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Abstract—Performance and functional correctness are key
for successful design of modern embedded systems. Both
aspects must be considered early in the design process to
enable founded decision making towards final implementa-
tion. Nonetheless, building abstract system-level models that
faithfully capture performance information along to functional
behavior is a challenging task. In contrast to functional aspects,
performance details are rarely available during early design
phases and no clear method is known to characterize them.
Moreover, once such system-level models are built they are
inherently complex as they usually mix software models, hard-
ware architecture constraints and environment abstractions.
Their analysis by using traditional performance evaluation
methods is reaching the limits and the need for more scalable
and accurate techniques is becoming urgent. In this paper,
we introduce a systematic method for building stochastic
abstract performance models using statistical inference and
model calibration and we propose statistical model checking
as performance evaluation technique upon the obtained models.
We experimented our method on a real-life case study. We were
able to verify different timing properties.

I. INTRODUCTION

The increasing complexity of modern embedded systems,

together with the growing competition and the time-to-

market constraints, has forced designers to consider more

elaborate and systematic approaches to system design.

System-level design [1] has emerged as a new methodology

to address these challenges. Among the key concepts in

system-level design is high-level modeling, that is, captur-

ing the system functionality at a high-level of abstraction.

A high-level model can be obtained with less effort and

enables fast design space exploration which is of paramount

importance for early and founded design decisions making

towards the final implementation.

For many years, functional aspects where in the center

of the high-level modeling process, while extra-functional

ones where considered as a second-class citizen. In modern

systems such as wearable, where a limited amount of re-

sources is available, extra-functional aspects are becoming

equally important and not considering them may lead to

dramatic results later in the design process. For instance,

a smart-phone that quickly losses energy is not going to

sell even if it provides all required services. This points out

two additional important design requirements. First, building

high-level models that captures extra-functional aspects,

especially performance, is a must for a successful design.

Second, given the importance of such aspects, traditional

performance evaluation techniques, decorrelated from the

functional aspects, are no more sufficient. Hence, the need

for rigorous system-level verification techniques.

Performance aspects are related to the physical part of the

system, that is, the execution of the application functions on

specific architecture components, e.g., execution time of a

function by a processing unit, communication delay of a bus

or a Network on Chip (NoC), amount of consumed energy or

dissipated temperature. Nonetheless, such details are rarely

available in early design phases, which makes the process of

building high-level performance models quite challenging.

Contradictory goals, Abstract Vs. Faithful: In one

hand, one wants to deal with abstract models that minimize

modeling effort and exploration time. In the other hand,

these models are required to capture low-level performance

details in order to precisely reflect the reality and enable ac-

curate reasoning about the whole system performance. This

raises several natural questions: How to capture performance

information in early design phases? What kind of formalism

is appropriate to characterize them? And, how to integrate

them in the abstract system model?

In this paper, as a first contribution, we propose a tech-

nique based upon statistical approaches for characterizing

low-level performance details. These are extracted from

automatically generated and instrumented implementation.

The high-level models are then calibrated using these per-

formance details as to obtain more faithful representations.

Characterizing low-level performance details statistically

is motivated by their significant variability which cannot be

captured by point estimates. The variability in performance

data is mainly due to two reasons. First, the inputs (the work-

load) are generally variable albeit some systems are data-

independent. The second reason is the inherent hardware

components behavior, e.g., caches, interference, memory

contention, etc. These cannot be modeled in details in early



design phases because of the lack of detailed specification

and the required abstraction level.

Our second contribution concerns system-level verifica-

tion. Traditionally, once performance models are built, pure

simulation or analytical approaches are used for analysis.

Our proposal is a trade-off between these two techniques. It

consists of Statistical Model Checking (SMC) [2], [3] which

combines simulation and statistical techniques. Moreover, it

provides quantitative evaluation of the requirements which

is more appropriate for performance evaluation. To the best

of our knowledge, this is the first time SMC is being used

to performance evaluation of manycore embedded systems.

We experimented this approach as part of the BIP design-

flow for rigorous systems design [4]. In the BIP flow, all the

design phases are driven by a single component-based se-

mantics [5], [6]. Our contributions are used within the whole

flow as a method for design space exploration. We built tool-

support for most of the method parts, i.e., automatic code

generation, statistical model checking, statistical inference

and validated it on a real-life case study namely the HMAX

Models algorithm [7] for image recognition. We considered

the STHORM platform [8] as a target architecture and we

were able to verify a bench of timing requirements.

