(ϕ, false) = ϕ holds.

Proof. The lemma can be easily proved by induction over ϕ.

The following lemma states that the transformed specifications are vacuously satisfied if σ
holds.

Lemma 10. For an arbitrary but fixed condition σ and a path π′ through Θst
ab(G,σ) and a

position m such that π′(m) ` σ holds, we have

(Θst
ab(G,σ),π′,m) |=Θst

ab(ϕ,σ).

Proof. The proof can be easily shown by an induction over the syntax tree of ϕ.

The following theorem ensures the correctness of the modular proof rule for strong abortion.
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Theorem 4. For any set of guarded actions G with a corresponding label set L and any
condition σ, the following holds

(G,L) |= ϕ→ (Θst
ab(G,σ),L) |=Θst

ab(ϕ,σ).

Proof. Let T be the original transition system for G and T ′ be the transition system for
Θst

ab(G,σ). Obviously, if σ does not occur on a path π′ through T ′, then the original system
T already contained π′ and we can conclude from Lemma 9 that (T ′,π′) |=Θst

ab(ϕ,σ) = ϕ.
Assume we have a path π ∈ T through the original system and π′ ∈ T ′ is a path that is

equivalent to π up to a minimal position tσ where σ holds. By induction on the number of
temporal operators (‖ϕ‖) in an arbitrary formula ϕ it is shown that ∀m≤ tσ: if (T ,π,m) |= ϕ

we have (T ′,π′,m) |=Θst
ab(ϕ,σ).

Base Case: ‖ϕ‖= 0, hence ϕ is propositional and Θst
ab(ϕ,σ) is equivalent to ϕ∨σ. A case

distinction for π′(m) solves the case: for π′(m) ` σ we have (T ′,π′,m) |= σ and for
π′(m) 0 σ we have (T ′,π′,m) |= ϕ following from the definition of π and π′. Hence,
(T ′,π′,m) |= ϕ∨σ =Θst

ab(ϕ,σ) holds.
Inductive Step: ‖ϕ‖=m+1, hence, Θst

ab(ϕ,σ)’s result is besides the trivial Boolean combi-
nations either σ∨XΘst

ab(ψ,σ),
[
Θst

ab(ψ,σ) UΘst
ab(γ,σ)

]
, or

[
Θst

ab(ψ,σ) UΘst
ab(γ,σ)

]
.

For the next operator we have (T ,π,m) |=Xψ
def⇒ (T ,π,m+1) |= ψ. If m+1< tσ, we can

apply the inductive hypothesis to conclude (T ′,π′,m+1) |=Θst
ab(ψ,σ). Otherwise, σ holds

at position m+ 1, and one can conclude from Lemma 10 that (T ′,π′,m+ 1) |=Θst
ab(ψ,σ)

Now we turn to the strong-until-operator, i. e. we consider the case that (T ,π,m) |= [ψ U γ],
hence there exists a tγ such that ∀m≤ t′ < tγ . (T ,π, t′) |= ψ and (T ,π, tγ) |= γ. Hence,
using the induction hypothesis for tγ < tσ gives us ∀m≤ t′ < tγ .(T ′,π′, t′) |= Θst

ab(ψ,σ)
and (T ′,π′, tγ) |=Θst

ab(γ,σ). Then, Lemma 10 allows us to conclude (T ′,π′, tσ) |=Θst
ab(γ,σ)

and applying the induction hypothesis proves that ∀m≤ t′ < tσ.(T ′,π′, t′) |=Θst
ab(ψ,σ)

holds. Hence in both cases (T ′,π′,m) |=Θst
ab([ψ U γ] ,σ) holds. The case for weak until is

shown analogously.

5.2.4 Transformation for Strong Suspension

A suspension can postpone the current execution of the guarded actions to a later point of
time. Hence, no guarded action is executed during the suspension, but the delayed assignments
of the previous step still take place. The suspend-sensitive specification must ensure that
either the execution of the system is suspended, and a violation of the specification is
secondary (because no step of the original system is executed) or the next macro step of the
system is executed, and as a consequence, the specification must be satisfied for this step.
Note that it is possible to suspend the system infinitely often and that this case must be
covered as well.

Unfortunately, the transformation defined below is not applicable if the data flow contains
next assignments to event variables, because such an assignment may get lost during a
suspension. The problem is explained in detail in Theorem 5. Hence, we exclude systems
violating this requirement by adding the assumption DFNxtEvtFree(G) to the rule. This
condition checks that the data flow is free of next assignments to event variables.
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Definition 34 (Transformation Θst
sp(ϕ,σ)). For a given specification Aϕ, the transforma-

tion Θst
sp(ϕ,σ) is defined as

Θst
sp(ϕ,σ) :=


[ϕW ¬σ] , if ϕ is propositional[
(XΘst

sp(ψ,σ)) W ¬σ
]
, if ϕ= Xψ

[Θst
sp(ψ,σ)⊗Θst

sp(γ,σ)], if ϕ= ψ⊗γ with ⊗ ∈ {U,U}
Θst

sp(ψ,σ)⊗Θst
sp(γ,σ), if ϕ= ψ⊗γ with ⊗ ∈ {∧,∨}.

The crucial point is again that we have to forbid the use of a variable whenever the suspension
takes place. Note again that all recursive calls will finally introduce a weak when operator. A
module satisfying a specification ϕ := Xψ is suspendable in two macro steps. The definition
states that the evaluation is postponed to the first point of time where σ becomes false. Thus,
the specifications ϕ := [ψ U γ] (and [ψ U γ] respectively) must lead to a specification that
requires that ψ holds in every step until (eventually) γ holds or an (in)finite suspension takes
place (covered by the weak when operator introduced by recursive calls).

We have Θst
sp(Gϕ,σ) = G [ϕW ¬σ] and Θst

sp(Fϕ,σ) = F [ϕW ¬σ], for any propositional ϕ.
An interesting fact is that an infinite suspension is equivalent to an abortion, hence

only a special case of it. Hence, the transformation for abort can be also obtained from the
suspension transformation.

Correctness

The following theorem ensures the correctness of the modular proof rule for strong suspension.

Theorem 5. For any set of guarded actions G and corresponding label set L, where
DFNxtEvtFree(G) holds for G and any condition σ, we have (G,L) |=ϕ→ (Θst

sp(G,σ),L) |=Θst
sp(ϕ,σ).

Since the already proved rule for abort is a special case of the suspension rule, we only
have to extend the proof of Theorem 4 at the appropriate places. We will omit this here and
only describe the proof idea with help of Figure 5.5.

Fig. 5.5: Time Table for Suspend

.

.

.

l0: pause;
next (x) = v0;

l1: pause;
y = v1;

assert(ϕ(x,y));

.

.

.

Fig. 5.6: Quartz Program

The effect of a suspension on a simple Quartz program (given in Figure 5.6) is described in
Figure 5.5. We consider three important points of time t0, t1 and t1s: t0 corresponds to a
not suspended macro step starting in l0, where the next assignment to x takes place. The
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time step t1 is the intended execution of the macro step starting in l1, but this step is now
suspended. Nevertheless, the assignment to the variable x from the previous step takes place
(v0), but the immediate assignment to y is postponed until t1s, which is the first point of
time where the suspension is released. The assertion ϕ(x,y) intended to be evaluated at
point t1 is postponed as well. It is no problem to evaluate ϕ(x,y) in t1s, since the immediate
assignment is executed in the same step and for the delayed assignment the default reaction
transfers the value v0 to the step t1s (indicated by the dashed box). Unfortunately, this holds
only for memorized variables, since event variables are set to the type’s default value and so
the value v0 gets lost during suspension. Hence, the example shows that a next assignment
to an event variable in the data flow may completely change the behavior of the system.
Hence, nothing can be deduced from the original specification. The delayed assignments to
the control flow events are not problematic, i.e., are handled correctly.

5.2.5 Transformation for Weak Abortion

The weak pre-emption statements differ from their strong variants by allowing the execution
of the data flow when the pre-emption takes place. If the abortion should take place at
the termination point, it will therefore not modify the behavior. A weak abort-sensitive
specification should express that either the specification ϕ is already satisfied or the execution
was aborted in a state not violating the specification, but before it was ultimately fulfilled.

Definition 35 (Transformation Θwk
ab (ϕ,σ)). For a given specification Aϕ, the transforma-

tion Θwk
ab (ϕ,σ) is defined as

Θwk
ab (ϕ,σ) :=


ϕ, if ϕ is propositional
σ∨XΘwk

ab (ψ,σ), if ϕ= Xψ

[Θwk
ab (ψ,σ)⊗ (Θwk

ab (γ,σ)∨σ∧Θwk
ab (ψ,σ))], if ϕ= [ψ⊗γ] for ⊗ ∈ {U,U}

Θwk
ab (ψ,σ)⊗Θwk

ab (γ,σ), if ϕ= ψ⊗γ and ⊗ ∈ {∧,∨}

The crucial point of the definition is that the specification must not be violated in a step
where a weak abortion takes place. Hence, for the evaluation of a variable the value of σ
is unimportant and only influences reads to the variable in a later step. This requires a
different treatment of the until operators: Their evaluation must stop in a step where σ is
satisfied. Furthermore, in such a step also one side of the operator must be satisfied. Hence,
Θwk

ab (ψ,σ)∨Θwk
ab (γ,σ) must hold, but the right-hand side of this disjunction is already covered

by

Θwk
ab (γ,σ)∨σ∧ (Θwk

ab (ψ,σ)∨Θwk
ab (γ,σ)) =Θwk

ab (γ,σ)∨σ∧Θwk
ab (ψ,σ)

and so it is enough to additionally demand σ∧Θwk
ab (ψ,σ) to successfully stop the evaluation

of the operator. For the next operator, the specification ϕ= Xψ must lead to a specification
that requires that the execution is aborted in the first step (without restrictions) or ψ holds
in the next step (with/without abortion).

For example, we have Θwk
ab (Gϕ,σ) = [ϕ U (σ∧ϕ)] and Θwk

ab (Fϕ,σ) = F(σ∨ϕ) for a propo-
sitional ϕ .
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Correctness

The following theorem ensures the correctness of the modular proof rule for weak abortion.

Theorem 6. For any set of guarded actions G and any condition σ, the following holds:

(G,L) |= ϕ→ (Θwk
ab (G,σ),L) |=Θwk

ab (ϕ,σ).

The proof is similar to the proof of Theorem 4: the used Lemma 9 is analogous for the weak
abortion case, but Lemma 10 must be replaced by the following lemma:

Lemma 11. Let T be the original transition system for G that satisfies ϕ and T ′ be the
transition system for Θwk

ab (G,σ). Assume we have paths π ∈ T and π′ ∈ T ′ that is equivalent
to π up to a minimal position where σ holds. For an arbitrary position m such that π′(m) ` σ
holds, we have (Θwk

ab (G,σ),π′,m) |=Θwk
ab (ϕ,σ).

Proof. The proof can be made by an induction over the structure of ϕ and the fact, following
from the definition of Θwk

ab that (Θwk
ab (G,σ),π′,m) |= ϕ holds.

With this lemma and the fact inferred from Definition Θwk
ab that the considered paths π and

π′ are equivalent up to tσ, the proof is analogous to Theorem 4.

5.2.6 Transformation for Weak Suspension

A weak suspension freezes the control flow, but the data flow is not affected. Hence, the
weak suspend-sensitive specification must express that in case of a suspension, the current
state is not left which motivates the following definition.

Definition 36 (Transformation Θwk
sp (ϕ,σ)). Given Ω := G(σ∧Θwk

sp (γ,σ)) and ⊗∈{∧,∨,U},
then we define

Θwk
sp (ϕ,σ) :=


[(σ∧ϕ) U (¬σ∧ϕ)] , if ϕ is propositional[
σ U ¬σ∧XΘwk

sp (ψ,σ)
]
, if ϕ= Xψ[

Θwk
sp (ψ,σ) U (Θwk

sp (γ,σ)∨Ω)
]
, if ϕ= [ψ U γ]

Θwk
sp (ψ,σ)⊗Θwk

sp (γ,σ), if ϕ= ψ⊗γ.

