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Abstract—SystemC is the de facto standard system-modeling
language for hardware-software systems. A concurrent and reac-
tive hardware-software system performs different “jobs” during
its execution. Each such job begins with a set of input data, flows
through different processes in the system, and finally produces
a set of output data. We call such a job a flow, since it flows
from one process to another. Flows are dynamic and concurrent;
a flow can begin anytime during the simulation and the system
can process multiple flows at the same time.

We provide a library for explicitly implementing flows in
a SystemC model or annotating flows in an existing SystemC
model with minimal modification. We also provide an automated
monitoring framework for monitoring properties of flows. Such
properties capture the reactive nature of a system naturally and
are intuitive to write. Our experimental results show that the
framework adds minimal simulation runtime overhead.

I. INTRODUCTION

SystemC (IEEE standard 1666-2005) has emerged as the
de facto standard for modeling hardware-software systems
[11]. SystemC is implemented as a C++ library, which defines
macros and base classes for modeling concurrent hardware
elements at various abstraction levels [14]. As a high-level,
unifying modeling language, SystemC enables co-design and
co-simulation of hardware and software, early in the system
design cycle.

A typical SystemC model models the components of
a system using SystemC modules. Each module can have
one or more SystemC processes, with concurrent semantics.
The SystemC library is accompanied by SystemC simula-
tion (OSCI) kernel, see http://www.accellera.org/downloads/
standards/systemc. In a simulation, the processes are scheduled
in an interleaving fashion by the kernel, and executed on a
single processor. Execution of a SystemC model consists of
three phases in order: elaboration phase, simulation phase, and
cleanup phase [1]. During the elaboration phase all modules
are instantiated, all channels and ports are connected, and all
processes are registered with the kernel. In the simulation
phase, the parallel execution of the SystemC processes is
simulated by the kernel. The cleanup phase can be used by
the user to analyze the output of the simulation phase.

The growing popularity of SystemC has motivated research
in functional validation of SystemC models [9], [18]. A par-
ticular direction is that of assertion-based dynamic verification
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(ABDV) of SystemC models [21]. ABDV involves three steps:
(1) describing the behavior of the model under verification
(MUV) in terms of assertions, (2) generating run-time mon-
itors from input assertions, and (3) executing the MUV with
those monitors, which observe the execution and report if the
observed execution satisfies the specified assertions.

For example, in the ABDV framework developed by
Tabakov and Vardi [19]–[22], an assertion is a temporal prop-
erty of the simulation trace. We call it a trace property. Before
executing the MUV, one C++ monitor class is generated from
each assertion. During the monitored simulation of the MUV,
one instance of each monitor class is created in the elaboration
phase. In the simulation phase, those monitor instances are
executed with the MUV. The number of monitor instances is
equal to the number of assertions. There are three possible
outcomes of a monitor: PASS, FAIL, and UNDETERMINED.
In principle, trace properties are interpreted over infinite traces.
But we can only monitor a finite prefix of an infinite trace. If
the assertion contains any future obligation that is not met
during the finite simulation, the monitor outputs UNDETER-
MINED. CHIMP [7] is a tool that implements this framework.

By its nature, a SystemC model is comprised of the
components of the system being modeled. Thus, the modeler
thinks about the system architecturally. An orthogonal way
of thinking about the system is behaviorally [10]. From this
perspective, an execution comprises multiple units of work or
“jobs”, for example, load an instruction, transmit a message,
handle an interrupt, and the like. Note that a single “job” can
span many system components; in fact, a job often “flows”
from component to component, which is why we call it a flow.
Note that a single execution of the system can contain multiple,
perhaps concurrent, flows. From this behavioral perspective,
it would be natural to write and monitor assertions about
flows, for example, we may want to say that every message
transmission concludes successfully or gives an indication
of transmission failure. Yet expressing and monitoring flow
properties are quite difficult in current ABDV approaches to
SystemC, whose focus is on trace properties. While it might
be possible in principle to express a trace property that talks
about all flows that are included in the trace, such properties
would be quite unwieldy and difficult to write. To the best
of our knowledge, none of the existing framework supports
monitoring of properties about flows in a SystemC model.

Let us elaborate further on the concept of flows. In a
concurrent and reactive hardware-software system, a flow can
be a job submitted from outside the system or a job generated
by some internal component. Each flow begins with a set of
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input data, flows through different components in the system,
and then ends producing output data. Thus, a flow represents
both a flow of control and a flow of data. There can be
different types of flows in a system; we call them flow types.
Example of flow types in a graphics processor are video
compression, image segmentation, spatial transformation, and
the like. Similarly, flow types in an ATM server can be money
withdrawal, check deposit, balance inquiry etc. Section II
shows an example illustrating how flows crosscut different
components of a system. Each flow type is associated with a set
of data variables containing the inputs to the flow, the outputs
produced by the flow, and any intermediate data. We call them
flow attributes. For example, flow attributes associated with
‘money withdrawal’ flow type are card number, pin, amount to
withdraw (input attributes), transaction status (output attribute),
initial balance, and final balance (intermediate attributes).

A flow type can be instantiated any number of times during
the simulation. The instances are flows. Flows are dynamic as
they can begin any time during the simulation and there can
be any number of flows of each type. This is determined only
in runtime. Each flow has its own values of the flow attributes,
associated with its type. A flow must complete in finite time.
A flow is alive after it begins and before it ends. Since the
system is concurrent, at any point during the simulation there
can be multiple live flows of same or different types.

Each flow type T can have one or more properties associ-
ated with it. We call them flow properties of type T. A flow
property of type T is a temporal formula that can refer to the
flow attributes of T and the global variables. A flow property
describes the behavior of a single flow, but all flows of a type
T must satisfy all flow properties of type T . Our goal here
is to enable assertion-based monitoring of flow properties, as
these capture well the behavior of reactive systems. Another
advantage of flow-based monitoring is that one can explore
multiple behaviors of the system by generating flows with
different input attribute values in a single simulation.