Organization: Section II introduces the BIP formalism

and its stochastic extension in addition to the Statistical

Model Checking technique. In Section III, we detail our

method for building and analyzing high-level performance

models. Section IV presents a concrete application of our

method on a real-life case study. The end tail portion of the

paper depicts related work and conclusions.

II. BACKGROUND

In this section, we introduce the BIP formalism and its

stochastic extension. We also briefly describe the Statistical

Model Checking technique.

A. BIP and Stochastic BIP Models

BIP (Behavior-Interaction-Priority) [5] is a formal frame-

work for building complex systems by coordinating the

behavior of a set of atomic components. Behavior is defined

as a transition system extended with data and functions de-

scribed in C/C++. The description of coordination between

components is layered. The first layer describes the interac-

tions between components. The second layer describes dy-

namic priorities between interactions and is used to express

scheduling policies. BIP has a clean operational semantics

that describes the behavior of a composite component as

the composition of the behaviors of its atomic ones. This

allows a direct relation between the underlying semantic

model (transition systems) and its implementation.

In BIP, atomic components are finite-state automata ex-

tended with variables and ports. Variables are used to store

local data. Ports are action names, and may be associated

with variables. They are used for interaction with other

components. States denote control locations at which the

components await for interaction. A transition is a step,

labeled by a port, from a control location to another. It

has associated a guard and an action, that are respec-

tively a Boolean condition and a computation defined on

local variables. Connectors relate ports from different sub-

components. They represent sets of interactions, that are,

non-empty sets of ports that have to be jointly executed. For

every such interaction, the connector provides the guard and

the data transfer, that are, respectively, an enabling condition

and an exchange of data across the ports involved in the

interaction. Finally, priorities provide a means to coordinate

the execution of interactions within a BIP system. They are

used to specify scheduling policies between simultaneously

enabled interactions. More concretely, priorities are rules,

each consisting of an ordered pair of interactions associated

with a condition. When the condition holds and both inter-

actions of the corresponding pair are enabled, only the one

with the highest priority can be executed.
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Figure 1: BIP example: Sender-Buffer-Receiver system.

Figure 1 shows a graphical representation of an example

model in BIP. It consists of three atomic components,

namely Sender, Buffer and Receiver for which the behavior

is described as transition systems. For instance the Sender

has two control locations l1 and l2 and communicates

through ports tick and out associated with the variable x.

The components are connected using io1, io2, and tick

connectors. These enforces strong synchronization, that is,

executing the involved ports in parallel. For example, the io1

connector represents an interaction with data transfer from

the out port of the Sender to the in port of the Buffer. As a

result, the value of x is assigned to y in the Buffer.

The stochastic extension of BIP [6] allows (1) to spec-

ify stochastic aspects of individual components and (2)

to provide a purely stochastic semantics for the parallel

composition of components through interactions and pri-

orities. Syntactically, stochastic behavior at the level of

BIP atomic components is obtained by using probabilistic

variables xP . These are attached to probability distributions

µxP (implemented as C functions) and are updated during

transition firing where they get random values accordingly.

The semantics on transitions is thus fully stochastic. The

stochastic semantics also covers the interaction level. When

several interactions are enabled after application of priority



rules, a probabilistic choice among them is performed using

a user-specified probability distribution.

B. Statistical Model Checking

The previous section introduced our high-level formalism

for stochastic systems. Now, we focus on verifying bounded

temporal properties over them. We will be mostly interested

in checking if the probability that the execution time t of

the system always stay within a bound ∆ is greater than

some value, say θ. As we will rely on simulation, we will

only monitor the above property on a finite horizon l. In

this context, the problem can be denoted in Linear Temporal

Logic (LTL) [9] as ϕ = P≥θ[�
l(t < ∆)]. There are several

ways to check such properties.

A first solution to the above mentioned problem is to rely

on probabilistic model checking whose main purpose is to

compute the exact probability p to satisfy ϕ. In our context,

we are only interested in knowing whether p is greater or

equal to θ. To solve this qualitative problem, we will rely

on a sequential hypothesis testing engine.

The idea is to monitor ϕ on several finite executions ρ

(of size l) of the system. If the actual measure of paths

satisfying ϕ is p then this is a Bernoulli experiment with

parameter p — with probability p we will conclude the

simulation by observing that all extensions of ρ satisfy ϕ and

with probability 1 − p we will conclude the simulation by

observing that all extensions of ρ do not satisfy ϕ. The goal

is to determine if the unknown parameter p is at least θ, by

conducting this experiment multiple times independently 1.