Regarding the examples, we have Θwk
sp (Gϕ,σ) = G [(σ∧ϕ U (¬σ∧ϕ)]) and that Θwk

sp (Fϕ,σ) is
equivalent to F [(σ∧ϕ) U (¬σ∧ϕ∨Gσ)] for a propositional ϕ.

It is again provable that the weak abortion is equivalent to an infinite weak sus-
pension. The only difference to the strong case is that the weak until operator in
Θwk

sp (ϕ,σ) is not changed, because both sides already cover the changes made in Θwk
ab (ϕ,σ).

The term
[
Θwk

sp (ψ,σ) UΘwk
sp (γ,σ)∨G(σ∧ (Θwk

sp (ψ,σ)∨Θwk
sp (γ,σ)))

]
is reducible to the term[

Θwk
sp (ψ,σ) UΘwk

sp (γ,σ)
]
.
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Correctness

The following theorem ensures the correctness of the modular proof rule for weak suspension.

Theorem 7. For any set of guarded actions G and corresponding label set L and any condition
σ, the following holds: (G,L) |= ϕ→ (Θwk

sp (G,σ),L) |=Θwk
sp (ϕ,σ).

Proof. The proof for the weak suspend case is analogous to the proof of Theorem 5, but
the exclusion of delayed assignments to event variables (checked by DFNxtEvtFree(G)) is
not necessary, because all data flow assignments are executed in case of a weak suspension.
Hence, the assignments to y and x’s take place at t1 and ϕ(x,y) can be evaluated there,
too. We illustrate this situation in Figure 5.7 in analogy to Figure 5.5. Nevertheless, a set
of guarded actions containing next assignments to event variables may only satisfy ϕ(x,y)
during suspension, since the assignment to x is lost after t1.

Fig. 5.7: Time Table for Weak Suspend

5.2.7 Example

In this section, the developed proof rules are applied to an example. Given an implementation
of a traffic light controller, like the one represented by the (simplified) set of guarded actions
in Figure 5.8 obtained from the Quartz file in Figure 5.9.

The traffic light controller has one input variable req and two output variables ylw and
grn (indicated by ? and ! respectively), which are Boolean events. Thus, the outputs are
false for macro steps not assigning a value to them. A traffic light usually has three lights,
they will be modeled by the two output variables: ylw=true means that the yellow light is
on, grn=true means that the green light is on, and grn=false means that the red light is
on. The behavior of the controller is very simple, as long as the environment does not request
a green light by req=true, the controller will respond by not setting any output (hence, the
red light is on). A request is answered by enabling the yellow light (and the red light, since
grn=false) in the current step, and the green light in the next step. Furthermore, it is easily
provable that the controller implements the specification A G (req→ grn∨ylw∧X grn).

Assume, we want to extend the traffic light controller to operate additionally lights for
crossing pedestrian (with priority). To this end, we reuse the already existing controller, like it
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control flow:

True ⇒¬next(init)
¬req∧(init∨l0) ⇒ next(l0)
req∧(init∨l0) ⇒ next(l1)
l1 ⇒ next(l2)

data flow:

req∧(init∨l0∨l2) ⇒ ylw

l1 ⇒ grn = True

specifications:

A G (req→grn∨ylw∧(X grn))

Fig. 5.8: Compiled Guarded Actions

module TrafficLightController

(event ?req , !ylw , !grn){

loop{
while (¬req){

l0: pause;
}

emit (ylw);

l1: pause;
emit (grn);

l2: pause;
}

} satisfies {

A G (req→grn∨ylw∧X grn);

}

Fig. 5.9: Quartz Source Code

is done in Figure 5.113. In Figure 5.10, we added the guarded actions for the compiled version
where we simplified the Quartz compiler’s output and for a better readability, we replaced the
term (C.l0 ∨ C.l1 ∨ C.l2) by inC and (P.l0 ∨ P.l1 ∨ P.l2) by inP. The original module
was used twice, but embedded in two different abort statements (in the second call that
models the lights for the crossing pedestrian the output for the yellow light is ignored, which
is indicated by the underscore). It is not obvious that this implementation is correct, but we
will see that our rules help to determine this.

control flow:

True ⇒¬next(init)
¬reqP∧¬reqC∧(¬init∨(C.l2∨C.l0)∨inP)
⇒ next(C.l0)

¬reqP∧reqC∧(¬init∨(C.l2∨C.l0)∨inP)
⇒ next(C.l1)

¬reqP∧C.l1∧¬reqP ⇒ next(C.l2)
reqP∧(bf∨inC∨(P.l0∨P.l2))
⇒ next(P.l1)

reqP∧P.l1 ⇒ next(P.l2)
data flow:

¬init∧reqC∧¬reqP ⇒ ylwC

¬reqP∧reqC∧C.l0 ⇒ ylwC

C.l1∧¬reqP ⇒ grnC

reqC∧C.l2∧¬reqP ⇒ ylwC

P.l1 ⇒ grnP

reqP∧P.l2 ⇒P.ylw

reqP∧(C.l0∨C.l1∨C.l2) ⇒P.ylw

reqC∧¬reqP∧(P.l0∨P.l1∨P.l2) ⇒ ylwC

Fig. 5.10: Compiled Guarded Actions

module TrafficLightController2

(event ?reqC , !ylwC , !grnC ,

?reqP , !grnP ,){

loop{
abort{

C: TrafficLightController

(reqC , ylwC , grnC);

}when (reqP);

weak abort{
P: TrafficLightController

(reqP , _, grnP);

}when(¬reqP);
}

}

Fig. 5.11: Quartz Source Code

Applying the rules for the two abort statements after renaming the variables in the
specification ϕ(req,ylw,grn) = G(req→ grn ∨ ylw ∧ X grn) leads to the following result
Θst

ab(ϕ(reqC,ylwC,grnC),reqP). Hence, one has to evaluate
3 We omitted the immediate modifier for both abort statements to be consistent with the defined
rules.
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Θst
ab([(¬reqC ∨ grnC ∨ ylwC ∧ X grnC) U false],reqP) =
G (reqC→ reqP ∨ grnC ∨ ylwC ∧ X (grnC ∨ reqP))

Using the same steps the specification for the weak abort can be deduced as

Θwk
ab (ϕ(reqP,_,grnP),σ) = [reqP→ grnP ∨ X grnP U ¬reqP]

.
Hence, we know that the module calls of the TrafficLightController together with the
surrounding abort statement satisfies the corresponding specification (without having to
verify it directly).

Additionally, the first specification shows that the goal of prioritizing the pedestrian’s
lights is reached, because reqP is able to shadow a green light for the cars. The second
specification shows that in every step inside the second abort either reqP→ grnP ∨ X grnP

or ¬reqP holds. Additionally, the statement before the second abort terminates if and
only if reqP holds. Hence, in the first step of the second abort statement, the property
grnP ∨ X grnP must hold. Hence, the reuse of the traffic-light controller leads to a correct
implementation.

5.3 Proof Rules for Modular Verification of Synchronous Programs

Putting the results of Section 5.1.1 and Section 5.1.2 together yields the following proof rules:

Corollary 1.
(WP(Top),ϑ%) |= Aϕ

(%(WP(Top)),ϑ) |= %(Aϕ)

(WP(Top),ϑ%) |= Eϕ
(%(WP(Top)),ϑ) |= %(Eϕ)

These are to be read as follows: It is assumed that a module is compiled to an open transition
system with context interface WP(Top) and that an ACTL∗ state formula Aϕ has been
verified, i.e., for all initial states ϑ% of WP(Top), we have (WP(Top),ϑ%) |= Aϕ. This ϕ can be
determined from the closed system with the techniques presented in Section 5.2.2 or must be
given by the user. Then, we can conclude that a module call where the variables are replaced
by a substitution % satisfies the specification %(Aϕ).

Note that Lemma 2 is used here also for another reason: The calling module N may add
further actions to write variables that are now substituted for the output variables of the
called module. Then, we also obtain a transition system that satisfies the assumptions of
Lemma 2, so that also the additional actions of the calling module are taken into account.
Hence, the fact that the calling module satisfies %(Aϕ) is derivable from the fact that WP(Top)
satisfies Aϕ.
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Illustrating Example

Consider again the running example rfEdgeDet to illustrate the use of the approach. The
guarded actions for the open system of rfEdgeDet extended by the compilation context
are listed in Figure 5.4. For this module, it is possible to verify the following specification
(generated by the rules of the previous section)

Θ := A [[Φ U (abrt∨wabrt)] W st] ,

where Φ is the following formula:

Φ := ((¬susp∧¬wsusp)→ (¬i∧X(¬susp→ (i→ u))))

The specification Θ expresses that at the first point of time where st holds ([. . . W st])
property Φ will hold until an abortion takes place. Φ states that u holds in a step, where i
holds and in the previous step i did not hold and no suspension took place.

module CallExample (event bool ?start , ?stop , ?i){

event x, y;

immediate abort {

await (start);

rfEdgeDet (i ⊕ x, y);

||

loop{
next (x) = i;

if (i∧x) y = true;
pause;

}

} when (stop);

}

Fig. 5.12: Module Call Example

The program in Figure 5.12 calls module rfEdgeDet with a compilation context that defines
the following substitution %:

% :=



(i,i⊕x),
(u,y),
(st,start),
(abrt,stop),
(wabrt,false),
(susp,false),
(wsusp,false)


By Theorem 2 and Theorem 3, we now deduce that the system obtained by applying % to
(the transition system representing) the guarded actions given in Figure 5.4 satisfies the
specification

%(Θ) = A [[(¬(i⊕x)∧X((i⊕x)→ y)) U stop] W start] .
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Additionally, Theorem 2 states that this specification is also satisfied for the whole module
CallExample even though it modifies the variables used for the module call of rfEdgeDet.

In general, % may replace different variables with the same expression, which may
significantly simplify the specification. For example, the specification AG(a∨¬b→ c) will
lead to AGc by replacing the variables a and b with the same expression.

5.4 Conclusion

An approach to modularly verify synchronous systems was presented. To this end, special
transition systems for open systems were constructed where the default actions on output
variables are omitted, while default actions on local variables are retained. This transition
system was generalized by consideration of a compilation context that takes all kinds of
pre-emption statements into account. Moreover, the compilation context also provides an
explicitly given start signal. Syntactically, the compilation context can be viewed as a wrapper
as shown in Figure 5.3. The compilation of the module in a generalized compilation context
therefore defines an open transition system WP(Top). If a property ϕ ∈ ACTL∗ has been
verified for this transition system WP(Top), then one can conclude that every module call
that induces a substitution %, satisfies the substituted formula %(ϕ) at the time of the module
call. Candidates for these specifications can be determined by lifting verification results to
pre-emption statements. Therefore, transformations was defined to modify given verification
results such that these will take care of pre-emptions of the system. These transformations
allow us to define modular proof rules for pre-emption statements to reason about their
correctness. Thereby, it was possible to introduce pre-emption statements even though
these have not been considered in the available verification results, and the transformations
automatically derive new specifications that hold under the pre-emption contexts.



Chapter 6

Representation of Synchronous Systems for Verification
in other MoCs

In this chapter, the representation of the synchronous MoC by the sequential/asynchronous
MoC is described. Therefore, synchronous guarded actions are represented by interleaved
guarded actions. Afterwards, this representation is compared with two other representations
in SRI’s SAL.

6.1 Translation of SGAs to Interleaved Guarded Actions

In this section, we present a translation of SGAs to IGAs to make use of tools that are based
on IGAs for systems described by SGAs. The idea is to close the gap between SGAs and
IGAs such that tool chains based on these different models can be connected (see Figure 6.1).

Quartz SGAs

IGAs Proof

Averest

SAL,
Rodin,
Murphi,
etc

?