The challenges are the following. To monitor a flow in-
dividually, the monitor has to know when a flow starts and
ends, what its attributes are, and how the attributes can be
accessed. This important information has to be explicit and
accessible to the monitors during simulation. Thus, to enable
flow-based monitoring, we need a methodology for explicit
modeling of flows in a SystemC model. This includes defining
different flow types and their attributes, beginning and ending a
flow, and passing a flow from one SystemC process to another.
Also, the flows are dynamic and concurrent; a flow can begin
anytime during the simulation and the total number of flows
is not known before the simulation starts. Thus, unlike trace-
property monitors, which can be instantiated before simulation
starts, flow-property monitors must be instantiated dynamically
in the simulation phase. Thus, enabling flow-based monitoring
requires the development of a software framework that that
extends trace-property monitoring.

The contribution of this paper is two fold. First, we define
the concept of flows in SystemC, which leads to flow-based
SystemC models (flow models, for short). We believe that the
idea of flows is already implicit in many SystemC models,
but we want to “expose” flows and make them explicit.
Furthermore, our goal is to accomplish that with a minimum
amount of annotation. For that, we provide a light-weight, yet

robust and efficient C++ library, called Flow Library, using
which one can either design a flow model from the scratch
or annotate flows in an existing SystemC model with minimal
change. Section IV describes this library in detail. Second, we
describe a framework for assertion-based dynamic verification
of flow properties in a flow model. This includes (1) an
algorithm to generate a flow monitor class from a flow property
and a tool called FLOWMONGEN that implements it, and (2) a
decentralized and dynamic algorithm to monitor dynamic and
concurrent flows, and (3) an automated and efficient software
framework to monitor flows in a flow model. The algorithms
are described in Section V and the framework is presented in
Section VI.1 A case study and experimental results, presented
in Section VII, show that our framework puts minimal runtime
overhead of monitoring.

II. FLOWS: A DETAILED EXAMPLE

We present here a detailed example showing how flows of
a flow type flow through the components of a system. Fig. 12

shows the different possible paths that a ‘money withdrawal’
flow in an ATM server may take. A ‘money withdrawal’ flow
begins in a user interface, when a user chooses to withdraw
money through an ATM machine connected to that ATM
server. The flow then goes to the card reader, where the three
input attribute values (card number, pin and amount to with-
draw) are assigned. Then the flow moves to the bank database,
which checks if the card is valid, the pin is correct, and the
amount to withdraw is less than the current balance. If any
of these checks fails, the output transaction status is assigned
REJECT and the flow goes back to the user interface and ends.
Else, the current balance is updated in the database and the
transaction status is assigned to ACCEPT. Now the flow goes
concurrently to both cash dispenser and receipt printer to give
out the cash and print the receipt respectively. Note that the
operations done by the cash dispenser and the receipt printer
on the flow are independent of each other and can be done
in parallel. So in a SystemC simulation, these two operations
can be interleaved in any order. This is called branching of a
flow. Once a flow branches, it must merge before it ends to
avoid unexpected behaviors. An example of such unexpected
behavior in our case is when the cash dispenser ends the flow
while the receipt printer is still processing it. So a branching
should be followed by a merge eventually. In this case, the
flow merges at the user interface and ends.

Different flows of a flow type can take different paths
through the system depending on the current state of the system
and input attributes values. For example, in Fig. 1, if the
input pin is incorrect, the flow takes the red path, otherwise
it takes the green path. Irrespective of what path the flow
takes, it must satisfy all flow properties associated with the
money-withdrawal flow type. One such flow property could
be: “if the card is valid, the pin is correct, and the amount
to withdraw is less than the current balance, then eventually
globally transaction status will be ACCEPT; else eventually
globally it will be REJECT”3. Note that the current balance
here is a global variable, stored in the bank database.

1Software tool is available at http://systemcflow.sourceforge.net
2The figure is best viewed online for color differentiation.
3We use Linear Temporal Logic to specify flow properties; see Section V.
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Fig. 1. Flows of type ‘money withdrawal’ crosscut different components of
ATM server.

III. RELATED WORK

The discussion of related work can be divided into two
parts: work related to modeling flow-like entities and work
related to monitoring of flow properties. There are several
existing concepts similar to flows, such as transactions in
µ-TLM (Transaction-Level Micro-architecture model) [15],
[16], message flows [23], LSCs (Live Sequence Chart) [3],
workflows [13], and behavioral programs [10]. All of these
are modeling frameworks that focus on modeling flows; in
contrast, architectural models focus on modeling components
of the system. Stitching together flow models and architectural
models is a major challenge. Aspect-oriented programming
[12] is one way of stitching together architectural models
with crosscutting concerns, but aspect-oriented programming
by itself is not rich enough to model flows. For example, Maoz,
Harel, and Kleinbort describe a compiler for transforming
LSCs into AspectJ [17]. In contrast, our focus is on enabling
users to build SystemC models that are simultaneously both
architectural models and flow models. The underlying phi-
losophy of our approach is that flows are already implicitly
present in the architectural models, since the components of
the system do have to perform the operations of the flows;
all that is needed is a thin layer of annotation to make these
flows explicit, which enables monitoring their properties. Thus,
rather than building separate architectural models and flow
models and then attempting to stitch them together, users can
directly build architectural flow models.

Prior work that is closest to our focus on monitoring
flows are parametric monitoring of Java in MOP (Monitor-
Oriented Programming) [2] and transaction monitoring in SCV
(SystemC Verification library) [8]. MOP does decentralized
and dynamic monitoring for parametric properties for Java.
An example of a parametric property is: a vector cannot
be modified when one of its enumerations is being used.
This property is automatically verified for all vectors defined
in the Java program under verification. Our dynamic and
decentralized flow monitoring algorithm is influenced by MOP.
SCV provides several constructs and APIs for verification of
SystemC models. SCV allows users to define transaction types
and capture transaction-level activities during simulation for
monitoring. Yet MOP and SCV do not have our notion of
“monitor-able” crosscutting flows that can branch and merge.