Checking if the property holds is determined as follows.

Let Bi be the random variable that takes value 1 if the

ith sample satisfies ϕ and 0 otherwise. Finally let bi be its

realization in the specific sample. Consider two hypotheses

— H0, which is the hypothesis that p ≥ p0 > θ, and H1,

which is the hypothesis that p ≤ p1 < θ. Hypothesis H0

is accepted if X =
∑

i bi is greater than a threshold c, and

hypothesis H1 is accepted otherwise. There are two types

of errors associated with such a statistical test: Type I error

measures the probability of accepting H0 when H1 actually

holds and Type II error measures the probability of accepting

H1 when H0 holds. Typically, we denote the bound on the

Type I error by α, and the bound on Type II error by β.

Ideally, we would like p0 = θ = p1, but it is too difficult to

bound both values simultaneously. Therefore, we choose δ

such that p0 = θ + δ and p1 = θ − δ. The interval [p1, p0]
is referred to as the indifference region of the test.

In the sequential probability ratio test, one has to choose

two values A and B, with A > B. These two values should

be chosen to ensure that the strength of the test is respected.

Let m be the number of observations that have been made

1Ensuring independent sampling has its own challenges which will not
be addressed in this paper.

so far. The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi | p = p1)

Pr(Bi = bi | p = p0)
=

pdm

1
(1− p1)

m−dm

pdm

0
(1− p0)m−dm

,

(1)

where dm =
∑m

i=1
bi. The idea behind the test is to accept

H0 if p1m

p0m

≥ A, and H1 if p1m

p0m

≤ B. An algorithm for

sequential ratio testing consists of computing p1m

p0m

for suc-

cessive values of m until either H0 or H1 is satisfied. In his

thesis [3], Younes proposed the SPRT algorithm (Algorithm

2.3 page 27) that given p0, p1, α and β implements the

sequential ratio testing procedure. We should observe that

computing ideal values Aid and Bid for A and B in order

to make sure that we are working with a test of strength

(α, β) is a laborious procedure (see Section 3.4 of [10]).

III. METHODOLOGY

This section introduces our approach for high-level mod-

eling and analysis of performance in the context of system-

level design. A general overview of the method is first

presented followed by a detailed explanation of its steps.
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Figure 2: Overview of the proposed method.

The proposed approach perfectly integrates Y-chart-based

flows [11], which consider separate models for the applica-

tion and the hardware architecture. As shown in Figure 2, it

takes as inputs, the application and the architecture models,

a static mapping of the application to the architecture, and

a set of requirements. We rely on the BIP formalism as

a computation model to capture the application and the

architecture behaviors. These may be obtained automatically

through refinement from higher level specifications [4] or

provided directly by the designer.

The method consists of generating an implementation of

the application on the target architecture (1). The latter

could be, depending on the design phase, an already existing

board, a virtual prototype, or an Instruction-Set Simula-

tor (ISS). The code generation step produces instrumented

code with respect to the input requirements. This specifies

the performance aspects to estimate. After model execu-

tion/simulation, traces are obtained and statistically analyzed

to infer probabilistic characterization of the performance



data (2). These are used to calibrate the BIP application

model (3). Finally, quantitative analysis of the input require-

ment is performed using Statistical Model Checking (4).

A. Generating Implementations

The BIP framework encompasses different code genera-

tion back-ends for centralized and distributed targets [12]. In

the context of manycore architectures, we mainly consider

the application model and the mapping, in addition to

the performance requirements to instrument the generated

implementation accordingly. There are basically two steps

in order to produce implementations from BIP models:

Computation/Communication Objects Generation: In

this phase, each computation BIP component is system-

atically transformed to a process. The notion of process

is used in an abstract meaning. Its concrete interpretation

depends on the target runtime, e.g., POSIX threads. The

behavior of each generated process consists of the corre-

sponding BIP component automaton where synchronizations

are transformed to communication primitives calls provided

by the target runtime. Communication objects are usually

shared memory objects, e.g., fifo channels. This are similarly

generated given the target runtime.

Deployment/Glue Code Generation: This mainly pro-

duces code that maps the generated objects on the target

hardware architecture. That is, the processes to specific

processing units and the communication objects to memory.

Remark that the code generation process depends on the

targeted runtime. In this section, we described the general

shape of this process. Additional details are presented in

Section IV. In this work, we consider STHROM [8] as a

target architecture and an implementation of the MCAPI2

standard as the underlying runtime. We implemented a new

BIP back-end code generator targeting this architecture.

