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Abstract—This paper complements our previous work on be able to derive reasonably correct contexts (e.g., athealt

y 9
formal modeling of resource-bounded context-aware systems, planner agent can infer a patient’s current status basetien t
which handle inconsistent context information using defeasible contextual information it has received from other heare rat
reasoning, by focusing on automated analys_ls and ve_rlflcatlon. A and/or blood pressure measurement sensor agents) and sends
case study demonstrates how model checking techniques can be the contextual information to another agent (e.g., pasient
used to formally analyze quantitative and qualitative properties caregiver) to reach its goal, but if the overall reasoning an

of a context-aware system based on message passing among. ¢ tion take 00 | th It be irrel t
agents. The behavior (semantics) of the system is modeled Intéraction take 100 long the result may be irreievant,,e.g.

by a term rewriting system and the desired properties are Patient might already be in a very dangerous condition or
expressed as LTL formulas. The Maude LTL model checker is €ven die before any action can be taken. These defects could

used to perform automated analysis of the system and verify only be exhibited during system deployment. This is because
non-conflicting context information guarantees it provides. it is often impossible to capture all execution scenarios at
development state. Thus, there is a need of a systemati@aform
approach to their specification and verification which can

Keywords—Formal modeling, Model checking, Context-aware allow addressing these problems. Namely, how to ensure the

systems, Rule-based reasoning, Defeasible reasoning, Multi-agent ~ COrrectness of context-aware rule-based designs (wilstesy
systems. produce the correct output for all legal inputs), termioati

(will a system produce an output at all) and response time (ho

much computation a system have to do before it generates an
|. INTRODUCTION output). In this paper, we complement our previous work on
source-bounded non-monotonic context-aware systeins [5
hich handle inconsistent context information using deitela
easoning, by focusing on automated analysis and formal ver
ification using model checking techniques. More specificall
we show how alprocs [5] model can be encoded using a
|§tandard model checker such as for example the Maude LTL
gnodel checker [6] and its interesting properties can bdigdri

Context-aware computing systems have been emerginr
as anticipated solutions to many social complex problemsl,
including e.g., health care [1], [2], [3]. A system is saidb®
context-aware if it can extract, interpret, and is able tapdts
behavior to the current context of use [4]. These systemstwhi
include multiple interacting devices and human users ca
often be usefully modeled as multi-agent reasoning system
Non-human agents in such a system may be running a very The rest of the paper is structured as follows. In Section I,
simple program, however they are increasingly designed teve briefly discuss context and a context-modeling approach.
exhibit flexible, adaptable and intelligent behavior. A egoon  |n Section Ill, we describe a formal context-aware system
methodology for implementing the latter type of agents ismodeling framework. In Section IV, we briefly review Maude
implementing them as rule-based reasoning agents. Howeveewriting system and LTL model checking and show how
while the incorporation of reasoning abilities into agemisgs  we encode alprocs model in Maude. In Section V, we
great benefits in terms of flexibility and ease of developmentmodel an illustrative example system and verify its inténgs
these approaches also raise new challenges for the systgiroperties, in Section VI we present related work, and el
developer, e.g., to perform system analysis and ensure thg Section VII.
correctness of system designs. These problems become even
more challenging when the system being designed or analyzed
consists of several communicating agents which exchange
information via messages. In practice, system failures may In context-aware computing, even though a good deal of
happen with various reasons including e.g., a false alawtdco research has been carried out on this topic, the tewntext
be caused by a wrong reasoning, a system produces conflictimg) not yet a well defined concept and more often researchers
(inconsistent) contextual information, and/or a systemea-  define this term in various ways to fit into their projects. iich
soning process takes undesired time to produce the desired al. [7] have used the term relatively long ago, who define
contexts, among others. There are many cases where the timentext as specific entities, such as location or object3]n [
taken to do the reasoning is of critical importance. As anBrown et al. define context as location, identity of nearby
example, in a multi-agent context-aware system, an agent mgeople, time of a day, among others. Other researchersdooke