IV. FLOW LIBRARY

We provide a light-weight (228 LOC) C++ library, called
Flow Library, using which one can design flow models from
scratch or annotate flows in an existing SystemC model. In
this library, a flow type is a class and its attributes are the
class member variables. A flow is then simply an instance of
a flow-type class; to begin or end a flow, we just create or
destroy the flow object.

There is some common data associated with all flows,
irrespective of their types. For example, to identify each flow
uniquely, each flow object needs to have a unique id (flow id).
So Flow Library provides flow class as the base class of
all user-defined flow-type classes. The type id of a flow type
is passed to the flow class constructor by the constructor
of the flow type class. The flow class contains three non-
static member variables: flow_id, type_id (all the flows
of same type has same type id), and num_proc. The flow
class automatically assigns a unique flow_id to each flow
when it begins. Since a flow can branch, it can be concurrently
processed by several SystemC processes. To avoid accidental
ending of a flow by a process while some other process is
still using it, it is important to keep track of the number of
processes processing a flow at any point in time; num_proc
automatically keeps track of that.

The flow model of ATM server in Fig. 1 has three flow
types: ‘money withdrawal’, ‘check deposit’, and ‘balance
inquiry’. Assume that the type ids of these flow types are 0,
1, and 2 respectively. The listing below shows how to model
the class for ‘money withdrawal’ flow type. In addition to
defining the flow attributes, this class provides setter and getter
functions for accessing these attributes. (As shown later, these
setter functions can be used to automatically call the monitors
when a flow attribute changes its value.)

# i n c l u d e ” f low . h ”
. . .

enum t r a n s s t a t u s {NOT ASSIGNED , ACCEPT, REJECT} ;
c l a s s money wi thdrawal : p u b l i c f low {

p u b l i c : / / C o n s t r u c t o r
money wi thdrawal ( unsigned i n t amount ) :
/∗ t y p e i d o f t h i s f l o w t y p e = 0 ∗ /
f low ( 0 ) ,
card number ( ” ” ) ,
p i n ( ” ” ) ,
amount to wi thdraw ( amount ) ,
s t a t u s (NOT ASSIGNED ) ,
c a s h g i v e n ( f a l s e ) ,
accoun t number ( ” ” ) ,
i n i t i a l b a l a n c e ( 0 ) ,
f i n a l b a l a n c e ( 0 )
{} / / End o f c o n s t r u c t o r

/∗ S e t t e r s and g e t t e r s
f o r t h e f l o w a t t r i b u t e s ∗ /
. . .

p r i v a t e : / / Flow a t t r i b u t e s
s t d : : s t r i n g card number ;
s t d : : s t r i n g p i n ;
unsigned i n t amount to wi thdraw ;
t r a n s s t a t u s s t a t u s ;
bool c a s h g i v e n ;



s t d : : s t r i n g accoun t number ;
} ; / / End o f c l a s s

To monitor flows, the monitors need to know when a new
flow begins and ends, how to access its attributes, etc. The
cleanest way to expose this information to monitors is to
have a single point of access (independent of the user-defined
flow types) in the Flow Library, through which the monitors
can access information about flows without interacting with
every flow directly. For that Flow Library provides a class
flow_manager that keeps all information about flows and
provide them to monitors. The flow manager class maintains
a data structure, called alive flows, which contains the list of
all live flows.

A flow flows from process to process. Each process does
some operation on the attributes of the flow and updates
the global state (cf., [19]) of the system accordingly. Such
processes usually run forever synchronizing with some user-
defined clock. At every clock cycle, a process may operate on
some flow object. Operating on a flow consists of the following
three steps in sequence: (1) begin a new flow or get a flow from
another process, (2) read and write the attributes of that flow
and update the state of the system accordingly, (3) either end
the flow or pass the flow to another process.

The flow_manager class provides four APIs that can
be used by the SystemC processes to register new flows with
flow manager and access those flows from anywhere in the
model. They are: (1) begin_flow: to begin a new flow; (2)
end_flow: to end a live flow; (3) get_flow: to access a
flow object, given its flow_id; (4) release flow: to release
a flow. (A process informs the flow manager that it is done
operating on a flow by releasing that flow.)

Each flow model defines a global pointer variable
flow manager* fmanager that points to an object of
flow manager class. fmanager is used by the processes to
invoke the above APIs. Flow Library also does some automatic
error checking and each API returns an error code. There are
six error codes defined as enum error code in Flow Library
(See Table I).

To begin a flow of type T , a process does the following:

T∗ f =new T(< v a l u e s o f i n p u t a t t r i b u t e s > ) ;
e r r o r c o d e e = fmanager−>b e g i n f l o w ( f ) ;

begin_flow checks if f is indeed a new flow; if not,
ALREADY ALIVE is returned; if f is a null pointer,
NULL FLOW is returned. Else, begin_flow inserts f in
alive_flows and returns DONE. The following listing
shows how to model the process in the ATM User-Interface
module that begins a ‘money withdrawal’ flow at every clock
cycle and sends it to a process of card-reader module.

void u s e r i n t e r f a c e : : s u b m i t r e q u e s t s ( ) {
whi le ( 1 ){

/∗ Decide which t y p e o f r e q u e s t
t o s u b m i t . O p t i o n s are money wi thdrawal ,
check d e p o s i t and b a l a n c e i n q u i r y . ∗ /
. . .
i f ( r e q u e s t t y p e == ” money wi thdrawal ” ){

/∗ choose t h e amount t o wi thdraw ∗ /

Error name Cause of occurance
DONE No error occurred.
NOT ALIVE A process is trying to access a flow that is not alive.
CANNOT END A process is trying to end a flow that is being used by some

other process.
ALREADY ALIVE A process is trying to begin a flow that is already alive.
CANNOT RELEASE A process is trying to release the access of a flow too many

times.
NULL FLOW The flow pointer is NULL.