Fig. 6.1: Goal: Closing the Gap between SGAs and IGAs

Before the translation is discussed in detail, some examples will demonstrate that this
translation is not trivial. The following SGAs are obviously enabled in every step, since their
trigger conditions are always true: {

true⇒ z=y

true⇒ y=x

}
The behavior executing both SGAs synchronously results in a state were the three variables
x, y, and z have the same value. Hence, starting with the valuation x=1, y=0 and z=0 as given
in Figure 6.2, the variables have the values x=1, y=1, and z=1 in the next step. Executing the
SGAs as IGAs instead, shows that there is one interleaving schedule executing every guarded
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y=x
z=yx=1

y=0
z=0

x=1
y=1
z=1

y=x
x=1
y=1
z=0

z=y

z=y

z=y

y=x

y=x

Fig. 6.2: Example 1: Execution Trace

action once to reach the target state, but there exists other schedules that require more than
one execution of all guarded actions. Another example, this time with delayed assignments is:

(true⇒ next(x)=y)
(true⇒ next(y)=x)

The behavior executing both SGAs synchronously results in swapping the values of the
variables x and y in each step. Hence, starting with the valuation x=1 and y=0 as given in
Figure 6.3, the variables have the values x=0 and y=1 in the next step. Executing the SGAs
as IGAs instead, shows that there is no interleaving schedule with the same behavior. The
execution of (true⇒ next(x)=y) leads to the intermediate state where x=y=0 holds and
the remaining action does not change the state further. A similar situation occurs when
executing (true⇒ next(y)=x), where the state x=y=1 is obtained.

next(x)=ynext(y)=x

next(y)=xnext(x)=y

next(x)=y
next(y)=x

x=1
y=0

x=1
y=1

x=0
y=0

x=0
y=1

Fig. 6.3: Example 2: Execution Trace
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The last example shows a combination of delayed and immediate assignments and additionally
shows that the interleaved execution might have different schedules leading to the desired
result. These different schedules are eliminated for the C-Synthesis by choosing one of them.

true⇒ x=z

true⇒ y=¬z
true⇒ next(z)=¬z



x=1
y=0
z=1

x=0
y=1
z=0

x=0
y=0
z=0

x=1
y=1
z=0

#1
#2

#2

#1

#3
x=1
y=0
z=0

#1
#2

#3

x=1
y=0
z=1

x=0
y=1
z=0

x=0
y=0
z=0

x=1
y=1
z=0

#1
#2

#2

#1

#3
x=1
y=0
z=0

Fig. 6.4: Example 3: Execution Trace

For a translation from SGAs to IGAs, four major problems have to be solved:

• execution order : the execution of the IGAs must follow the causal ordering defined by
the SGAs

• immediate/delayed assignments: the different behavior of immediate and delayed assign-
ments of SGAs must be preserved by IGAs

• macro steps: all IGAs related to the current reaction step must be executed exactly once
before the IGAs for the next step are executed

• temporal behavior : the translation to IGAs introduces additional intermediate states that
typically violate temporal logic specifications given for SGAs so that these specifications
have to be adequately adapted.

This section is organized as follows: the following section motivates the problem and defines
IGAs. The main part is presented in Section 6.1.2, where solutions to the identified problems
are shown. In Section 6.1.8, the transformation of SGAs to IGAs is used to verify some
conditions of a running example. Finally, we conclude the section and discuss future work.

Example

We will use the synchronous language Quartz to generate sets of SGAs.
The program given in Figure 6.5 and the corresponding SGAs (given in Figure 6.7) are
used as a running example throughout this section and will also show that the presented
transformation is not a simple sequentialization (as used, e.g., in the synthesis of C programs
in the Averest system). In particular, data-independent SGAs can be executed in any order.
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macro N = 5;

module example(

event ?mode ,

int{N} ?a,?b,?c,?d,

int{4∗N∗N+1} !r) {

int{4∗N∗N+1} s1 ,s2,m;

loop {

if (mode){

//r = (a + b∗c + d)

r = s2;

s2 = s1 + d;

s1 = a + m;

m = b ∗ c;

} else {

//r = (a + b)∗(c + d)

r = m;

s2 = c + d;

s1 = a + b;

m = s1 ∗ s2;

}

l: pause;
}

} satisfies {

a: assert A G
(mode→(r=(a + b ∗ c + d)));

b: assert A G
(¬mode→(r=(a + b)∗(c + d)));

}

Fig. 6.5: Quartz Example

mode=false:

r

m

s1 s2

mode=true:

r

s2

s1

m

Fig. 6.6: Data Dependency Graphs

The program has five inputs (denoted by the question mark) and produces the output r
(denoted by the exclamation mark). The type int{n} defines the range of a variable to the
interval [−n, . . . ,n−1]. In each step, the output for the next step is computed depending on
the input mode either by a + b∗c + d (mode=true) or (a + b) ∗ (c + d) (mode=false).
This computation is done by using the three local variables s1, s2, and m. An important
point is that the data dependencies of these variables are determined by the input variable
mode as shown in Figure 6.6. The obtained SGAs for this program are given in Figure 6.7.

6.1.1 Interleaved Guarded Actions

As already mentioned, many tools and languages are based on models of computations that
can be represented by interleaved guarded actions:
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control flow:

True ⇒ next(init) = False

(l ∨ init) ⇒ next(l) = True

data flow:

mode ∧ (l ∨ init) ⇒ r = s2

mode ∧ (l ∨ init) ⇒ s1 = a+m

mode ∧ (l ∨ init) ⇒ s2 = s1+d

mode ∧ (l ∨ init) ⇒ m = b∗c
¬mode ∧ (l ∨ init) ⇒ r = m

¬mode ∧ (l ∨ init) ⇒ s2 = c+d

¬mode ∧ (l ∨ init) ⇒ s1 = a+b

¬mode ∧ (l ∨ init) ⇒ m = s1∗s2

Fig. 6.7: Example’s Guarded Actions

Definition 37 (Interleaved Guarded Actions (IGAs)). An IGA (γ⇒S) consists of a
trigger γ and a set of assignments S. In every step, a single enabled IGA is nondeterministi-
cally chosen and executed. A set of IGAs is executed until all IGAs are disabled.

The main difference between SGAs and IGAs is that all SGAs are executed in parallel and
may thereby directly influence each other. On the other hand, IGAs are executed one after
the other in an arbitrary nondeterministic execution order. Hence, a system description using
IGAs is in general nondeterministic. This is not only the case for the execution order, but
also for the final result in case the IGAs are not confluent.

It is very important for the proposed transformation that the determinism of SGAs is
preserved even though the execution order of the generated IGAs is nondeterministic. This is
done by introducing some restriction to maintain a confluent behavior, but we want to avoid
a complete sequentialization for the obtained IGAs. The approach presented here allows us
to execute all enabled IGAs in parallel. Hence, the transformation presented here allows us
to target the sequential MoC (by choosing a single enabled IGA) and the concurrent MoC
(by choosing a subset of the enabled IGAs).

6.1.2 Translating SGAs to IGAs

In this section, the proposed transformation is presented by solving the four major problems
related to the execution order within one and between successive macro steps, the preservation
of the different assignments, and the lifting of specifications from SGAs (macro steps) to
IGAs (micro steps).

In Section 6.1.3, a transformation Γ : S → I from SGAs S to IGAs I is defined and its
correctness is proven. The transformation is based on two phases, where the first three major
problems (execution order, immediate/delayed assignments, and macro step behavior) are
solved. Each SGA with an immediate assignment will be used to form an IGA besides an
additional IGA for the remaining SGAs. In the following, we will introduce some assumptions
to simplify the correctness proof. We will focus on these assumptions in Section 6.1.5, where
we describe some implementation details and improvements. Afterwards, the translation
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of the running example is given in Section 6.1.6. The remaining major problem (temporal
specifications) will be considered in Section 6.1.7.

6.1.3 Transformation from SGAs to IGAs

The definition of the transformation from SGAs to IGAs is based on the following assumptions.

• We consider only causally correct sets of SGAs. This means that the value of a single
variable must not be influenced by more than one SGA within the same macro step. This
is ensured during compilation by the causality analysis.

• We assume that the SGAs define the value of each variable in each step for the sake
of simplicity. This means that the default reaction that determines a value in case no
assignment to a variable is executed is contained explicitly in the SGAs. This is no real
restriction, since compilers can add the default reaction explicitly. Nevertheless, we will
explain later an improved transformation that does not need this assumption.

• We extend each type by an additional value ⊥ indicating that the value is not yet
determined in this macro step. For the implementation, this is done by adding a boolean
flag for each variable that is set during an assignment and reset at the beginning of each
macro step. In this way, the flag indicates that the value of the corresponding variable is
present/valid.

• We assume for this section that the environment is responsible for changing the input
values at the appropriate points of time and keeping them constant during the ’simulation’
of a macro step. For the implementation, this could be ensured by introducing a local
variable for each input that is only changed at the end/beginning of a macro step.

Furthermore, we split the ‘simulation’ of a macro step into two phases, because delayed
assignments do not influence the current macro step. Instead, they only evaluate the value
in the current environment and assign this value to the variable in the next step. Hence,
delayed assignments could be collected first and executed later once all values of the current
step are determined. Thus, we will split the set of SGAs S into the sets SI and SD that
contain immediate and delayed actions, respectively. Following this, a macro step is simulat-
ed/executed in two phases by IGAs: (1) the current environment is computed by evaluating
SI , then (2) the obtained environment is used to set up a partial environment for the next
step by evaluating SD and the read inputs of the next step. This is similar to the definition
of reaction- and transition rules of SOS rules.

This partitioning ensures the preservation of the behavior for the two kinds of assignments
(immediate/delayed assignments). Furthermore, the first phase handles the dependencies
within a single macro step by defining a transformation for the SGAs only containing
immediate assignments (execution order). Then, the second phase ensures a proper execution
of macro steps (macro step behavior).

Phase 1: Computation of the Current Environment

This phase ensures that the generated IGAs are executed by respecting their data dependencies
and that all read accesses to a variable will return the same value during a macro step.
Additionally, it must be ensured that each enabled IGA is executed exactly once during a
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macro step (otherwise, a termination of a macro step would not be guaranteed). Since only
immediate assignments directly influence the current macro step, we will only consider SGAs
containing immediate assignments (SI) in this phase.

We assume that at the beginning of each macro step, we are given an environment E that
assigns each variable v ∈ V a value E(v). More precisely, inputs have a value distinct from
⊥, all variables targeted by a delayed assignment of the previous step must have the values
determined in that previous step, and all other variables must have the unknown value ⊥.

Execution Order

The deterministic execution of SGAs is guaranteed by evaluating/executing them along their
data dependencies, although they are executed synchronously. Hence, the transformation
must ensure that all required values are known (i.e., 6=⊥) before an IGA is executed. This is
achieved by adding the condition v 6=⊥ for each variable read in the SGA. In this way, all
values required for the execution are known for an enabled action, and a correct execution
order is ensured.

Monotonicity

Since an IGA must not be executed more than once in a macro step, the IGAs must be
deactivated after an execution in a macro step. This is done by requiring that the target
variable x of an SGA (γ⇒ x = τ) does not yet have a (valid) value by adding the condition
x =⊥. Hence, the transformation of a single SGA is defined as:

Definition 38. Immediate Transformation ΓI

ΓI(γ⇒ x= τ) :=(
(

∧
v∈read(γ⇒x=τ)

v 6=⊥)∧ (x=⊥)∧γ⇒{x= τ}

)
,

where read(γ⇒ x = τ) := Vars(γ)∪Vars(τ) and {x= τ} represents a set with a single element.

Phase 2: Stepwise Execution

The modifications defined above ensure the (correct) data-dependent execution of a single
macro step and define a complete environment E . Finally, all triggers will become false,
because all variables have a value and the secondly introduced condition will therefore
deactivate all IGAs. Hence, we need an additional IGA that is activated once all others are
executed to set up the new macro step and to execute the delayed assignments of SD. This
is done by the following IGA that will be called conclusion.