B. Characterizing Performance Data

We propose a statistical method to characterize perfor-

mance data coming from concrete execution or low-level

simulation of functional models. The idea is to fit a good

probabilistic model to the obtained data [13]. This could

be a probability distribution (Normal, Exponential, etc.)

or a more sophisticated model such as combination of

distributions or a Markov model. In this paper, we first

consider probability distributions as potential model and use

Distribution Fitting [13], [14] as to probabilistically charac-

terize the data. Given execution traces (a set of observations

of the performance metric), Distribution Fitting allows to

statistically learn the best distribution that fits the data.

From this perspective, data is assumed to be generated

by a stochastic process for which the governing law is

unknown. Our goal is to infer such a law from a subset

of observations, called a sample, since the whole population

2www.multicore-association.org/workgroup/mcapi.php

is generally not available. Formally, given x1, ..., xn a set

of observations, there exists X1, ..., Xn independent and

identically distributed (iid) random variables such that xi is a

possible realization of Xi. Independence is to be understood

in the sense that the outcome of a random variable does not

affect the outcome of another. Identically distributed random

variables basically means that they came from the same

probability distribution D(ω) where ω ∈ Θ is the set of

parameters of the distribution defined over the space Θ.

One should pay attention to the independence assumption

above since this will enable accurate generalizations of

the inference results. Note that the goal is not only to

characterize the available data. The most important is to

be able to generalize the result to the generating process.

That is, to conclude that the generating process follows the

learned distribution. Concretely, the Independence assump-

tion states that the observations are made independently. Two

possible configurations are generally possible. The first is

when an experiment is conceived with the aim to observe a

specific phenomenon. In such a case, independence is easy to

guarantee since the procedure is completely controlled. The

second case is when we perform observations on a process

which is not under our control (or partially controlled), e.g.,

simulation or execution of a system. In this case, indepen-

dence cannot be assumed but must be checked. Several

ways exists to check independence although not always

easy to understand. One can use, for example, specific plots

which require expertise for interpretation or rely on existing

statistical tests such as Box-Pierce [15], Ljung-Box [16], and

runs test3.

The process of fitting a probability distribution to a set of

observations follows three main steps:

1) Exploratory Analysis. In this step, one aims to identify

a set of candidate distributions that can potentially fit

the data. This may be performed qualitatively using

plots (histogram, box plot, etc), or quantitatively using

summary parameters of the data (mean, median, vari-

ance, symmetry and skewness measures, etc). During

this phase, one would use check independence using

the above mentioned tests.

2) Parameters Estimation. The goal of this step is to

estimate the parameters of the candidate distributions.

To this end, one may use Maximum of Likelihood Es-

timate (MLE), Moments Matching Estimate (MME),

Maximum Goodness-of-fit Estimate (MGE), or Quan-

tile Matching Estimate (QME) [17].

3) Goodness-of-fit Test. The obtained fits are evaluated

using well-known tests, e.g., Kolmogorov-Smirnov,

Anderson-Darling, and Carmer-Von Mises [14]. It is

also useful to use plots like Q-Q plot and Cumulative

Distribution Functions (CDF) to visually validate the

fit. This phase is important because it allows selecting

3http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm



the best fit based on the aforementioned test and other

criterion like Bayesian Information Criterion (BIC)

and Akaike Information Criterion (AIC).

In some cases, a pre-processing phase of the data may

be required before performing the fitting. For instance,

data may need rescaling and/or log transformations. Such

requirements are usually detected during the exploratory

analysis. To simplify the above process, we implemented

a tool that assists the designer in the different steps of the

distribution fitting process in R [18], [19].

C. Calibrating Functional Models

The calibration process aims to augment functional BIP

models with performance data learned as in the previous

step and to produce stochastic BIP models that enables

SMC. Inferred probability distributions are thus used as

sampling functions for probabilistic variables representing

the corresponding performance metric.
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Figure 3: Calibration of BIP models with execution time.

For instance, in order to introduce the execution time of a

specific function within a process, a probabilistic variable

related to the corresponding learned distribution is first

added. Let f() be the function to calibrate, µf the learned

probability distribution of the execution time of f(), and

xt,f related to µf be the probabilistic variable that models its

execution time. A transition α that calls f() in the functional

model is transformed as shown in Figure 3. A sampling

step that updates xt,f is introduced on α. The value of

xt,f specifies the amount of time to be spent as execution

time of f(). For timing aspects, we currently use time

transitions called tick that models discrete time progress in

BIP. We may also use the real-time capabilities of BIP [20]

to capture continuous time. In the tick transition, the variable

xt,f is decremented as to model time progress. Guards are

used to prevent firing the next transition before the sampled

execution time has completely elapsed. Therefore, a certain

amount of time, modeling the execution time of f() on the

hardware architecture, is spent.