TABLE I. ERROR CODES DEFINED IN ENUM ERROR CODE

unsigned i n t a = . . . ;

/ / Begin a ”money w i t h d r a w a l ” f l o w
e r r o r c o d e e ;
money wi thdrawal ∗ f =new money wi thdrawal ( a ) ;
e r r o r c o d e e = fmanager−>b e g i n f l o w ( f ) ;
a s s e r t ( e == DONE) ; / / Or o t h e r a c t i o n s

/∗ Put f−>g e t f l o w i d ( ) i n a FIFO
c h a n n e l t o c a r d r e a d e r ∗ /
. . .
/∗Done o p e r a t i n g on f l o w f ;
r e l e a s e f . ( D e t a i l s l a t e r ) ∗ /
e r r o r c o d e e1=fmanager−>r e l e a s e f l o w ( ) ;
. .
/ / Wait f o r t h e n e x t c l o c k c y c l e
/ / S t a t i c a l l y s e n s i t i v e t o u s e r c l o c k
w a i t ( ) ;

} / / End o f i f
e l s e i f

. . .
} / / End o f w h i l e ( 1 )

} / / End o f t h r e a d p r o c e s s

To end flow f , a process calls end flow with id of f : fid.

e r r o r c o d e e = fmanager−>end f low ( f i d ) ;

If fid is not the flow id of an alive flow, NOT ALIVE
is returned; if some other process is still using the flow,
CANNOT END is returned. Otherwise, end flow removes f
from alive flows, deallocates the memory of f , and returns
DONE. The following listing shows how to model the pro-
cess in the User-Interface module that ends flows of type
‘money withdrawal’ (flows that did not get rejected at bank
database). Note that ending also involves merging of the flow
from receipt printer and cash dispenser.

void u s e r i n t e r f a c e : : en d mo ne y wi th d ra wa l su cc e s s ( ) {
whi le ( 1 ){

/∗ Get t h e i d o f t h e n e x t f l o w
s e n t by r e c e i p t p r i n t e r ∗ /
unsigned i n t i d = . . . ;
/∗ Get t h e c o r r e s p o n d i n g f l o w p o i n t e r ∗ /
money wi thdrawal ∗ f = fmanager−>g e t f l o w ( i d ) ;

/∗Merge t h e f l o w from cash
d i s p e n s e r and r e c e i p t p r i n t e r ∗ /
i f ( ! f−>g e t c a s h g i v e n ( ) ) {

/∗Wait u n t i l c a s h d i s p e n s e r i s
done p r o c e s s i n g t h i s f l o w . Can be
modeled u s i n g SystemC e v e n t . ∗ /
w a i t ( . . . ) ;



} /∗ I f t h e f l o w i s s t i l l b e i n g used by
c a s h d i s p e n s e r ∗ /

/ / P r o c e s s t h e f l o w
f−>s e t s t a t u s (SUCCESS ) ;

/ / Now end t h e f l o w
e r r o r c o d e e = fmanager−>end f low ( i d ) ;
a s s e r t ( e == DONE) ;

/ / Wait f o r n e x t c l o c k c y c l e
w a i t ( ) ; / / S t a t i c s e n s i t i v i t y

} / / End o f w h i l e ( 1 )
} / / End o f t h r e a d p r o c e s s

A process can also transfer, branch and join a flow. To
maximize flexibility, Flow Library does not provide direct
APIs for these operations but leave them as user defined. We
show below how a process in a flow model can transfer a
flow to another process, branch a flow (sending it to multiple
processes), or merge a flow from multiple processes using Flow
Library.

After a process finishes operating on a flow, it can transfer
the flow to another process. The transfer happens through
shared elements like global FIFO queue, TLM FIFO channels,
and the like. To avoid unintended mishandling of pointers, it
is strongly recommended to transfer only the flow id rather
then the flow pointer. When a process receives a flow id from
some shared element, it gains access to the corresponding flow
pointer using the get flow API of flow manager as follows:

/ / f i s t h e f l o w whose a c c e s s i s needed .
/ / f i d : i d o f f ; T : t y p e o f f
e r r o r c o d e e ;
T∗ f = ( T∗ ) fmanager−>g e t f l o w ( f i d , &e ) ;

If f is not alive, get flow assigns NOT ALIVE to e and returns
0, else it increments f ->num proc by one, assigns DONE to
e and returns pointer to f . After a process finishes reading and
writing to the attributes of f , it must release the flow using
the release flow API as:

e r r o r c o d e e=fmanager−>r e l e a s e f l o w ( f i d ) ;

If f has already ended, release flow returns NOT ALIVE,
else it decrements f->num proc by one and returns DONE.
If num proc is already 0, it returns CANNOT RELEASE
instead. After releasing a flow, a process must not use
the flow pointer. The following listing shows how the pro-
cess card reader::read card() of ATM server gets a flow
from user interface::submit request() process and sends it to
bank database::get request() process.

void c a r d r e a d e r : : r e a d c a r d ( ) {
whi le ( 1 ){

/∗ Fetch t h e i d o f t h e n e x t f l o w
s e n t by u s e r i n t e r f a c e module . ∗ /
unsigned i n t i d = . . . ;
/ / Get t h e c o r r e s p o n d i n g f l o w p o i n t e r
e r r o r c o d e e ;
money wi thdrawal ∗ f = ( money wi thdrawal ∗ )

manager−>g e t f l o w ( id ,& e ) ;
a s s e r t ( e == DONE) ;

/ / P r o c e s s t h e f l o w
/∗ randomly p i c k a card number ∗ /
f−>s e t c a r d n u m b e r ( . . . ) ;
/∗ a s s i g n c o r r e c t p i n w i t h
p r o b a b i l i t y 0 . 8 ∗ /
f−>s e t p i n ( . . . ) ;

/∗ T r a n s f e r i d t o bank da tabase
: : r e c e i v e f l o w ( ) p r o c e s s ∗ /
. . .