For the definition of the conclusion, we assume that the set V represents all variables
contained in the set of SGAs, and that the function get returns for all input variables Vi ⊆ V
the value for the next macro step. Moreover, we take care of variables assigned by a delayed
assignment: we consider the value τ of an enabled delayed assignment, and for all other
variables, we use the value ⊥:
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setG(x) :=


get(x), if x ∈ Vi
τ, if ∃(γ⇒ next(x)=τ) ∈ G : E(γ) = true
⊥, else

ΓD(SD) :=
( ∧
v∈V

v 6=⊥
)
⇒

⋃
x∈V

{
x= setSD (x)

}
The state where the conclusion is executed marks the end of the current macro step. For a
correct macro step behavior, this state must be equivalent (all variables must have the same
value) to the state reached by executing the SGAs, and it is the point where the environment
must update the inputs.

Hence, given a set of SGAs S, the transformation Γ from S to a set of IGAs I is defined
as follows:

Definition 39. SGA Transformation

Γ (S) :=

 ⋃
g∈SI

{ΓI(g)}

∪{ΓD(SD)} ,

where the set S = SI ∪SD is composed of SGAs with immediate assignments SI and delayed
assignments SD.

6.1.4 Correctness of the Transformation Γ

In this section, we will prove the correctness of the presented transformation Γ , i.e., we want
to show that an arbitrary macro step following a correct execution of the previous steps is
determined by the generated IGAs in the same way as the SGAs define it. Therefore, we have
given the input assignment EVi

for the current step that maps any input variable v ∈ Vi to a
(known) value. Additionally, we know that the previous step was executed correctly, hence
the set of delayed assignments EVd

that are executed in the previous step must be given.
Hence, EVd

maps a variable v ∈ Vd to a (known) value. We have to show that the evaluation
w.r.t. E := EVi

∪EVd
of the IGAs I (denoted by evalI) is equivalent to the evaluation of

the guarded actions S (denoted by evalS). The transformation ΓD ensures with the guard∧
v∈V

v 6= ⊥ that the set SI is evaluated before the evaluation of SD. Hence, we first show

that SI is executed correctly. Afterwards, we are able to use the environment defined by the
execution of SI to show that SD is executed correctly.

Correct Execution of SI

Here, we will show the correct execution of the set SI . Therefore, we will define a partial
order on the guarded actions to simplify the correctness proof. As already mentioned, the
synchronous computation model demands that for a given input assignment, the values of all
variables must be uniquely determined. Hence, there exists for a given input assignment a
partial order of the SGAs. In the following, we will define the partial order rank w.r.t. the
given input and delayed assignments E over the set SI . Therefore, the following functions
are used:
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• The substitution 〈ϕ〉UV replaces all occurrences of a variable v ∈V in the boolean expression
ϕ by the corresponding u ∈ U and simplifies the result afterwards.

• The function writes(G) := {x | (γ⇒ x= τ) ∈ G} determines the targets of a set of guarded
actions.

• The function read(γ⇒ x = τ) := Vars(γ)∪Vars(τ) returns all variables read by a guarded
action.

Definition 40. Rank: Given a set of variables U and a set of corresponding values T , the
rank of a SGA is defined by:

g := (γ⇒ α) ∈ rank(U×T )(i) :⇔
〈γ〉TU 6= false ∧g 6∈

⋃
j<i

rank(U×T )(j) ∧

read(γ⇒ α)⊆
(
U ∪

⋃
j<i

writes(rank(U×T )(j))
)

Given a valuation U ×T of some variables V (like E) that maps a variable u ∈ U to its value
v ∈ T . The rank describes that a SGA of rank(U×T )(i) depends only on variables of U or
variables written in a lower rank. In other words, the SGAs of rank(U×T )(0) only depend on
variables whose values are determined by the valuation U ×T . Hence, these do not contain
unknown values. Then rank(U×T )(1) depends only on variables written in rank(U×T )(0) or
by the valuation U ×T . There exists also a relation to the causality analysis: the action of a
guarded action s ∈ rank(U×T )(i) contributes to the computed environment in the i−1 step
of the causality analysis.

Proof

We show by finite induction over the rank n of the SGAs SI that the following holds:

∀s ∈ rankE(n) : evalSI (s) = evalI(ΓI(s))

Base Case

n= 0, hence s= (γs⇒ αs) ∈ rankE(0) is given. s ∈ SI states that αs contains an immediate
assignment x= τ , and that there exists an IGA i= (γi⇒ αi) = ΓI(s). From the definition
of the transformation ΓI , we know that αi is a set containing αs and γi := β ∧ γi with
β = (

∧
v∈read(s)

v 6=⊥)∧ (x=⊥). Furthermore, s ∈ rankE(0) implies that read(s) is a subset of

the variables in E , hence all the conjuncts v 6= ⊥ in β are true and x = ⊥ remains, which
holds before execution of i. Hence, evalSI (s) = evalI(ΓI(s)) holds for the base case.

Inductive Step

We know that rankE(n) is executed correctly, hence we know that evalSI (v) = evalI(v) for a
variable written in a rank less than or equal to n or contained in the valuation E . We have
to show that rankE(n+ 1) is executed correctly.
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Let s= (γs⇒αs)∈ rankE(n+1) be an arbitrary SGA of rank n+1 and i= (γi⇒αi) =ΓI(s)
be the corresponding IGA. From the definition of the transformation ΓI , we know that αi is
a set containing αs and γi = β∧γs with β = (

∧
v∈read(s)

v 6=⊥)∧ (x=⊥). A case distinction

over the evaluation of the trigger γs and γi solves the problem:

• For the case evalSI (γs) = evalI(γi) = false, s and i are not enabled and both are ‘executed’
in the same way.

• For the case evalSI (γs) = evalI(γi) = true, s and i are executed since αi and αs are
equivalent and only contain variables of the lower ranks with equal values (induction
hypothesis). Hence, both are executed correctly and evalSI (s) = evalI(i) holds.

• The case evalSI (γs) = false and evalI(γi) = true is not possible, since γs appears as a
conjunct in γi = β∧γs, hence the latter cannot evaluate to true if the former evaluates
to false.

• For the case evalSI (γs) = true and evalI(γi) = false, we know from γi := β∧γs that

β :=

(
∧

v∈read(s)
v 6=⊥)∧ (x=⊥)

= false

holds. Hence, either there exists a variable v ∈ read(s) with v =⊥ or x 6=⊥ holds. Both
cases lead to a contradiction:
– if there exists a v ∈ read(s) with v =⊥, then we know from the induction hypothesis

that in the lower rank no SGA has written v and v is not contained in the variables
U of E := (U ×T ). This leads to a contradiction of s ∈ rankE(n), since v ∈ read(s) but

v 6∈

(
U ∪

⋃
j<n

writes(rank(U×T )(j))
)
.

– x 6=⊥ implies that x was already determined by an IGA corresponding to a SGA
in a lower rank, hence either a single variable is written by two different SGAs in a
macro step (which is forbidden by the synchronous computation model) or a lower
rank was incorrectly executed, which contradicts again the induction hypothesis.

Correct Execution of SD

Hence, the set of all IGAs generated from SI behave like the execution of SI in the
synchronous MoC. Additionally, all SGAs containing immediate assignments are executed
correctly. Hence, for all variables v ∈V , we have evalSI (v) = evalI(v) 6=⊥ and the conclusion’s
trigger defined by ΓD is the only fulfilled one. The function call setSD returns in that case
for the inputs the values for the next step, for variables with enabled guarded action s ∈ SD
the correct value, since evalSI (s) = evalI(ΓI(s)) holds. For all other variables, the unknown
value ⊥ is returned. Hence, the preconditions for the next step are fulfilled and the current
step was executed correctly.

Hence, the defined transformation is a confluent translation from SGAs to IGAs. The
choice, which of the enabled IGA is chosen is not important; the execution of each macro
step leads to the same deterministic result as defined by the SGAs independent of that
(non-deterministic) choice.
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6.1.5 Implementation Details

Before we show the translation of the running example, we will discuss some implementation
details. The transformation Γ defined in Section 6.1.4 shows the correctness of the approach,
but is based on several assumptions that are not practical.

Encoding Unknown Values

The extension of all data types by the unknown value ⊥ leads to the problem that the
targeted tool must either contain such a (special) data type or support user-defined data
types, which must be implemented additionally. Another possibility is to encode the unknown
value ⊥ of a variable v by an additional Boolean variable vv, the so-called valid flag. Hence,
the value of a variable v is then defined by the tuple (v,vv):

value((v,vv)) :=
{
v, if vv = true
⊥, else

This allows the use of typical built-in data types and only requires that the new variable vv
is set at the same time an assignment to v is executed.

Implementing Default Reactions

Another improvement consists of a special treatment of the default reaction. The default
reaction must be executed in case no other SGA defines the value of a variable. This reaction
could be added explicitly to the set of SGAs, but this may require the introduction of so-called
carrier variables to store the values of the previous step if these are required for the default
reaction (see [Schn09]). Using the following approach can avoid this overhead. We describe
again the general idea of this approach for a single variable and discuss then some special
cases and the impact on the transformation.

γ1 ⇒ x = τ1
...

γn ⇒ x = τn

δ1 ⇒ next(x) = υ1
...

δm ⇒ next(x) = υm

Fig. 6.8: Guarded Actions for variable x

General Case

The general idea of translating SGAs of a single variable x given in Figure 6.8 is described in
the following. An corresponding variable xv must be introduced to determine the validity
of the value contained in x. Then, the SGAs with immediate assignments s1, . . . ,sn are
converted into:
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¬xv∧

( ∧
v∈read(s1)

vv

)
∧γ1 ⇒

[
x = τ1
xv = true

]
...

¬xv∧

( ∧
v∈read(sn)

vv

)
∧γn ⇒

[
x = τn
xv = true

]
¬xv∧

( ∧
i=1...n

¬γi
)

⇒
[
xv = true

]
Thereby, the last IGA enables the validity flag in case no other assignment took place and
implements the default reaction of the variable. Therefore, the default value of the variable
should be already contained in the variable x. This is ensured by the conclusion that executes
for all variables all delayed assignments. There, the default value must be assigned to all
variables not written by a delayed assignment. This is possible, because the value of x is not
used unless xv holds. Hence, the conclusion contains the following assignments related to the
variable x:

∧
v∈V

vv⇒



...

x=


υ1 : if δ1
...
υm : if δm
defaultVal(x) : else

xv =
∨

i=1...m
δi

...


The default value is assigned by the else part of the case statement to ensure that all variables
not written by a delayed assignment obtain this value. Hence, in the next step, it is enough
to enable the validity flag once it could be decided that no other guarded action assigns
a value to this variable and the default value must be used. This way we do not need an
additional variable of the same type to store the value of the previous step.

Delayed Written Variables

One can see that either we set the validity flag xv for a variable x during a step, when
an immediate assignment is executed or for the whole step, when a delayed assignment is
executed.

The values for variables only written by delayed assignments, which is especially the case
for all control-flow labels, can be determined before the next step starts: either one of the
guards δi holds or the default reaction determines the value. Hence, the value contained in
the variable is valid all the time and the corresponding validity flag is constantly true and
therefore unnecessary. Hence, neither a carrier variable nor a validity flag is necessary for
those variables.

Immediate Written Variables

Furthermore, the language Quartz differentiates two storage types: event and memorized
variables. The default reaction of event variables resets the value to the default value of the
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variable’s type. The default reaction of memorized variables is to transfer the previous step’s
value to the current step. This corresponds with the behavior of IGAs in case no assignment
defines a variable during a transition. Hence, the explicit assignment of the default reaction
could be omitted for memorized variables. Hence, only the assignment setting the validity
flag to false is contained in the conclusion.