To correctly represent time in BIP, all the timed compo-

nents, having tick transitions, have to be correctly synchro-

nized to enable overall time progress. A bit of care is needed

to build such representations since bad synchronization of

timed components lead inevitably to deadlocks. In the above

description we mainly focused on timing aspects. Other

performance aspects such as energy or temperature, can

be similarly handled by introducing probabilistic variables

modeling temperature or energy evolution.

IV. CASE STUDY: HMAX MODELS ALGORITHM

In this section we aim to illustrate our approach on a real-

life case study for image recognition. The goal is to give a

first insight on its concrete applicability.

Application Overview: HMAX [7] is a hierarchical

computational model of object recognition which attempts

to mimic the object recognition of human brain. Recognition

typically involves the computation of a set of target features

at one step, and their combination in the next step. A

combination of target features at one step is called a layer,

and can be modeled by a 3D array of units which collectively

represent the activity of set of features (F) at a given location

in a 2D input grid. HMAX starts with an image layer of

grayscale pixels and successively computes higher layers,

alternating “S” and “C” layers. Simple (“S”) layers apply

local filters that compute higher-order features by combining

different types of units in the previous layer. Complex (“C”)

layers increase invariance by pooling units of the same type

in the previous layer over limited ranges.

In this case study, we only focus on the first layer of

HMAX (see Figure 4) as it is the most computationally

intensive. In a pre-processing phase, the input raw image is

converted to grayscale (only one input feature: intensity at

pixel level) and the image is then sub-sampled at several

resolutions (12 scales in our case). For the S1 layer, a

battery of three 2D-Gabor filters is applied to the sub-

sampled images and then for C1 layer, the spatial max of

computed filters across two successive scales is taken. In this

application, parallelism can be exploited at several levels.

First, at layer level, where independent features can be

computed simultaneously. Second, at pixel level, that is, the

computation of contribution to a feature may be distributed

among computing resources.

1 × Y × X

1 × Y × X (× S)

F1 × Y × X (× S)

F1 × Y × X (× S)

F2 × Y × X (× S)

F2

Dimension Names

C2 (max)

S2 (grbf)

C1 (max)

S1 (ndp)

SI (scaled images)

Layer name

RI (raw image)

Figure 4: HMAX Models algorithm overview.

Hardware Architecture Overview: STHORM [8] is a

power efficient manycore architecture consisting of a host

processor and a manycore fabric. The host processor is

a dual-core ARM cortex A9 and the fabric comprises 4

computing clusters, inter-connected via a NoC. Each cluster

aggregates 16 tightly-coupled customizable 32 bits RISC



processors sharing a multi-banked level-1 (L1) data memory

of 256 KBytes. Each processor has its private instruction

cache with a size of 16 KBytes. All clusters share 1 MByte

of level-2 (L2) memory, accessible via the NoC. A DDR3

level-3 (L3) memory of 1 GByte is also available off-chip.

Performance Requirements: We will mainly focus on

the timing aspects of the system, that is, the overall execution

time and the time to process single lines of the input image.

More precisely we will compute the probabilities that the

overall execution time is always lower than a given bound

∆ and that the variability of processing time of successive

lines is always bounded by Ψ . To this end, we specify our

requirements as φ1 = �
l(t < ∆) where t is the monitored

execution time and φ2 = �
l(|tl| < Ψ), where tl is the

difference between processing times of successive lines.

Modeling and Code Generation: We developed a para-

metric BIP model for the S1 layer of HMAX. It uses a

certain number of reconfigurable processes for implementing

the 2D-Gabor filtering and image splitting/joining as shown

in Figure 5. Every image is handled by one ”processing

group” consisting of a Splitter, one or more Worker pro-

cesses and a Joiner, connected through FIFO channels. This

model exploits parallelism both at image level, as different

images are processed in parallel by different processing

groups and at pixel level, as different stripes of the image

are processed in parallel by different Worker processes.

Worker 

Worker 

Worker 

… x 14 

Splitter Joiner Main Main 

Processing Group 

…
 

…
 

Figure 5: The S1 layer of HMAX Models algorithm.

The computation of the entire S1 layer is coordinated

by a single main process. Several image scales are handled

concurrently. That is, the twelve scaled images are statically

pre-allocated and mapped on different processing groups.