/ / R e l e a s e t h e f l o w
e = fmanager−>r e l e a s e f l o w ( i d ) ;
a s s e r t ( e == DONE) ;

/ / Wait f o r n e x t c l o c k c y c l e
w a i t ( ) ; / / S t a t i c s e n s i t i v i t y

} / / End o f w h i l e ( 1 )
} / / End o f t h r e a d p r o c e s s

When two or more steps of the flow are independent of
each other, two or more processes can concurrently work on
the same flow. This is called branching and those processes
are called branch processes. The process that branches a
flow, sends the flow_id to all the branch processes in any
order. Now all the branch processes can operate on the flow
concurrently. In Fig. 1, the ‘money withdrawal’ flow branches
in the bank database and goes to both receipt printer and cash
dispenser. The following Listing shows how to model the pro-
cess bank_database::receive_flow() that receives
a flow from card_reader and then either sends it to IO
module upon transaction failure or branches it and sends it to
both receipt printer and cash dispenser upon success.

void b a n k d a t a b a s e : : r e c e i v e f l o w ( ) {
whi le ( 1 ){

/∗ Fetch t h e i d and
g e t t h e f l o w p o i n t e r ∗ /
unsigned i n t i d = . . . ;
money wi thdrawal ∗ f = . . . ;

i f ( ! ( ( f−>ge t accoun number ( ) ) . v a l i d ( ) )
| | . . . ) {

/ / send f back t o u s e r i n t e r f a c e
} / / End o f i f

/∗ E l s e branch f t o r e c e i p t
p r i n t e r and cash d i s p e n s e r . ∗ /
e l s e {

/∗ Put i d i n t h e c h a n n e l
t o r e c e i p t p r i n t e r ∗ /
. . .
/∗ Put i d i n t h e c h a n n e l
t o cash d i s p e n s e r ∗ /
. . .

} / / End o f e l s e

e r r o r c o d e e = manager−>r e l e a s e f l o w ( i d ) ;
a s s e r t ( e == DONE) ;
. . .



/ / Wait f o r n e x t c l o c k c y c l e
w a i t ( ) ; / / S t a t i c s e n s i t i v i t y

} / / End o f w h i l e ( 1 )
} / / End o f t h r e a d p r o c e s s

A join can happen only after all the branch processes finish
operating on the branched flow. The process where the flow
joins must wait until then. This synchronization can be easily
implemented using SystemC events and flow attributes. See
the end flow listing above to see how a ‘money withdrawal’
flow joins in the user module. Thus, a join is implicit and must
happen after the branch and before the flow ends.

V. FLOW ALGORITHMS

A. Flow-Monitor-Generation Algorithm

The trace πf of a flow f is a finite slice of the simu-
lation trace; πf begins and ends when f begins and ends.
Traces of concurrent live flows overlap. A flow property is
interpreted over the finite trace of a flow. The language we in
which express flow properties is LTLf–Linear Temporal Logic
(LTL) interpreted over finite traces [4]–whose semantics is the
obvious adaptation of LTL to finite traces. A flow f of type T
satisfies a flow property P associated with T if the trace πf of
f satisfies P . Recall that trace properties are interpreted over
infinite traces; since a simulation is always finite, monitoring
a trace property may yield PASS, FAIL, or undetermined. In
contrast, flow properties either hold or do not hold in a finite
traces. Thus, monitoring flow properties yield only PASS or
FAIL for all completed flows. (When simulation ends we also
report all incomplete flows.)

In this work we focus on intraflow properties, where each
property refers only to the attributes of a single flow. Generally,
intraflow properties cannot express interaction between flows,
though they can capture the interaction between the flow and
the system components by referring to global variables. We
convert each flow property to a C++ monitor class. Following
[20], each monitor is a C++ encoding of a DFA (Deterministic
Finite Automaton). The transition function of the DFA is
encoded as a step() function in the monitor class. Calling that
step() function once means making one transition in the DFA.
We do not use accepting states in the monitors. A monitor
rejects by finding no possible transition from some state. If it
does not reject by the time the flow has ended, it accepts.

Tabakov et al. [20] describe how to generate C++ monitor
class from DFAs; we use their algorithm here (there are
several possible encodings of DFAs as C++ monitors, we
use the front det ifelse encoding). To generate DFAs from
LTLf formulas we use the SPOT tool [5]. SPOT provides
an optimized implementation of LTL to DFA conversion, but
it uses LTL, which is over infinite traces. To get DFAs for
LTLf , we use a reduction from LTLf to LTL. Our flow-
monitor generation algorithm is the following:
Input: flow property ϕ (LTLf formula)
Output: C++ flow monitor class Mϕ

Steps:

1) From ϕ, generate the LTL formula ϕ′ as ϕ′ = g(ϕ)
(function g is defined below).

2) Use SPOT to Convert ϕ′ to DFA Aϕ that rejects minimal
bad prefixes of ϕ′ [20].

3) Encode Aϕ in C++ monitor class Mϕ [20].

The transformation function g : LTLf → LTL was
proposed by De Giacomo and Vardi in [4] as a reduction
of LTLf satisfiability to LTL satisfiability. It is defined as:
g(ϕf ) = t(ϕf )∧ (aliveUG!alive). The function t : LTLf →
LTL is inductively defined as:

• t(p) = p, where p is an atomic proposition.

• t(¬ψ) = ¬t(ψ).

• t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2).

• t(Xψ) = X(alive ∧ t(ψ)).

• t(ϕ1Uϕ2) = t(ϕ1)U(alive ∧ t(ϕ2)).

The above transformation adds a new atomic proposition
alive, which does not occur in ϕf . Intuitively, alive is true
until the finite trace ends and then it becomes false forever.
This expected behavior of alive is expressed by the formula
(aliveUG!alive).