6.1.6 Examples

mode∧s2v∧¬rv∧ (l∨init) ⇒
[
r = s2

rv = true

]
¬mode∧mv∧¬rv∧ (l∨init) ⇒

[
r = m

rv = true

]
¬rv∧¬l∧¬init ⇒

[
rv = true

]
¬mv∧mode∧ (l∨init) ⇒

[
m = (b∗c)
mv = true

]
¬mv∧s1v∧s2v∧¬mode∧ (l∨init) ⇒

[
m = (s1∗s2)
mv = true

]
¬mv∧¬l∧¬init ⇒

[
mv = true

]
¬s2v∧s1v∧mode∧ (l∨init) ⇒

[
s2 = (d+s1)
s2v = true

]
¬s2v∧¬mode∧ (l∨init) ⇒

[
s2 = (c+d)
s2v = true

]
¬s2v∧¬l∧¬init ⇒

[
s2v = true

]
¬s1v∧mv∧mode∧ (l∨init) ⇒

[
s1 = (a+m)
s1v = true

]
¬s1v∧¬mode∧ (l∨init) ⇒

[
s1 = (a+b)
s1v = true

]
¬s1v∧¬l∧¬init ⇒

[
s1v = true

]

mv∧s2v∧s1v∧rv ⇒



init = false

l =
{

true if (l∨init)
false else

mv = false
s2v = false
s1v = false
rv = false
mode = get(mode)
a = get(a)
b = get(b)
c = get(c)
d = get(d)


Fig. 6.9: Guarded Commands of the Example

In this section, we will illustrate the translation to IGAs by the running example and the
examples presented in the introduction. All improvements of the previous section are already
included in the IGAs shown here. The IGAs generated for Example 1 are:
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¬zv ∧yv⇒
{

z = y

zv = true

}
¬yv ∧xv⇒

{
y = x

yv = true

}
yv ∧zv⇒

{
zv = false
yv = false

}
Example 2 is represented by a single IGA – the conclusion, because it contains only delayed
assignment:

true⇒
{
x = y

y = x

}
The IGAs generated for Example 3 are:

¬xv ∧zv⇒
{
x = z

xv = true

}
¬yv ∧zv⇒

{
y = ¬z
yv = true

}

xv ∧yv ∧zv⇒


z = ¬z
zv = true
xv = false
yv = false


Figure 6.9 contains the IGAs of the running example. The ten SGAs of Figure 6.7 are

translated into thirteen IGAs. The value of each immediately written variable is determined
by three IGAs: the translation of the SGAs (by transformation ΓI) generate two of them, and
the third one represents the default reaction. The last IGA is the conclusion. The control-flow
variables run and l are only written by delayed assignments, hence they do not need a valid
flag and are only written in the conclusion. The valid flag of the other variables are explicitly
set to false in the conclusion. The corresponding variables are not assigned a value, because
the default reaction for memorized variables is to keep the value of the previous step. For
the inputs, the conclusion contains an assignment of the currently read input value (get(i)).

6.1.7 Lifting Verification Results from SGAs to IGAs

The transformation Γ invalidates in general given temporal specifications, because one single
macro step (of the synchronous module) now requires several intermediate steps. Hence,
a temporal logic specification may no longer be satisfied by the introduced intermediate
states. Therefore, this section explains how to use an existing method taken from a different
application area to modify a given (valid) specification such that the IGAs execution still
fulfills it.

In [GeMS13] and Chapter 5, transformations on temporal logic specifications were defined
to lift available verification results for synchronous modules without abortion or suspension
to refined temporal logic specifications that take care of the latter.

A suspension may postpone the current execution to a later point of time. The corre-
sponding suspend-sensitive specification ensures that either the next macro step of the
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system is executed, and as a consequence, the specification must be satisfied for this step or
the execution of the system is suspended, and a violation of the specification is negligible.

The transformation for the suspend case is given in Definition 34, were the used temporal
operator [ϕW ψ] represents the weak when operator [Schn03], which requires that ϕ must
hold in the first state satisfying ψ. The crucial point of the definition is to forbid the use of a
variable whenever the suspension takes place. Note again that all recursive calls will finally
introduce a weak when operator and that the restrictions mentioned in [GeMS13] do not
apply here.

For the approach, only the points of time where all variables have a valid value
(tick :=

∧
v∈V

vv) represent states where the specification should be evaluated. In Figure 6.10

this circumstance is presented by big states that are equivalent to the states of the syn-
chronous execution and small states introduced by the execution of the IGAs. Hence using
the condition ¬tick as ‘suspend’ condition σ, we are able to apply this transformation to any
given specification of the synchronous module (like the two given in Figure 6.5).}

Θ(φ)

} φ

SGA

IGA

Fig. 6.10: States generated by IGAs compared to the states generated by SGAs

Furthermore, it is possible to strengthen the transformation given in Definition 34, because
it allows an infinite suspension that is not wanted in our case. Hence, we require that only
finitely many states are ignored in the evaluation, since a macro step must be evaluated
in finitely many steps. Consider the following equivalent transformation based on the weak
until operator instead of the weak when that helps to understand the required modification
in that case:

Θst
sp(ϕ,σ) :=


[σ U ϕ] , if ϕ is propositional[
σ U XΘst

sp(ψ,σ)
]
, if ϕ= Xψ

Θst
sp(ψ,σ)⊗Θst

sp(γ,σ), if
ϕ= ψ⊗γ with
⊗ ∈ {∧,∨,U,U}.

The evaluation of the specification ϕ is postponed by [σ U ϕ], hence to limit the suspension
to a finite number of steps, it is enough to use the strong until operator ([σ U ϕ]) instead
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and replace the parameter σ by ¬tick to express that the specification must be evaluated
only in states where tick holds.

Definition 41 (Transformation Θ(ϕ)). For a given temporal specification Aϕ, the trans-
formation Θ(ϕ) is defined as

Θ(ϕ) :=


[¬tick U ϕ] , if ϕ is propositional
[¬tick U XΘ(ψ)] , if ϕ= Xψ

Θ(ψ)⊗Θ(γ), if
ϕ= ψ⊗γ with
⊗ ∈ {∧,∨,U,U}.

6.1.8 Experimental Results

I implemented the presented transformation Γ along with the given transformations of
Definition 34 and Definition 41. Then, I used SRI’s Symbolic Analysis Laboratory (SAL)1

that is a framework intended for performing abstraction, program analysis, and model
checking to verify them.

All experiments were performed on an Intel Core 2 Duo with 2.66 Ghz (using Windows
7 and Cygwin). The table in Figure 6.11 contains the total execution time (given by SAL
with option -v 1) in seconds for the running example with different N and transformed
specifications:

• ϕa1 : G [(mode→ (r = a + b∗c + d)) W ¬tick]
• ϕb1 : G [(¬mode→ (r = (a+b)∗(c+d))) W ¬tick]
• ϕa2 : G [¬tick U (mode→ (r = a + b∗c +d))]
• ϕb2 : G [¬tick U (¬mode→ (r = (a+b)∗(c+d)))]

The formulas in Figure 6.5 are used to generate all four specifications: The first two are
determined by Definition 34 and the other two are obtained by Definition 41.

N ϕa1 ϕa2 ϕb1 ϕb2 ϕ∞

1 0.047 0.079 0.047 0.079 0.062
2 0.094 0.203 0.109 0.266 0.141
3 1.123 3.041 1.030 2.059 0.515
4 0.827 3.744 1.061 5.757 0.796
5 31.699 114.832 6.521 15.429 5.008
6 7.972 65.146 17.192 36.349 9.204
7 24.117 1061.212 24.321 75.895 17.035
8 9.688 13.478 9.157 21.995 10.404

Fig. 6.11: Execution Times (in sec) of SAL for the Running Example

The table shows that using the strict specifications ϕa2 and ϕb2 takes more time. Hence, it
may be beneficial to use the weaker specification and to additionally prove that the condition
tick occurs infinitely often by ϕ∞ = G F tick. The verification time for ϕ∞ is shown in the
1 http://sal.csl.sri.com/

http://sal.csl.sri.com/
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last column of the Table 6.11. The verification of the running example is faster splitting the
specification, at least for the considered example. A further investigation on the scalability
and the differences of both approaches is necessary.

Conclusion

A transformation from synchronous guarded actions (SGAs) to interleaved guarded actions
(IGAs) was presented and implemented to connect the Averest system with tools based
on IGAs like the symbolic analysis laboratory (SAL). Furthermore, an already existing
transformation on specifications was adapted to transfer properties from the original SGA
description to the new representation on IGAs. The approach was illustrated by verifying
some properties of a running example with SAL. The approach presented in this section
allows one to analyze, simulate, and verify synchronous programs, and especially Quartz
programs, with well-established IGAs-based state-of-the-art tools that are designed for other
MoCs. Future work is to extend this transformation for compound data types and to verify
some larger examples by means of SAL. Since SAL already proved its capabilities in this area,
the Averest system will also benefit from SAL. Another interesting idea is to use techniques
presented in [BaBS12b] to relax the synchronous execution that was assumed here to an
asynchronous one. This may lead to a smaller system description or to a more efficient
verification.

6.2 Efficient Embedding of Synchronous Programs for Verification

In general, synchronous systems can be represented as a set of SGAs. While the synchronous
semantics demands that all enabled actions have to be executed concurrently within the
same variable environment, it is possible for certain sets of guarded actions to deviate from
the synchronous execution scheme without changing the behavior. This is important to
make use of tools like SRI’s Symbolic Analysis Laboratory (SAL) that work with invariants
and guarded actions, but only a subset of the enabled actions are chosen for execution. If
the particular choice of the enabled guarded actions for execution is not determined, we
may consider different choices that might influence the resource requirements needed for
formal verification. In this section, we therefore investigate how three possible representations
influence the runtime and memory requirements of automatic verification runs of SRI’s
SAL and answer the question "Whether changing the MoC allows one to verify synchronous
systems faster".

This section and the corresponding publication [GeBS14] therefore explores the possibili-
ties of representing a synchronous system in SRI’s Symbolic Analysis Laboratory (SAL), and
evaluate their effect on the performance of SAL’s LTL model checker. To this end, we start
in all cases with synchronous guarded actions as a general system representation. Since SAL
only supports interleaved guarded actions, Section 6.1.3 and [GeSc13c] presented a possible
translation of SGAs to SAL’s IGAs to demonstrate that SAL can also be used to verify
synchronous systems. This section aims at comparing that system representation against
alternatives with respect to the performance of the later model checking. Therefore, the
approach presented in [GeSc13c] (GC) will be compared with two others: One based on
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SAL’s synchronous composition of modules (SC) and another one based on a translation
to equation systems (ES). Therefore, the tool aif2sal was implemented to generate these
representations from an SGAs-based description of a Quartz program (see Figure 6.12).

The three transformations GC, SC, and ES are based on different paradigms that lead
to different computations of a macro step in SAL. The ES representation describes the
behavior of all SGAs in a single transition step by describing them as invariants. Therefore,
no guarded action is required and an equation system must be solved in each reaction step.
The SC transformation models the behavior of each variable by a single module containing
all guarded actions writing this variable. The synchronous model of computation assures
that only a single guarded action defines the value of a variable in a reaction step. Hence,
in each reaction step all modules execute a single guarded action synchronously to define
the behavior. This obliges SAL to resolve the data-dependencies between the modules. The
GC approach describes the behavior in a single module by IGAs. This requires the explicit
modeling of the data-dependencies as described in [GeSc13c]. Unlike the other approaches,
the behavior of a single reaction step of the original system requires several transition steps
in GC that requires the already described modification of the given specifications.

Quartz SGAsAverest aif2sal

GC

SC

ES

SAL

Fig. 6.12: Averest/SAL linkage

6.2.1 SRI’s Symbolic Analysis Laboratory

SRI’s Symbolic Analysis Laboratory (SAL)2 is a framework intended for performing ab-
straction, program analysis and model checking, and it provides an intermediate language
which will be the target of our translation process. A typical SAL system is represented
by a context containing a set of modules and assertions. Each module declares a distinct
set of inputs, outputs, local and global variables, as well as definitions (invariants) and
transitions. Variables can be either current (X) or next variables (X ′), where assignments
to current variables take place in the current state, and to next variables in the following
state. SAL allows to compose modules either synchronously (||) or asynchronously ([]). In
synchronously composed modules, a transition from each module is executed simultaneously.
With asynchronous composition however, an enabled transition from exactly one module
is executed non-deterministically. Transitions can be written as an equation or as guarded
commands. The equational format defines the trajectory of single variables, while the guarded

2 http://sal.csl.sri.com/

http://sal.csl.sri.com/


6.2 Efficient Embedding of Synchronous Programs for Verification 131

commands define single transitions in the system. A guarded command of SAL contains,
contrary to SGAs, a set of assignments and is enabled when its guard evaluates to true.
Furthermore, SAL non-deterministically picks one of the enabled guarded commands and
updates the next-state variables accordingly. The structure and behavior is equivalent to IGAs
described in [GeSc13c]. A system without enabled guarded commands leads to a deadlock. A
large set of tools such as symbolic/bounded model checkers, simulators and others, can then
be used for analysis and verification.