For every image scale, the processing is pipelined as follows.

Initially, the main process sends the first 10 + P lines to the

corresponding processing group, where P ≥ 0 is an integer

parameter called line pressure that specifies the pipelining

rate. In normal regime, one input line is sent and one output

line is received, for every filter rotation (that is, actually

three output lines). Finally, once all the input image has

been sent, the main process receives P more output lines. At

this point, the processing group is ready (empty) and can be

reconfigured to restart computation for another image scale.

Within the processing group, the Splitter receives input

images, line by line from the main process. Every line is split

into a number of equal length (and overlapping) fragments,

one for every Worker process, and sent to these processes.

Worker processes implement the computation of the 2D-filter

itself (Figure 6). Filter size is fixed to 11 × 11 in the case

study. Hence, Worker processes need to accumulate 11 line

fragments in order to perform computation. Henceforth, they

maintain and compute the result operating on an internal

”sliding” window. Finally, the resulting fragments are sent

further to the Joiner, which packs them into complete output

lines and send them to the main process.

S0

read(CONF_FIFO, &config);

step = config.step;

status = EXEC;

S1 S2

S4 S3

[status == CONFIG]

read_conf

read_conf read_data

write_data

config data

data

[step == 0]

status = CONFIG;

write_data

compute(&data);

read(DATA_FIFO_IN, &data);

read_data

[step != 0]

write(DATA_FIFO_OUT, data);

step−−;

[status==EXEC]

Figure 6: The BIP model of the Worker process.

In this first experiment, for the sake of simplicity, we only

consider one image scale (256×256), that is, one processing

group will be actually used. Besides, reducing the model

size, this restriction relaxes data-dependency since a single

input size is considered. It is worth mentioning that, given

one image scale as input, each process will always handle the

same workload (amount of data) which increases the statis-

tical learning confidence. Once the functional BIP model is

available, we produce an implementation of the application

using the STHORM code generator. A sample of generated

code is shown below. The produced code is instrumented

in order to observe execution and communication time of

each process. In this paper, we rely on a physical STHORM

test-board in order to gather low-level performance data.

The generated implementation is therefore executed and

corresponding performance traces are produced.

void worker_ins_execute(void* arg) { ...

while(Wlcontinue){

switch(BIP_CTRL_LOC){

case S0 : {

if (status == CONFIG) { ...

status = EXEC; BIP_CTRL_LOC = S0;}

if (status == EXEC) BIP_CTRL_LOC = S1;

break;}

case S1 : {

mcapi_pktchan_recv(h_WORKER_read_data,

(void**)&mcapi_buffer, &mcapi_received,

&mcapi_status);

...

BIP_CTRL_LOC=S2 ; break;}

case S2 : {

compute(&data); BIP_CTRL_LOC=S3; break;}

case S3 : {

mcapi_pktchan_send(h_WORKER_write_data,

data, size, &mcapi_status);

...

break;}

... }}}

Performance Characterization and Model Calibration:

Distribution fitting is used to learn probability distributions

that fits the obtained data. We illustrate the different steps

of the process on the execution time of the Worker process.

Exploratory analysis is first performed to observe if the

data provides any clues to belongs to a usual probability



distribution. Runs and Box plots are initially used to observe

the data evolution and to detect the presence of outliers

that may distort the analysis. The corresponding plots are

presented in Figure 7 and do reveal presence of outliers.

Figure 8 shows the same plots after removing these points.
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Figure 7: Box and Runs plots of the Worker execution time.
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Figure 8: Box and Runs plots of the Worker execution time

after outlier elimination.

To check if the data observations are independent, we first

use the Lag plot. This draws the observations xi in the y-axis

and xj in the x-axis, where i−j is the fixed lag. For instance,

Figure 9 shows the Lag plot of the Worker execution time

with lag equal to 1. The figure clearly shows a random

repartition of the observations. To get more confidence, we

used the Ljung-Box and the Box-Pierce tests at significance

level of 0.05. These gave respectively 0.0531 and 0.0533 as

p-values which confirms the independence assumption.

Finally, we used the histogram and the CDF in Figure

10 to observe the shape of the data. One can see out of

this figure that the data is uni-modal and symmetric which

means that it may be potentially generated from bell-curved

process. We use the Cullen and Fray graph illustrated in

Figure 11 to get more insight with respect to the Skewness

and the Kurtosis of the data. The figure shows that the

observations are seemingly Normal.