CONTEXT AND A CONTEXT-MODELING APPROACH



at context from a more conceptual point of view, and not onlyphones, smart phones, GPS system, and wireless sensor nodes
define the context to characterize the status of an entity buthese devices usually operate under strict resource edmistr
also emphasize on the relationships and structure of cugtiex e.g., battery energy level, memory, processor, and quafity
information. For example, in [9] Dey et al. define contextwireless connection. In our earlier work [5], we have préseén
as information that characterize the situation of an entity a formal framework for modelling context-aware systems and
this paper, we also understand under the t@ontextany developed a logidCprocs Which extends the temporal logic
information that can be used to identify the status of antyenti CT'L* with belief and communication modalities and incorpo-
An entity can be a person, a place, a physical or a computingates defeasible reasoning [16] technique. The ldbiGocs
object. This context is relevant to a user and application, a allows us to describe a set of context-aware non-monotonic
reflects the relationship among themselves. rule-based reasoning agents with bounds on memory and com-
. eImunication resources. We provided an axiomatization of the
. ; ; ) ) logic and proved it is sound and complete, and using a simple
and object triple (subject, predicate, object) that states a exgample v?e have shown how we canpexpress somegintereslit)ing
fact about the subject where — the subject is an entity, . oo hounded properties of a desired system [5]. Each
in the environment, the Obje.Ct IS a value or another. eNtity,pents memory usage is modeled as the maximal number of
and the predicate is a relationship between the subject angieyis to be stored in the agent's memory at any given time.
object. According to [9],'if a piece of information can be 5 'is e assume that each agent in a system has bounded
ysed to characterize .the situation of a p:aruupant n an memory size which allows maximal number of contexts to be
interaction, then t_hat |nf0fmat|on is contextFor example, stored at any given time. Similarly, each agent has a communi
we can characterize users current status of a contexteawar, q counter, which starts with valeand incremented by
system based on the contextdlary has fever categorized 1 each time while interacting (sending/receiving a message)

as High” as (Mary, hasFever, High) and “Mary has a ; : ;
carer named Fiona"as (Mary, hasCarer, Fiona). Here, the mgsﬁggrvz?jgts’ and is not allowed to exceed a preassigned

caregiver Fiona of a patient Mary is dynamically identified

based on the care status of Fiona. These contexts can be We briefly describe the systems which can be modeled
written using first order formulas asasFever('Mary, 'High)  using£procs. We model a context-aware system as a multi-
and hasCarer('Mary, 'Fiona) respectively. Here and for the agent defeasible reasoning system which consistsigf> 1)

rest of this paper constants are preceded by a single quotiedividual agentsd, = {1,2,....,n4,}. Defeasible reasoning
and ' and’ have the same meaning. is a simple rule-based reasoning technique that has been use

In the literature, various techniques have been propoself '€ason with incomplete and inconsistent informatior].[17
defeasible logic theory consists of a collection of rules

to develop context-aware systems, including rule-baselt te that reason over a set of facts to reach a set of defeasible

niques [10], [3], [11]. In rule-based techniques, a contexare nclusions. It also supports priorities among rules toles
system composed of a set of rule-based agents, and firin fi E' h ppA hp g rules .
of rules that infer new contexts determine context changeC Cts: fac_ age(rjvtdef 9 'balls alprogra(;n, CO”E!S“ng or a
and represent overall behavior of the system. In this work/ e Set Of strict and defeasible rules, and a working memor

we model context-aware systems as multi-agent ruIe-basev(‘ﬂh'Ch contains facts (current contexts). If an agelnas a rule:

defeasible reasoning systems. In order to model contexts an  patient(?p), hasFever(?p, 'High)— hasSituation(?p,
rules we use ontological approach. An ontology can reptesen 'Emergency)
model of a domain of discourse that introduces a vocabutary t
specify the concepts relevant to the domain and their osiati and the contextatient('Mary), hasFever('Mary, 'High)
ships. The logic behind ontological knowledge repres@ntat are in the agent's working memory arsSituation('Mary,
is known as description logic (DL). The ability to model a 'Emergency)is not in the agent’s working memory in state
domain and the decidable computational characteristideema s, then the agent can fire the rule which adds the con-
DLs the basis for the widely accepted ontology languageéext hasSituation('Mary, 'Emergencytp the agent’s working
such as OWL [12]. For context modeling we use OWL 2 RL,memory in the successor state While deriving this new
a profile of the new standardization OWL 2, and based orfontext, an existing context in the agent’s working memory
pD* [13] and the description logic program (DLP) [14]. We may get overwritten, and this happens if agést memory
choose OWL 2 RL because it is more expressive than thés full or a contradictory context arrives in the memory
RDFS and suitable for the design and development of rule(even if the memory is not full). We say that two con-
based systems. An OWL 2 RL ontology can be translatedexts are contradictory iff they are complementary with re-
into a set of Horn clause rules based on DLP technique [14]spect to~, for example hasSituation("Mary, 'Emergencygnd
Furthermore, we express more complex rule-based conceptdhasSituation('Mary,Emergencyare contradictory contexts.
using SWRL [15] which allow us to write rules using OWL Whenever newly derived context arrives in the memory, it
concepts. is compared with the existing contexts to see if any conflict
arises. If so then the corresponding contradictory contebkt
be replaced with the newly derived context, otherwise an
arbitrary context will be removed if the memory is full. For
example, in this caskasSituation('Mary, 'Emergencyyill be