6.2.2 Different Representations of Synchronous Systems

In this section, we present three different approaches of describing synchronous systems in
SAL’s input language. To ease the translation process, a tool called aif2sal, which is capable
of converting AIF to the three different representations in SAL was developed.

Guarded Commands GC

Guarded commands in SAL are interpreted as interleaved guarded actions (IGAs), meaning
that in each transition step an enabled guard action is non-deterministically chosen to define
the step’s behavior. This representation was already described in Section 6.1 and [GeSc13c]
in detail.

Example

The SAL GC-representation of the running example has the structure shown in Figure 6.13.
One can see that only a single valid flag (for the variable o) is required, because all other
variables are written by delayed assignments. Additionally, the specifications were adapted to
cover the changed temporal behavior. All newly introduced immediate states have in common
that not all variables have a valid value and so the adapted specification only requires that
the original specification is satisfied in states where all variables contain valid values.

Synchronous Composition SC

Another idea is to exploit SAL’s synchronous composition primitive and divide the program
into a set of synchronous modules. To that end, each variable, with the exception of inputs,
will be represented as an independent module, and these modules will be then composed
synchronously to provide the overall system behavior. It is worth noting that the semantics of
the synchronous composition matches that of the synchronous model of computation. Since
every variable has a unique value in each reaction step determined by a single SGA every
module will execute exactly one transition.

In contrast to the GC transformation, the SC transformation is just a syntactic rewrite of
the original program, in the sense that no guarded action will be modified. In this approach,
data dependencies are resolved internally by SAL. The synchronous composition combines
all definitions, initializations and transitions of the composed modules, taking care that
the combination is still causally correct. In case of inconsistencies in the conjunction of the
transitions are found, proof obligations are generated, but this problem does not apply here
because the Averest compiler rules out causally incorrect programs.



132 6 Representation of Synchronous Systems for Verification in other MoCs

ABROGC: MODULE =

BEGIN
INPUT a,b,r : BOOLEAN
OUTPUT ov , o : BOOLEAN
LOCAL init ,wa,wb ,wr ,ov : BOOLEAN
INITIALIZATION [init = TRUE; wa = wb = wr = o = ov = FALSE]

TRANSITION [

[] ¬ov ∧¬r∧(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa) −→
ov ' = TRUE ;

o' = TRUE ;

[] ¬ov∧(r∨¬(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa)) −→
ov ' = TRUE ;

[] ov −→
wr ' = ¬r∧(wr∨(a∧wa∧b∧wb)∨(b∧wb∧¬wa)∨(a∧wa∧¬wb));
wb ' = ¬r∧wb∧¬b∨r∨init;
wa ' = ¬r∧wa∧¬a∨r∨init;
init ' = FALSE ;

o' = FALSE ;

ov ' = FALSE ;

]

END;
s1 : THEOREM ABROGC ` AG [¬ov U (o⇒ a∨ b)];
s2 : THEOREM ABROGC ` AG [¬ov U (o⇒ X¬o)];

Fig. 6.13: GC Representation

Example

The translation of the ABRO example to SC consists of separating SGAs by their written
variable into individual modules as depicted in Figure 6.14a (for variable o). Each module
will have every other variable that is read by the SGAs as input and a single output being the
writable variable itself. All SGAs for each variable are then collected, and used to properly
initialize the module and to describe its transitions as guarded commands.

oMod : MODULE =

BEGIN
INPUT a, b, r, wa , wb : BOOLEAN
OUTPUT o : BOOLEAN
INITIALIZATION

[o=¬r∧(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa)]
TRANSITION

[ ¬r∧(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa)
−→ o' = TRUE;

[] ELSE −→ o' = FALSE; ]

END

(a) SC: Single module

w0Mod : MODULE = ...

waMod : MODULE = ...

wbMod : MODULE = ...

wrMod : MODULE = ...

oMod : MODULE = ...

ABROSC : MODULE = initMod

|| waMod

|| wbMod

|| wrMod

|| oMod;

s1 : THEOREM ABROSC ` AG(o⇒ a∨ b);
s2 : THEOREM ABROSC ` AG(o⇒ X¬o);

(b) SC: Composition

Fig. 6.14: Single Module and Synchronous Composition

In Figure 6.14b, the synchronous composition of the necessary main module is shown. We
simply compose all writable variables (init, wa, wb, wr and o) into a single module. It is
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important to note that a composed module will lead to a deadlock whenever at least one of
the modules is in a deadlock, hence we introduce an ELSE guard to guarantee that there is
always a transition to be taken. Moreover, the ELSE guard will assign the default value to
the variable, which is effectively the default reaction.

Equation System ES

This transformation converts the SGAs into equations (one per variable). It is usually not
trivial to generate such an equation system, and a corresponding transformation is already
implemented in the Averest system (see Section 2.3.7). The translation of SGAs to equations
will generate exactly one equation for each output, local and location variable. Furthermore,
an additional carrier variable must be added for each variable to which an immediate and
delayed assignment is made. The carriers will simply hold the value until the next point of
time.

The execution of an equation system under the synchronous model of computation is
then as follows: in every macro step new input variables are read and all of the equations
are evaluated with regards to the newly read values. The resulting right-hand side of each
equation is then assigned to its respective variable.

This can be easily done in SAL by using definitions instead of guarded commands.
Definitions in SAL are of the form 〈X = EXPR〉 for the current state or 〈X ′ = EXPR〉 for the
next state. In contrast to guarded commands, which are picked individually, all definitions
are evaluated in every state and the resulting value for the expression EXPR is assigned
to the variable. Once we have the SGAs given as equations, the translation to SAL is

ABROES : MODULE =

BEGIN
INPUT a, b, r : BOOLEAN
OUTPUT o : BOOLEAN
LOCAL wa , wb , wr , w0 : BOOLEAN
INITIALIZATION [init = TRUE; wa = wb = wr = FALSE]

DEFINITION o = ¬r∧(a∧wa∧b∧wb∨¬wa∧b∧wb∨¬wb∧a∧wa);
TRANSITION

init ' = FALSE;

wa ' = ¬r∧wa∧¬a∨r∨init;
wb ' = ¬r∧wb∧¬b∨r∨init;
wr ' = ¬r∧(wr∨(a∧wa∧b∧wb)∨(b∧wb∧¬wa)∨(a∧wa∧¬wb));

END;
s1 : THEOREM ABROES ` AG(o⇒ a∨ b);
s2 : THEOREM ABROES ` AG(o⇒ X¬o);

Fig. 6.15: ES: Single module

straightforward. We will have a single module containing the original inputs and outputs
and all other variables as local variables, as seen on Figure 6.15 for the ABRO example.
SAL supports in the DEFINITION section only assignments to variables of the current state,
hence a distinction between INITIALIZATION/TRANSITION and DEFINITION is necessary.
All equations defining a next-state variable must be initialized in the INITIALIZATION
section and described in the TRANSITION section. Hence, the immediate assignments will
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be represented as an invariant in the DEFINITION section and will be evaluated in every
state, including the initial one. The INITIALIZATION section will be evaluated in the
initial state and contains the initialization of variables written by delayed assignments like
the location variables and the carriers3 to their default values. The TRANSITION section
contains equations for evaluating the next-state.

Note that problems like the default reaction were already handled during the translation
to an equation system by simply adding an extra branch to every equation, assigning the
variable’s default value whenever none of the previous conditions hold.

6.2.3 Experimental Results

The presented transformations were used to verify and benchmark the experiments using
SAL’s symbolic model checker (sal-smc). All experiments4 were performed on a IntelR©

CoreTM i5-3470 CPU @ 3.20GHz using Ubuntu 13.04.
In the following, we briefly describe each example, in terms of what they do, number of

variables in the original Quartz program, number of SGAs after compilation, and the number
and kind of properties that were verified for each. This gives an idea on the complexity of
each example:

P #SGA #GC #SC #ES GC SC ES

ABRO 7 4 6(12) 5 0.11 0.06 0.05
ABROM[M=10] 23 2 14(36) 13 0.74 1.13 0.50
ABROM[M=13] 29 2 17(45) 16 4.27 7.92 3.27

AuntAgatha 2 4 3(4) 3 0.12 0.07 0.09
VendingMachine 23 23 12(32) 11 1.14 0.15 0.07

LightControl 36 25 12(47) 11 1.79 0.44 0.40
MinePumpController 42 41 22(61) 21 7.60 0.22 0.09

RSFlipFlop 7 2 5(11) 8 53.51 1.18 1.18
MemoryController 41 28 17(87) 31 407.95 42.93 3.42

IslandTrafficControl 83 62 35(109) 36 504.64 62.40 1.94
FischerMutex 60 15 16(121) 25 0.14 0.22 0.09

Dekker 28 14 14(61) 15 0.63 0.21 0.17
SingleRowNIM 15 14 6(31) 8 0.06 0.04 0.04

PigeonHole 1 7 2(5) 31 0.01 0.05 0.05
Queens 1 7 2(5) 37 0.29 0.19 0.20

MagicSquare 29 35 4(65) 11 1.83 65.67 9638.84
Search_OlogN 13 17 7(33) 11 97.19 136.18 47.21

Fig. 6.16: Size of the Representations and Execution Times (in sec) of SAL

3 Carriers are present only when the program utilizes immediate and delayed assignments for a
single variable, which is not the case for ABRO.

4 All examples a publicly available under http://www.Averest.org/examples.

http://www.Averest.org/examples
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ABROM is a larger version of the ABRO example which waits for M events in parallel instead of
just two. It contains 22 SGAs for M = 10 or 28 for M = 13, 2 inputs, 1 output and 3 safety
properties.

AuntAgatha is an implementation of an old puzzle where the reader has to find who killed Aunt
Agatha in Dreadsburry Mansion based on simple boolean statements. The problem is represented
by 2 SGAs, 21 inputs, 1 output and 3 boolean properties.

VendingMachine is a vending machine controller that dispenses gum in reaction to the insertion of
nickels and dimes, which is described by 2 SGAs, 2 inputs, 2 outputs, and 3 safety properties.

LightControl models the light control system of a room with regards to to its occupancy. Its
functions include switching the light on/off, dimmer control and notification of alarms. The
implementation contains 36 SGAs, 22 inputs, 12 outputs, and 10 safety specifications.

MinePumpController starts or stops the pump of a mine according to alerts issued by the carbon
dioxide and methane monitors, as well as the water level. It contains 40 SGAs, 27 inputs, 30
outputs, and 7 safety specifications.

RSFlipFlop describes a RS-Flipflop with NOR-gates of equal delay, modeled as a single macro step.
It contains 7 SGAs, 2 inputs, 2 outputs, and 8 specifications (three safety and five co-Büchi).

MemoryController models a memory controller providing mutual exclusion by maintaining region
locks for addresses. The implementation contains 41 SGAs, 5 inputs, 12 outputs, and 8 safety
specifications.

IslandTrafficControl: An island is connected via a tunnel with the mainland. Inside the tunnel is a
single lane so that cars can either travel from the mainland to the island or vice versa, which is
signaled by traffic lights on both ends of the tunnel. It is represented by 75 SGAs, 15 inputs,
32 outputs, and 13 specifications (eleven safety and two Büchi) modeled in 5 modules.

FischerMutex implements Fischer’s protocol which is used to control mutual exclusive access of
processes to a shared ressource. It contains 2 inputs and 3 outputs used by 60 SGAs and two
specifications.

Dekker: Dekker’s mutual exclusion algorithm with 2 inputs and two outputs used by 28 SGAsand
two specifications.

SingleRowNIM: Single Row NIM Game with Strategic Player A. The implementation contains 15
SGAs, 4 inouts and a single specification.