The second step in the distribution fitting process is to

fit the candidate distribution to the data, that is, in this

case, the Normal distribution. This consists of estimating its
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Figure 9: Lag plot of the Worker execution time.
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Figure 10: Histogram and CDF of the Worker execution

time.
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Figure 11: Cullen-Frey graph for the Worker execution time.

parameters out of the data. Since the candidate distribution is

a Normal one, its mean µ and its standard deviation σ have

to be estimated. To this end, we used the method of moment

which gave the following estimates µ = 2262.265µs and

σ = 1.28µs. The fitted Normal distribution is shown in

Figure 12 which illustrates several comparisons between

the learned Normal distribution and the actual data. It

mainly compares the density functions, CDFs, in addition

to quantiles and probabilities.

The final step in this learning process is to evaluate
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Figure 12: Fitting execution time to a Normal distribution.

the performed fit through a goodness-of-fit test. Anderson-

Darling statistic at a significance level of 0.05 was used in

this case. It gave a p-value 0.18 which is greater than 0.05
(the significance level). This means that we cannot reject the

hypothesis stating that the data is normally distributed with

µ = 2262.265µs and σ = 1.28µs.

We applied the same steps for the processes communi-

cations time and learned similar distributions. For space

constraints, we illustrated the different steps once. It is

worthwhile mentioning that, in this case study, only the

Worker process computation time was considered since

we observed that it is the most important. For the other

processes, only the communication time was learned.

Once all performance aspects of interest characterized,

calibration is performed by annotating the functional BIP

model using the learned distributions as illustrated in Section

III. Figure 13 shows an example of calibrated BIP compo-

nent. This corresponds to the Worker process in Figure 6.

The latter is augmented with timing information that con-

cerns communication, i.e., read and write and computation.

Three different probability distributions where learned to this

end, namely f read(), f write(), and f exec().

S0

read(CONF_FIFO, &config);

step = config.step;

status = EXEC;

S1 S2

S3

[status == CONFIG]

read_conf

write_data

data

status = CONFIG;

compute(&data);

read(DATA_FIFO_IN, &data);

read_data

[status==EXEC]
tick

[time == 0]

time=f_exec();

tick

[time == 0]

write_data
step−−;

time=f_write();

write(DATA_FIFO_OUT, data);

tick

[step != 0 && time == 0]

S4

[step == 0 && time == 0]

tick
time

read_conf read_data

config data

time=f_read();

[time > 0]

time−−;

time−−;

[time > 0]

[time > 0]

time−−;

Figure 13: Calibrating the Worker with timing information.

Performance Evaluation: Before using SMC to check

the system-level timing requirements, we wanted to validate

the calibrated model with respect to the actual implementa-

tion. To this end, we compared the overall execution time of

the generated HMAX implementation running on the test-

board and the calibrated BIP model. We observed that the

time on the model is about 20% lower than what we obtained

on the test-board. This result is expected since the calibrated

model does not take into account all the implementation

delays. For instance, the splitting and joining time were not

introduced in the model. Moreover, high-level models are

generally more optimistic due to abstraction.

Table I: Probabilities of φ1 when varying ∆ (P = 0).

∆(ms) 572.75 572.8 572.83 572.85 572.89 572.95
Prob. 0 0.28 0.57 0.75 0.98 1
Traces 66 1513 1110 488 171 66

Now that the high-level model is correctly calibrated with

timing information, it can be safely used for performance

evaluation using SMC. We used the SPRT algorithm im-

plemented within the SBIP statistical model checker [21]

with confidence parameters α = β = 0.001 and δ = 0.05.

We checked the aforementioned performance requirements

φ1 and φ2 for different pipelining rate P = 0, 2. In this

experiment, we used arbitrary fifo sizes: Main-Splitter= 10
KB, Splitter-Worker= 112 B, Worker-Joiner= 336 B, and

Joiner-Main= 30 KB. In the future, we are going to use

SMC to find the best configuration minimizing the overall

execution time. Table I shows the probability evolution of

φ1 for different ∆ and the corresponding required SMC

traces. One can for instance conclude out of this table that

the overall execution time is always lower than 752.95ms

with probability 1. In Figure 14, we present two results

of verifying φ2 when varying Ψ . The curve on the left is

obtained with no pipelining (P = 0) while the one on the

right is obtained with P = 2. The two curves show similar

evolutions with a small difference in the bounds. The curve

on the right (P = 2) has actually greater values, that is,

more variation. We recall that when P = 0, all the processes

are perfectly synchronized which yields to small variation

over line processing time. Using P > 0 leads to greater

variation since it somehow alter this synchronization. We

finally mention that the SMC time was relatively small given

the model size (47 BIP components). It took us about 5 hours

in average for each curve.
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Figure 14: Probabilities of φ2 as function of Ψ for P = 0
(left) and P = 2 (right).