The tool FLOWMONGEN implements the flow-monitor-
generation algorithm. The input is a configuration file where
the user can define a set of flow properties for each flow type,
defined in the MUV. The output will be one flow-monitor
class per flow property. FLOWMONGEN also generates a
class called local flow manager, which instantiates the flow-
monitor classes and executes those instances according to the
flow-monitoring algorithm discussed below.

B. Flow-Monitoring Algorithm

Our goal is to verify that each flow f of type T satisfies
each flow property P , associated with T . The flow-monitoring
algorithm is as follows. For each flow f of type T and flow-
monitor class MP associated with property P of flow type T ,
do the following:

1) When f begins during the simulation, a monitor instance
mP

f of MP is created and assigned to f .
2) While f is alive, execute the step() function of the monitor

mP
f with alive = true.

3) If mP
f rejects before f ends, record monitoring status

FAIL and delete mP
f .

4) Else:
a) When f ends, execute once the step() function of mP

f
with alive = false.

b) If mP
f rejects, record monitoring status FAIL, else

record monitoring status PASS.
c) Delete mP

f .

For proof of the following theorem, see [6].
Theorem: mP

f ends with PASS iff the flow f satisfies the flow
property P .

The flow-monitoring algorithm is dynamic, because all
flow-monitor instances are created during simulation, synchro-
nized with the start of new flows. It is decentralized, because
there is one monitor instance per flow and flow property pair,
in contrast to one monitor instance per trace property.



Fig. 2. Three components of flow monitoring framework

VI. FLOW-MONITORING FRAMEWORK

The flow-monitoring framework implements the dynamic
and decentralized flow-monitoring algorithm. Fig. 2 shows
the three components of this framework: (1) Flow Library,
(2) SystemC model under verification (MUV), and (3) flow-
monitor classes (one per flow property), along with the lo-
cal flow manager class, generated by FLOWMONGEN.

The flow-monitor classes are derived from the
base monitor class of Flow Library. The transition function
of a monitor DFA is captured in the step() function of a
flow monitor-class (see [20]). Every time step() is called, a
monitor instance makes a transition from one state to another
depending on the current state of the system and the flow it
is monitoring. If no such transition is available, step() of that
monitor instance rejects.

The local flow manager class is derived from the
flow manager class. When a user process begins a flow, it
informs the flow manager class by calling its API. Then
flow manager class calls an API of local flow manager class
to inform it about the newly begun flow. Ending a flow
is handled similarly. The alive flow data structure of the
flow manager class is defined as a protected member variable
so that the derived class local flow manager can access the
attributes of all alive flows. The complete information about
which flow-monitor class is associated with which flow-type is
hardcoded in local flow manager class. During the monitored
simulation, local flow manager dynamically creates the flow-
monitor instances, executes their step functions, and deletes
them, synchronizing with start and end of different flows.

The user can run the MUV with monitors (monitored
simulation) or without monitors (unmonitored simulation).
We want to minimize the modification of MUV to run in
monitored and unmonitored mode. Also, the unmonitored
simulation should not put any monitoring overhead. For that,
the local flow manager class overrides some virtual meth-
ods of flow manager class to do some extra work during
monitored simulation. More precisely, in monitored mode,
the global pointer flow manager* fmanager points to a lo-
cal flow manager object, whereas in unmonitored mode, it
points to a flow manager object, as shown below:

/ / For unmon i to red s i m u l a t i o n
f low manager ∗ fmanager = new f low manager

(<number o f use r−d e f i n e d f low t y p e s > ) ;

/ / For m o n i t o r e d s i m u l a t i o n
/∗ L e t M1 , . . , Mn be t h e g l o b a l v a r i a b l e s ,
r e f e r r e d i n t h e f l o w p r o p e r t i e s ∗ /
f low manager ∗ fmanager =

new l o c a l f l o w m a n a g e r
(<number o f use r−d e f i n e d f low t y p e s > ,
&M1, . . . ,&Mn ) ;

The local flow manager performs the steps of the flow-
monitoring algorithm. When a new flow f of type T begins,
local flow manager automatically creates one instance of each
flow-monitor class associated with T . These instances are
responsible to monitor f . step() of a monitor instance of f
is executed one or more times until step() rejects or f ends.
If step() rejects, local flow manager deletes the corresponding
monitor instance after recording its status as FAIL. When f
ends, local flow manager executes step() of f ’s live monitors
with alive = false. If a monitor’s step() rejects at this point,
then local flow manager records that monitor’s status as FAIL,
else as PASS. Then it deletes all the monitor instances of f .

The flow-monitoring framework provides the following two
APIs to execute step() of a monitor instance.

/ / E x e c u t e s s t e p ( ) o f m o n i t o r i n s t a n c e s o f f
/ / f i d : ID o f f l o w f
fmanager−>m o n i t o r f l o w ( f i d ) ;

/∗ E x e c u t e s s t e p ( ) o f a l l m o n i t o r i n s t a n c e s
o f a l l l i v e f l o w s . ∗ /
fmanager−>m o n i t o r a l l ( ) ;

Both these APIs do nothing in unmonitored mode. Calling the
second API is more expensive, since it executes the monitors
of all live flows.

It remains to discuss when to execute step() of a monitor
instance. In the terminology of [19], the question is when
to sample the trace. A naive approach would be to execute
step() of all live monitor instances following execution of each
statement of the MUV. But this can be very expensive, because
in flow monitoring the number of monitor instances are not
equal to the number of flow properties, but is equal to the
number of flow properties multiplied by the number of live
flows at that point. This may lead to the execution of thousands
of monitor instances after every MUV statement, which would
incur significant runtime overhead. This method is not only
inefficient, but also redundant. A flow changes its state only
when a new value is written to one of its flow attributes. Not
all of those thousands flows change their state after execution
of each MUV statement. So running the monitors of a flow
when nothing about it has changed is redundant. One can use
customized sampling, as in [21], but that requires nontrivial
user effort.