PigeonHole described the problem to put several pigeons in a number of holes [GrZa03]. The
implementation contains 1 SGAs, a matrix as inout and a single specification.

Queens describes the problem of placing N Queens on a NxN chessboard so that no queen can
attack another queen. A single SGAs, a matrix as inout and a single specification are contained
in the implementation.

MagicSquare considers a number of magic squares, such that in each square the numbers from 1 to
9 should be placed such that the sums of all rows and columns is the same. The implementation
consist of 29 SGAs, 2 outputs, a matrix as inout and a single specification.

Search_OlogN: This is the well-known binary search algorithm that expects a sorted array and a
value whose membership in the array is to be checked. 13 SGAs are required to represent this
algorithm. The contained specification ensures the termination of the algorithm.

The table in Figure 6.16 roughly measures the size of the original program regarding the
number of SGAs (#SGA), as well as the size of each representation in terms of the number
of guarded commands (#GC) for GC, number of modules and guarded commands (#SC5)
for SC, and the number of equations (#ES) for ES. Interestingly, ABROM contains only
2 guarded commands in GC, while having about 20 SGAs in the original Quartz program.

5 The number inside parenthesis is the sum of the number of guarded commands in the context.
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This happens because ABROM only features delayed assignments, which according to
the transformation described in 6.2.2, are combined into a single guarded command (the
conclusion). This also explains the particularly good performance for GC on verifying it
(Figure 6.16). The number of equations used in ES corresponds with the number of modules
used for SC. For each variable, an equation is contained in ES and SC contains besides the
module for the synchronous composition for each variable a module. In case a carrier variable
has to be introduced for ES, they will differ.

P
GC SC ES

#V #N #V #N #V #N

ABRO 34 786 30 616 14 183
ABROM[M=10] 80 2289 98 3855 52 1221
ABROM[M=13] 98 3339 122 3381 64 2065

AuntAgatha 100 1434 40 130 48 180
VendingMachine 130 10855 138 4496 22 384

LightControl 98 7108 114 6908 44 837
MinePumpController 126 98949 136 8500 36 636

RSFlipFlop 36 1883 38 929 24 1010
MemoryController 158 931422 188 92815 98 48134

IslandTrafficControl 144 773001 212 58217 58 30401
FischerMutex 2378 88 122 4851 64 1735

Dekker 61 8437 86 4342 36 5317
SingleRowNIM 48 1148 46 637 24 310

PigeonHole 132 650 66 254 64 249
Queens 156 874 78 312 76 301

MagicSquare 116 15524 98 553 76 3699679
Search_OlogN 270 9315 162 33098 138 16718

Fig. 6.17: BDD size in terms of the number of variables (#V) and number of nodes (#N)

As for the actual performance of each representation, Figure 6.16 shows that ES is in almost
every benchmark faster than GC or SC. In the worst case (IslandTrafficControl), it was more
than 250 times faster than an equivalent program in the GC representation and roughly 32
times faster than SC. Interestingly is the fact that for the MagicSquare example the opposite
is the case, there the GC representation is roughly 35 times faster than SC and more than
5000 times faster than ES. Not surprisingly, the complexity of the properties can also increase
the verification time in certain cases, as with the GC representation for RSFlipFlop, which
regardless of being a fairly minimal Quartz program, contains complex assertions concerning
the stability of the circuit. To further corroborate that the ES representation is indeed the
best representation, we measured the size of the BDD with respect to the number of variables
(#V) and the number of nodes (#N) for each representation. As seen on Figure 6.17, the
size of the BDD for the ES transformation was usually smaller than its counterparts, which
certainly relates strongly to the times measured in Figure 6.16.
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6.2.4 Conclusions

We considered three different ways to represent synchronous systems in SAL’s transition
language, and evaluated them concerning the performance of model checking. The chosen
representations differ in the number of guarded actions that are chosen for execution in every
reaction step. As a result, we can clearly say that the ES transformation, which represents
the system as definitions (equations) is in general the best choice (for SAL).

Hence, (at least for SAL) a transformation from the synchronous MoC to the asynchronous
MoC SAL is based on does not result in a better verification task in terms of time or memory
usage. The runtime and the memory usage of the SC and ES representations, which are more
or less equivalent with the synchronous MoC are better.





Chapter 7

Evaluation

In this chapter, the implementation and the main data structures of the AIFProver is
described. Due to its specialized application domain, the tool does not aim to replace
state-of-the-art theorem provers. Instead, a specialized and convenient interactive theorem
prover for the verification of synchronous systems is developed. Moreover, since the presented
verification tool is tightly integrated with a tool for hardware and software synthesis, many
software libraries can be shared between synthesis and verification. In the long term, synthesis
can therefore also benefit from verification in that optimizations are possible that are not
used today due to too pessimistic estimations.

As outlined in [GeSc12] and Chapter 3, difficult problems arise when source code de-
scriptions should be directly used for interactive verification of synchronous programs. For
this reason, in [GeSc12a] and Chapter 4, it was suggested to work on the intermediate
representation of synchronous guarded actions that allows one a more flexible proof goal
decomposition.

The idea of the approach was already presented in Chapter 4 the rules determined by the
user are applied by the AIFProver as shown in Figure 7.1.

User Quartz

AIFProver AIF

determines rules
identify invariants

apply
rules

provide
invariants

present
proof

goal

request
invariant

apply rules

proof goals

com
pilation

ap
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ru
les
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Fig. 7.1: Idea of our Approach
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7.1 Implementation Details of the AIFProver

Averest and the AIFProver share data structures for types, expressions, specifications,
and guarded actions as well as available transformations on sets of guarded actions like
reduction to Boolean types (which allows the use of SAT solvers). This does not only avoid
reimplementations, it also immediately assures that the prover and the synthesis framework
will always remain consistent in case the language is extended or changed. For this reason,
one has to implement proof goals, theorems and proof rules in the AIFProver. Since Averest
has been implemented in Microsoft’s new programming language F#, the AIFProver is
also implemented in F#, but due to the capabilities of the .NET framework, any other
programming language like C# could have been used as well. The choice of F# was however
also made to directly use F# sessions for interactive verification following the spirit of LCF
style theorem provers. It is the second version of the AIFProver, which is described here.
The previous version was based on the results of [GeSc12a] that focused on the verification
of assumption and assertions.

7.1.1 Proof Goals

A proof goal has an identifier id to address different proof goals. Moreover, it contains system
defined (sasm) and user defined (uasm) assumptions that can be used for the proof. The
EFSM state is encoded by the set of names of the control-flow locations (labels) that hold
in that state. Moreover, the set of delayed assignments (prevStep) that were executed in
the previous step (and will therefore affect the current state) is stored. The core of the proof
goal is an AIF system itself! Note that guarded actions do not only consist of assignments,
but also of assumptions, assertions and temporal logic specifications. Thus, the F# type for
a proof goal is defined as follows:

type ASM = QName * SpecExpr
type proofGoal = {

id : string
sasm : ASM list
uasm : ASM list
labels : Set<QName>
prevStep : GrdAction list
system : AIFSystem

}

The initial step and all other steps of a program has to be distinguish to deal with the
semantics of past temporal operators and the initialization of variables. Hence, the following
discriminated union is used to implement it:

type ProofGoal = InitGoal of proofGoal
| GenGoal of proofGoal

This allows us to restrict the application of rules for the initial state to InitGoals and all
other rules to GenGoals.
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7.1.2 Theorems

Proved tasks will be stored as theorems, with the type Thm that consists of a similar
discriminated union:

type Thm = InitThm of proofGoal
| GenThm of proofGoal

The difference of the two kinds of theorems is that InitThm are allowed to use only for
InitGoals.

7.1.3 AIF Proof

An entire proof is represented by the data type aifproof. It contains an unmodified copy of
the originally considered AIF file (proofSystem), a list of all still unproved (ProofGoals)
and proved (provedTHM) sub-goals as well as a global list of assumptions (proofASM).

type aifproof = {
proofSystem : AIFSystem;
ProofGoals : (ProofGoal * ProofGoal list) list;
proofASM : ASM list;
provedTHM : Thm list

}

7.1.4 Proof Rules

Proof rules are therefore F# functions that map existing theorems to new theorems. Also,
we implement tactics which decompose desired proof goals into a list of subgoals. Starting
with a proof goal, a proof tree is generated by applying a tactic to a leaf of the current proof
tree. In our implementation, only the leafs of the current proof tree are stored, and if all
leafs were finally proven by a decision procedure, the original root becomes a theorem (i.e. a
proven proof goal). Proof rules and tactics correspond to each other and are used in forward
proofs (where one derives theorems from axioms by rules) and backward proofs (where proof
goals are subsequently decomposed into trivial sub-goals), respectively.

The rules listed in Chapter 4 are the basis of the AIFProver and operate at the level
of macro steps and have to introduce assumptions and assertions when a proof goal is
decomposed into subgoals in order to implement an assume-guarantee deduction system
[HeQR00]. For example, consider Figure 7.2: It illustrates the introduction of assumptions
and assertions when splitting a sequence P1;P2 into sub-goals. To this end, the corresponding
proof rule is given an intermediate specification ϕ that is added by the rule application
as assertion for P1 and as assumption for P2. For this reason, there are assumptions and
assertions that are added by rule applications and others that were part of the original proof
goal.

Finally, rules are implemented by the following F# type:

type Rule = Thm list -> Thm



142 7 Evaluation

P1

assert(x)

assume(x)

P2

P1

P2

Fig. 7.2: Decomposition of Sequence P1;P2

7.1.5 Proof Management Rules

Besides the described rules for decomposing or proving a (sub-)goal, an interactive verification
tool needs to apply the implemented rules, print or skip the current proof goal and rules
that make the usability of the system convenient. Additionally, rules for the introduction of
new lemmata or the usage of existing lemmata are required.

7.1.6 Tactics

Tactics are a bunch of compiled rules that are used often together. One of the most important
tactics is AutoTac, which applies the rules to rewrite immediate assignments, replaces case
statements, splits conjunction statements in the conclusion to separate proof goals, shifts
implications in the conclusion to the assumptions and tries to prove proof goals before
disjunctions are unstitched and a second solver run is made. Each rule is applied to all new
generated proof goals until no changes occur and then the next rule is used.

Besides other tactics there are simplification tactics and a tactic that decomposes a proof
goal into several goals, depending on a case-statement, which is the usual representation of
an equation.

Finally, tactics are implemented by the following F# type:

type Tactic = ProofGoal list -> ProofGoal list

7.1.7 Structure of the AIFProver

Figure 7.3 shows the structure of the AIFProver and the embedding in the Averest system.
First, a Quartz program is compiled to an AIF file and fed into the AIFProver. The user
decides then which rules are applied by inspecting the source code or simulation results
coming from the simulator contained in the Averest system. These rules prove a goal or
decompose them into several sub-goals.

7.2 Verifying the ABRO Example

In this section, a proof for the ABRO module shown in Chapter 2 is presented. The proof is
started by calling the AIFProver with the AIF file’s path as parameter. The AIFProver creates
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Fig. 7.3: Structure of the AIFProver

a initial proof template for the given AIF in case no proof script is found (see Figure 7.4) that
loads the required libraries and defines each variable contained in the AIF file as variable of

open System

#r "Averest.Core.dll"

open Averest.Core

open AIF

open Types

#r "Averest.Compilation.dll"

open Averest.Compilation

open Statements

...

Console.Out.WriteLine (" ");

Console.Out.WriteLine ("==================================================");

Console.Out.WriteLine (" Welcome to the interactive Averest environment ");

Console.Out.WriteLine (" (Version is {0})", AverestVersion );

Console.Out.WriteLine ("==================================================");

Console.Out.WriteLine ("");

Console.Out.WriteLine ("");

Console.Out.WriteLine ("");

ShowCorrectness (fsi.CommandLineArgs .[0]);;

// Defining QNames as Variables ...

let a = GetQName "a";;

let b = GetQName "b";;

let r = GetQName "r";;

let o = GetQName "o";;

let bootflag = ____running003

let wa = GetQName "wa";;

let wb = GetQName "wb";;

let wr = GetQName "wr";;

Fig. 7.4: Prooftemplate for ABRO
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the AIFProver for a convenient use. The AIFProver then starts a F# interactive session and
loads the corresponding proof script. The proof of an AIF file is initiated by the function
ShowCorrectness(path) (contained in the proof template). This function translates the AIF
file to a proof goal and generates for each specification a proof task. The Figures 7.5, 7.7,
and 7.8 contain the important part of the F# script to prove the ABRO example (all lines
that are part of the initial proof script are omitted).