V. RELATED WORK

State-of-art techniques for gathering low-level perfor-

mance information in early design phases can be classified

in three different families. The first uses documentation, e.g.,

data sheets. The second is based on source/binary/object

code, e.g., static analysis, code inspection. The third tech-

nique is more accurate and is the most used, albeit the most

time and resource consuming. It relies on executable, i.e.,

high/low-level simulation or execution.

Several frameworks for system-level design uses these

techniques together with model calibration to improve the

accuracy of high-level models. Model calibration (also re-

ferred to as back-annotation) is a well-known and widely-

used technique. However, it only received a little atten-

tion in the system-level design community. Few existing

frameworks consider and implement it differently. In [22],

Pimentel et al. use low-level simulation and synthesis to

calibrate architecture models in the context of the Sesame

simulation framework [23]. The proposed techniques rely on

instruction-set simulator (ISS) and automatic synthesis for

FPGAs to build latency tables associated with architecture

model components. Within their system-level performance

evaluation method [24] for the MILAN framework [25],

Mohanty and Prasanna propose to calibrate parametrizable

abstract models of SoC architecture using interpretive sim-

ulation techniques. The obtained measures are character-

ized as average estimates. In [26], Haid et al. propose an

approach for automatic code generation and calibration of

compositional performance analysis models. The approach

uses high/low-level simulation and data sheets to obtain per-

formance details in order to calibrate the generated models.

Giusto et al. [27] propose an improvement of the VCC

methodology using back-annotation of high-level behavioral

models. Similarly to our work, they perform estimation using

a statistical approach but consider a single microprocessor as

opposed to our method that works for manycore architecture.

In addition, they use linear regression techniques while we

use distribution fitting.

The aforementioned frameworks also encompass perfor-

mance evaluation techniques and rely on established model-

ing formalisms. For instance, the Artemis workbench [28],

which is based on the Sesame environment [23] discussed

above, begins with Matlab Simulink representations of the

application and a systemC model of the hardware archi-

tecture. For performance evaluation, it uses simulation and

co-simulation techniques. Frameworks such as [26], [29]

use formal methods for system-level performance analysis

like SymTA/S [30] or Real Time Calculus [31]. These rely

on analytical techniques to determine latencies, worst-case

scheduling scenarios, buffer sizes, which requires to build

correct abstractions of the application and the architecture.

Moreover, they generally produce pessimistic estimations.

MetaMoc [32] is also a tool that uses formal methods but

is more related to Worst Case Execution Time (WCET)

and schedulability analysis for hard real-time embedded

software. It is based on UPPAAL [33] and uses model

checking combined with static analysis techniques.

Similarly to these methods, we use low-level simulation

or concrete execution if possible to gather low-level perfor-

mance details. Conversely, our proposal relies on a statistical

characterization of low-level performance data. Moreover,

for performance evaluation, we use SMC, which unlike pure

simulation, provides statistical guarantees and is easier to

apply than analytical analysis.

VI. CONCLUSION

We presented a new approach for modeling and analyzing

performance in the context of system-level design. We

proposed building high-level performance models through

automatic code generation from high-level specifications and

statistical inference, which enables probabilistic character-

ization of low-level performance data. This probabilistic

representation accurately captures the data variability since

based on concrete execution or low-level simulation. Func-

tional models are then calibrated with the learned probabil-

ities to produce high-level stochastic models encompassing

performance details. We use Statistical Model Checking to

quantitatively analyze these models with a fixed confidence.

The approach was illustrated and validated on a fragment

of a real-life case study for image recognition. We provide

tool support, developed within the BIP framework, for

its different phases. The first results of this experiment

are satisfying. They show that it is practically applicable

although, to some extent, difficult. The statistical analysis

of data requires some expertise and a deep knowledge of

the system. Note that for the statistical analysis part, we

only developed the distribution fitting technique which is one

among other possible model fitting alternatives. It is worth

to recall that distribution fitting is not always possible. For

instance, when the independence assumption is not satisfied.

This may be a hindrance towards building the performance

model. For this reason, we aim to investigate other model

fitting techniques such as regression analysis [27] or learning

Markov models [34]. In the future, we are also planning

to continue exploring the HMAX case study from other

perspectives such energy consumption and temperature.
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