A better approach is to track when a flow attribute is
changing its value, and, when it does, execute only the monitor
instances of that flow. This ensures that the step() functions are
executed frequently enough to capture all state changes of the
flows (completeness). Also, we do not monitor a flow when it
does not change its state (no redundancy).



For that, Flow Library provides a function set attribute in
flow class. Suppose that the MUV has a flow type T that has a
flow attribute int a. Let f be a flow of type T . To automatically
execute all flow-monitor instances of flow f , every time the
flow attribute a of flow f is written, the setter function of a
in flow-type class T has to be defined as follows:

void s e t a ( i n t v a l ) {
s e t a t t r i b u t e <i n t >(a , v a l ) ;

}

set attribute() is defined in the flow class as a template
function as follows:

t empla te <typename T>
void s e t a t t r i b u t e ( T& a t t , c o n s t T& v a l ) ;

The template type is the type of the flow attribute (in our exam-
ple, int). In unmonitored mode, this function just sets the value
of the attribute. In monitored mode, after setting the value, the
setter also executes one step of all flow-monitor instances of
the flow, whose attribute’s value has been set. Similarly, to
monitor all flows when an important global variable changes
its value, call monitor all() inside the setter function of that
global variable. Both monitor flow() and monitor all() can be
called directly from any place in the MUV.

Since kernel phases are important temporal locations in
SystemC simulation, the framework also supports automatic
execution of step() at 18 different kernel phases (defined in
[19]). In the input file to FLOWMONGEN, the user can define
a flow property to be sensitive to a set of kernel phases.
During the monitored simulation, when a kernel phase occurs,
all monitor instances sensitive to that phase are executed by
the local flow manager automatically. For example, suppose
that flow monitor class M , associated with flow type T , is
sensitive to kernel phase t1 and t2. Then all monitor instances
of M will execute whenever any of t1 or t2 occurs during
monitored simulation. It is important to note here is that at
every occurrence of t1 and t2, all monitors instances of M ,
assigned to all currently live flows of type T , are executed
(irrespective of if the flow has changed its state or not).
Thus, monitoring at kernel phases is more expensive than
monitoring at value change of attributes. The experimental
results, described in Section VII, support this too.

To execute the flow monitors at different kernel phases,
the local flow manager has to know when a kernel phase
occurs. In the standard implementation of the OSCI kernel, this
information is not exposed. So, following the patch described
in [21], we have put a minimal patch on SystemC kernel to
expose those information. Our SystemC patch is only 158 LOC
as compared to the patch in [21], which is 1100 LOC. Also
our patch supports both static (trace property) and dynamic
(flow property) monitoring. (The patch in [21] does not support
dynamic monitoring.) Our patch is easily portable to future
SystemC releases.

VII. EXPERIMENTAL EVALUATION

To assess the flow-monitoring framework, we performed a
case study, where we designed a flow model and verified some
flow properties of it using the framework. We took the Airline
Reservation System (ARS) model, developed by Tabakov and

Vardi [21], and modified it to make the idea of flows explicit.4
The model was originally 3,100 LOC; turning it into a flow
model required insertion of an additional 70 LOC. This shows
that converting an existing SystemC model to a flow model
takes minimal effort and by doing so, one can monitor flow
properties, includes liveness properties that are not monitor-
able in trace property monitoring.

ARS models a multi-user, interactive, concurrent system
for purchasing airline tickets. It has one flow type: request
to reserve a trip, which can be 1-or 2-way trip. The in-
put attributes are source, destination, date1 (the
date of flying from source to destination), date2 (date of
flying from destination to source for return-trip requests),
is_return (true for return-trip requests), seats (number
of people traveling), and category (economy or business
class). The output attributes are trip1 (sequence of con-
necting flights from source to destination) and trip2 (se-
quence of connecting flights from destination to source for
return-trip requests). There is one intermediate attribute, called
speculative_bit, whose functionality is explained later.

ARS contains four SystemC modules: a user mod-
ule that simulates the users, and three system modules
(IO, master and planner) that process the requests from
the user. There are two different clocks defined in ARS:
user_clock and system_clock. The user module oper-
ates by user_clock and submits one new request at every
clock cycle. The system modules operate by system_clock.
At every system_clock cycle, a system process does the
following: it fetches a new request from some shared element,
process the request, and send it to some other shared element.
In ARS, the shared elements are either bounded queues or
channels. Two processes from the same module communicate
through a bounded queue, defined internally in that mod-
ule. Two processes from two different modules communicate
through a bounded channel connecting those modules. The
sum of the capacities of these shared elements puts a bound on
how many requests can be concurrently alive in the system at
any point of time during the simulation. The processes use
SystemC events to synchronize reading and writing to the
shared elements.

Fig. 3 shows how a request flows through ARS model. A
request r is generated by a process in the user module. Then it
travels to the IO module. If the bounded queue in IO module
has no space to store the new request, the request returns to
the user module and ends. (This happens when user_clock
is faster that system_clock, as more requests are getting
generated than the system can process.) Otherwise, IO module
sends the request to the master module. If it is a 1-way trip
request, the master module sends it to the planner module. The
planner module finds the connecting flights with a probability
of 90%, and then sends the request back to master, who sends
it to IO, and, finally, IO sends it to the user, where the request
r ends. If r a return-trip request, then master branches r to
process the two trips separately. (This is a way to test that
our framework supports branching and merging of flows.)
The speculative_bit of r is used to synchronize the
branching and merging. The speculative_bit is set true
when r begins. First trip1 of r is found and then trip2

4The original and modified models are available at http://www.cs.rice.edu/
∼vardi/ARS models.zip.

http://www.cs.rice.edu/~vardi/ARS_models.zip
http://www.cs.rice.edu/~vardi/ARS_models.zip


Fig. 3. Possible paths taken by a ”request” in ARS model

is found. Once trip2 is found, speculative_bit is set
false. After planner finds both the trips, the request goes back
to the user, following the same path it came through.