ShowForall ();;

RWSWIAs ();;

Auto ();;

AssertThm ("s1");;

Fig. 7.5: Proof for Specification s1

The first proof task is simple and is proven by rewriting the specification with the definitions
of the variables and using one of the most important tactics called AutoTac, which rewrite
with immediate assignments, replaces case statements, splits conjunctions in the conclusion,
shifts implications in the conclusion to the assumptions and tries to prove ProofGoals before
case splits are performed (see Figure 7.5). The last function call checks if the specification is
successfully proven and raises an error otherwise. This function allows one to check if a proof
still works after some changes in the proof script or the proof rules are performed.

A G o → X !o

⇒ (!r&(a&wa&b&wb|!wa&b&wb|!wb&a&wa) |=
!(!X(r)&(X(a)&X(wa)&X(b)&X(wb)|!X(wa)&X(b)&X(wb)|!X(wb)&X(a)&X(wa))

⇒ (X(wa) = ... & X(wb) = ... & init = !(wa|wb|wr) & !r&(a&wa&b&wb|!wa&b&wb|!wb&a&wa)

|= !(!X(r)&(X(a)&X(wa)&X(b)&X(wb)|!X(wa)&X(b)&X(wb)|!X(wb)&X(a)&X(wa))
⇒ (X(wa) = ... & X(wb) = ... & !r&(a&wa&b&wb|!wa&b&wb|!wb&a&wa)

|= !(!X(r)&(X(a)&X(wa)&X(b)&X(wb)|!X(wa)&X(b)&X(wb)|!X(wb)&X(a)&X(wa))

Fig. 7.6: Intermediate Result for Specification s2

The proof of specification s2 given in Figure 7.7 uses the definition of variable o to rewrite
the specification (RWSWIA). After this, the definitions of the variables wa and wb are inserted
in the assumptions. Then, the fact that the boot flag init holds if no other label holds is
used. The intermediate proof state is given in Figure 7.6. Finally, tactic RW_X is used to shift
the next operator inwards to variables so that the obtained goal is proved by AutoTac.

Alternatively, one may define the function SolveCase (again Figure 7.7) and apply the
rule to split a disjunction together with the new defined function several times.

In the beginning of the proof of specification s3, the proof goal is simplified and de-
composed into several sub-goals, where all but two are provable by Solve_Tac. One of the
remaining two proof goals state that the control flow of ABRO rests in wa but not in wb and it
must be shown that the specification PWX [b PWB r] is fulfilled. The other proof goal states
the same with wa and wb swapped. Since, leaving wb is only possible by an occurrence of b



7.2 Verifying the ABRO Example 145

ShowForall ();;

RWSWIA o;;

UseVarDef wa;;

UseVarDef wb;;

UseRunningDef bootflag

RWSWADs ();;

RWCases ();;

RWImplSpec ();;

RWImplSpec ();;

//// Alternative:

//RW_X()

//Auto()

let SolveCase () =

RW_X()

let _ = RWImplSpec ()

RWAsm()

RWSpec ()

let _ = RWImplSpec ()

RWAsm()

RWSpec ()

Solve()

SplitDisj ();;

SolveCase ();;

SplitDisj ();;

SolveCase ();;

SolveCase ();;

AssertThm ("s2");;

Fig. 7.7: Proof for Specification s2

after the last occurrence of r, the specification PWX [b PWB r] is fulfilled. Two lemmata
are required to prove these proof goals. These lemmata are introduced by the function
NewLemma, which parses the second parameter as a specification and generates a new proof
task with this specification in the context of the current AIF. Both lemmata state analogously
to the remaining proof goals that for all points of time where the control flow rests in wa

but not in wb (and wb but not in wa respectively) the specification PWX [b PWB r] (and
PWX [a PWB r] respectively) are fulfilled. This is the case, because the control flow leaves
label wa and wb respectively only iff a and b respectively is satisfied after the last occurrence
of r, hence the specification PWX [b PWB r] (and PWX [a PWB r] respectively) is fulfilled.
This is shown by induction using F# functions as macro to apply the same rules to the



146 7 Evaluation

ShowForall ()

RWSWIAs ();;

RWSWADs ();;

RWConj ();;

Applys Next_PWBTac ;;

Applys Strip_Tac ;;

Applys Solve_Tac ;;

NewLemma "Lemma1" "A G(wa&!wb −> PWX[b PWB r])";;

NewLemma "Lemma2" "A G(!wa&wb −> PWX[a PWB r])";;

let checkLemma12 () =

let checkBase () =

Induction ()

Chain [Gen_To_InitTac; RwswiasTac; Solve_Tac]

let checkStep () =

let _ = Applys RWImplTac

let _ = Chain [RW_PWXTac; RwswnvdTac wa; RwswnvdTac wb;

RWCasesTac; RwswadsTac; RWAsmTac]

let _ = Chain [Cases_Tac bootflag; Cases_Tac r]

let _ = Applys Solve_Tac

Chain [Next_PWBTac; RWConjTac; Solve_Tac; DisjL2ImplTac;

RWImplTac; RWAsmTac; RWSpecTac; MPTac; Solve_Tac]

let _ = checkBase ()

checkStep ()

checkLemma12 ();;

AssertThm (" Lemma2 ");;

checkLemma12 ();;

AssertThm (" Lemma1 ");;

UseThm "Lemma2 ";;

SpecializeAsmContains "PWX";
RWImplSpec ();;

MP();;

Solve ();;

UseThm "Lemma1 ";;

SpecializeAsmContains "PWX";
RWImplSpec ();;

MP();;

Solve ();;

AssertThm ("s3");;

PrnThms ();;

Fig. 7.8: Proof for Specification s3
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different proof tasks. Additionally, another F# function is used to prove the remaining proof
goals of specification s3.

7.3 Extending the Implementation for Modular Verification

After the short description of the AIFProver that was implemented following the rules of
Chapter 4, this section describes the necessary extensions to enable modular verification as
presented in Chapter 5.

7.3.1 Proof Goals

For the modular verification approach one has to distinguish between proof goals that consider
closed systems, and others where an arbitrary environment may be added (open systems).
The latter is required for a modular verification and differs from closed system verification in
that the reaction to absence is left out, and instead variables may have arbitrary values in
these cases. Hence, the type for proof goals is extended:

type ProofGoal = InitClosedGoal of proofGoal
| GenClosedGoal of proofGoal
| InitModularGoal of proofGoal
| GenModularGoal of proofGoal

7.3.2 Theorems

Proved tasks will be stored as theorems with the type Thm that consists of a similar
discriminated union:

type Thm = InitClosedThm of proofGoal
| GenClosedThm of proofGoal
| InitModularThm of proofGoal
| GenModularThm of proofGoal

The only difference in the rules that must be made is that the default reaction is not used iff
the proof goal is an InitModularGoal or a GenModularGoal. The use of InitModularThm
or a GenModularThm in the proof of closed system is possible without problems.

Conclusions

This chapter described the implementation of an interactive tool for the verification of
synchronous systems that is tightly integrated with the Averest synthesis framework. This
allows an efficient reuse of existing code and a lightweight implementation of proof rules so
that experiments with different sets of proof rules are easily possible. After a preliminary
implementation based on the rules presented in [GeSc12a] and the use of these rules to verify
some benchmark examples the AIFProver presented in this chapter was implemented. Proofs
can be stored as F# scripts so that one can try to rerun the proofs if minor changes were
made in the systems or specifications. The AIFProver represents now a basic implementation
for the verification of synchronous systems. Next steps could be the extension of the presented
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proof rules to allow proofs of industrial-sized systems or to use techniques to increase the
reliability, e.g. certify AIFProver proof by another verification tool or the embedding into a
theorem prover.



Chapter 8

Conclusions

This work represents a feasibility study to enable interactive verification for synchronous
systems. The aim was to identify a representation of proof goals and a corresponding set of
rules operating on them to verify synchronous systems in an interactive manner.

Therefore, the definition of Hoare-Calculus-like rules on the source-code level were
discussed and the problems to define these rules were presented. One of the main issues
was that in a Quartz program several control-flow locations may be active and so the
compositional approach of Hoare is difficult to implement.

To circumvent most of the encountered issues and to reduce the number of required rules,
a normal form for the source code was proposed that aggregates all micro step assignments
into a single synchronous tuple assignment (STA) such that the reasoning about the behavior
was simplified by collecting the program’s behavior at a single program part (the STA). This
normal form does not contain any parallel statement and therefore allows again to follow
the compositional approach defined by Hoare. This way, a convenient use of interactive
verification based on an adapted Hoare calculus was possible. Unfortunately, the required
program transformation at the source-code level was proven to be impossible in general
without adding additional variables (see Theorem 1), which complicates the verification task
for the user and was the reason to alter the approach again. Nevertheless, two incomplete
transformations covering most Quartz programs were presented.

Afterwards, a complete approach to define interactive verification for synchronous systems
was presented that defined rules for the compiled Quartz code and circumvented the identified
problems for the source-code approaches and did not rely on the SSTA form. This approach
has several advantages: the techniques and methods implemented in the compiler are reusable
without additional effort; using guarded actions instead of the original source code allows
a more flexible decomposition of proof goals – there is no need to follow the syntax of
the program. The user is able to determine the rules to apply from the source-code, as a
result of the strong relation between source-code and guarded actions through the label
variables. Furthermore, this approach was extended to handle LTL specifications and special
rules for module calls and pre-emption statements were added. This allowed the verification
of synchronous systems in an interactive manner and leads to the implementation of the
AIFProver prototype.

The goal of the thesis was reached by the implementation of the AIFProver that enabled
interactive verification of synchronous systems.
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This work allows one to start now with the development of a tool to allow proofs of
industrial-sized systems. Therefore, the presented approach needs to be embedded into a
theorem prover or other tools to improve the reliability and usability. This was not possible
before, because the kind of representation and the domain of the rule set was not known.
Directly starting with the embedding could have resulted in an huge overhead, because the
basis of the final approach was changed so often during this work such that this would have
supersede the required proofs for the embedding.

An improvement for the AIFProver would be a deeper integration of the existing decision
procedures, e.g. model checking, such that generated counterexamples are somehow usable
to ease the verification task or identify where the user should start again with his/her proof.
Additionally, the set of rules might be extended by demand.

An extension of the AIFProver for the recently established modeling of cyber-physical
systems by HybridQuartz [Baue12] to verify these systems is another possible further work.
The verification of cyber-physical systems in literature is immature and the determinism of
HybridQuartz allows to adapt verification techniques, but the state space will be enormous,
which requires similar techniques used in this thesis.

Additionally, this work showed the possibility of representing synchronous systems by
interleaved guarded actions and a transformation for the specifications to use existing tools
based on a different MoC for verification. This representation was evaluated by implementing
a tool that translates AIF files to SAL models. The powerful input language for this tool
set allowed the representation of synchronous systems in different ways. These different
representations were compared, showing that the representation of synchronous guarded
actions by interleaved guarded actions does slow down the verification task in SAL and
that the approach used to connect other verification tools by representing the behavior
as equations leads to better results. Nevertheless, I think the presented results encourage
the modification of the introduced representations such that either new representations are
defined or that one or more representations are joint such that e.g. parts of a synchronous
system is represented by interleaved guarded actions and the rest is represented by equations.

Representing a synchronous system by other MoC was possible, but the results indicate
that this step might not be beneficial for the verification task. Nevertheless, to conclusively
determine this, additional work is required that adapt the presented transformation for other
tools/languages. These tools should be based on different algorithms and/or differ in the
modeling of interleaved guarded actions, because this was not part of this thesis.
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