We have verified three flow properties of ARS. Each
property is verified for all the requests that are submitted
by the user module during the simulation. Property 1 is a
liveness property that says that eventually trip1 should be
found and if it is a return trip request, then eventually trip2
should be found. The requests that are sent back to the user
by the IO module due to unavailability of space in internal
queues do not satisfy this property. Also the requests for
which planner does not find connecting flights do not satisfy
this property. Property 2 is another liveness property that
captures the behavior of speculative_bit of all return
trip requests. Property 2 says that if it is a return-trip request,
then eventually speculative_bit should be true, and then
eventually globally it should become false. This property is
not satisfied by the return-trip requests that are sent back to
the user due to unavailability of space, but every other return-
trip request should satisfy this property. Property 3 is a safety
property that says that the number of connecting flights of any
trip should not exceed the maximum number of legs defined in
the planner module. Notice that Property 3 refers to a global
variable, which is in the planner module.

A major concern in monitoring is the overhead that the
monitors put on the execution of the MUV. The monitoring
overhead is defined as the increase in the runtime in monitored
simulation, compared to its unmonitored version. The runtime
overhead of flow monitoring depends on the number of active
monitors and how often they are activated. Thus, the overhead
may depend on multiple factors: the relative frequency of user
clock and system clock, the system capacity (the maximum
number of concurrent live flows that the system can hold at
any point during the simulation), and the sampling rate of the
monitors (how frequently the function step() is executing). In
our experiments, we wish to find out how runtime overhead is
affected by the above mentioned factors.

When user clock is faster than system clock, requests start
getting buffered in the shared elements. With the increase in
the ratio of user-clock frequency to the system-clock frequency,
more and more requests start filling up the shared elements
until they overflow and requests start to fail (when IO sends
requests back to user without processing). More pending

Fig. 4. Variation of flow monitoring overhead of Property 1 with respect to
ratio of user to system clock frequencies

requests means higher number of concurrent live flows in the
system. Also, if we increase the system capacity by making the
shared elements larger, less requests would fail but the number
of pending requests would increase. So increase of either
clock ratio or system capacity would result in the increase
of the number of concurrent live requests in the system. To
see how the number of concurrent live requests affect the
monitoring overhead, we have to consider how frequently we
are executing the flow monitors (sampling rate). As stated
before, we have two types of sampling: sampling at value
change of flow attributes and sampling at kernel phases. Let
us consider monitoring overhead for both sampling modes.

When sampling at value change of flow attributes, the
framework only executes the monitors of the flow whose
attribute value has changed. Suppose there are n flows that
execute during the simulation, each with k attribute assign-
ments and one monitor instance associated with it. Then the
total number of step() function calls are kn. This number
does not depend on the number of concurrent live flows in
the system. So, monitoring overhead when sampling at value
change of attributes does not change with system capacity or
clock frequency ratio.

In contrast, when sampling at kernel phases, at every kernel
phase the framework executes all monitors instances of all
live flows. So, the total number of step() executions increases
with the number of concurrent live flows in the system, which
increases the monitoring overhead. As discussed above, the
number of concurrent live flows increases with the increase of
frequency ratio or the system capacity (which is proportional
to the capacity of each queue in ARS). So while sampling at a
kernel phase, the runtime overhead increases with the increase
of clock frequency ratio and the system capacity.

The above discussion is validated by the experimental
results, shown in Fig. 4 and Fig. 5. For each simulation,
total simulation time is 100,000 SC NS and a new flow is
generated after every 10 SC NS, yielding 10,000 flows. The
results shown are for Property 1; Property 2 and Property 3
yield similar results. Each data point in the plots is the average
of 100 simulations. In both graphs, we observed the runtime
overhead at three sampling rates by sampling at: value change
of flow attributes, kernel phase delta cycle end, and kernel
phase thread prices suspend. The baseline is the runtime
of unmonitored simulation with the same value of system



Fig. 5. Variation of flow monitoring overhead of Property 1 with respect to
the system capacity (maximum number of simultaneous live flows the system
can store)

capacity and clock frequency ratio.

In Fig. 4 we varied the frequency ratio (user / system) from
0.1 to 2 by varying the frequency of system clock and observed
the runtime overhead at the three sampling rates. As expected,
the runtime overhead does not change with the clock frequency
ratio while sampling at value change of attributes, but does
increase while sampling at kernel phases. In Fig. 5 we varied
the system capacity from 100*12 to 1000*12 and observed the
runtime overhead at the three sampling rates. As expected, the
runtime overhead does not change with the system capacity
while sampling at attributed-value change, but does increase
with the system capacity while sampling at kernel phases.
The graphs show the overhead for 10,000 monitors. So the
overhead per monitor is minimal.

VIII. CONCLUSION

We have introduced here the concept of flows and flow-
based monitoring in SystemC. Flow properties are the suitable
candidates to capture the reactive and job-oriented behavior
of many hardware-software systems. Using Flow Library one
can make any SystemC model a flow model with minimal
modification. Flow Library is lightweight and easy to use. The
FLOWMONGEN tool automatically generates flow-monitor
classes for user-provided flow properties. Using the dynamic
and decentralized flow framework, one can automatically
verify that every flow of a certain flow type satisfies each
flow property associated with that flow type in a monitored
simulation. The experimental results shows that the framework
adds minimal runtime overhead.

In future work we plan to define hierarchies of flows.
A flow can contain subflows. For example, to process an
image, first divide it into smaller sub-images, then process
those sub-images, and then combine the result. Processing
the larger image is a parent flow and processing each sub-
image is a subflow. Also we plan to capture interactions among
multiple flows. Our current approach is focused on intra-
flow properties. Capturing interaction among flows, would
require us to consider inter-flow properties, such as “parent
flow returns SUCCESS iff all its sub-flows return SUCCESS.”
Finally, it is interesting to use data-flow analysis to detect flows
in legacy SystemC models.
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