In our framework, we consider systems having constraing contradictory context it hasSituation(’"Mary, 'Emergency)
on various resources namely time, memory, and communis present in the agent’s working memory, a more detailed ex-
cation. This is because many context-aware systems oftgulanation can be found in [5]. Note, however, that later iis th
run on tiny resource-bounded devices including PDAs, neobil paper in the Maude encoding we udet(hasSituation(’Mary,

IIl. A FORMAL CONTEXT-AWARE SYSTEM MODELING
FRAMEWORK



'Emergency))instead of~ hasSituation('Mary, 'Emergency) R are appliedmodulothe equations inZ. Maude computes
for technical reasons. normal form of a term by applying equations from left to
- - right iteratively, then an applicable rewrite rule is arditly
In addition to firing rules, agents can exchange me.ss"’.‘gec%osen and applied from left to right. Thus, data types are
[)Z%\?vredelzrr:g ;heegtscngngs(;%rxg“?ﬁa;roa n;?gsel h%%rng%g'czt'ggdqfined algebraically by equations and the dynamic behavior
communica?ion DrimitivesA k(i j, P) e?nd Tell(i, j, P) in PECHt a system is defined by rewrite rules which describe how
P 5L, 7, ety J, a part of the state can change in one step. A rewrite theory

their language, where andj are agents an(P_ IS an atomic 4 "stten non-deterministic and could exhibit many diffaren
context not containing adsk or a Tell. Ask(i,j, P) means behaviors

‘1 asksj whether the contexP is the case’ andleli(i, j, P)
means ¢ tells j that contextP’ (i # j). In Maude, a term is either a constant, a variable, or the

The exchange of information between agents work Iiketaeem'cizt'gntzfr;n ggﬁtgtnc?ato ﬁol's\t/;r]; :i;?eusm%%ttt%rrws' cgr?s[,it):nts
this: if an Ask(i,j, P) (or a Tell(i,j, P)) is in agenti's 9 ' y

working memory in state, Ask(i, j, P) (or Tell(i, j, P)) is and operators. Unconditional equations are declared ubking

not in the working memory of agent and agentj has not keywordeg, followed by an (optional] <L.abel Name>] -,

: e X followed by at er m(its left hand side), the equality sign,
exceeded its communication bound then in the successer st o . . .
s, Ask(i,j, P) (or Tell(i, j, P)) can be added to agenis Ghen at er m(its right hand side), optionally followed by a list

working memory and its communication counter incremented?]c statement attributes.

This action may also overwrite agefis memory as discussed €d [<Label Name>]: <Ter m 1>=<Ter m 2>[ <Opt i onal St at ement
above. We view the process of producing new contexts fronftt'i butes>]

existing contexts as a sequence of states of an agentngtarti
from an initial state, and producing the next state by one of
the following actions:

The general form of conditional equations is the follow-
ng:

ceq [ <Label Nane>]:<Term 1> = <Term 2> if <EqCond- 1>
Rule firing a matching rule instance in the current staté’\ ... /\<EqCond-k> [<Optional StatenentAttributes>]
(possibly overwriting a context from the previous
state); In Maude equations, variables appearing in the right-hand

Copy if agenti has anAsk(i, j, P) (or a Tell(i,j,P))  Side term must also appear in its left-hand side term. Unieond
in its current state, then agegitcan copy it to tional rules are declared using the keywold followed by an
its next state (possibly overwriting a context from (optional) [ <Label Name>] :, ater m(its left hand side),
the previous state); the Rightarrow sigre=>, then at er m(its right hand side).

Idle which leaves its configuration unchanged. rl [<Label Name>] : <Term 1> => <Term 2> .

That is, each transition (result of an action) corresponds t . . . )
a single execution step and takes an agent from one state to Conditional rules are declared using the following syntax:
another. States consist of the rules, facts (contexts)o#met  crl [<Label Nane>]: <Term 1>=><Term 2> i f <Rul eCond- 1>
resource counters of the agent.sfepof the whole system is /\.../\<Rul eCond-k> .

composed of the actions of each agent, in parallel. We measur . .
P g P The fundamental concept of Maude is timedule which

tl':ne re_th_ﬁlreper](tjs for adpr?blemtﬁs }he'nulmber of such SySte'}It]-.\presents the basic units of specification and programmin
steps. The key idea underlying the logical approd@rocs A module is essentially a collection of sorts and a set o
of context-aware systems is to define a formal logic thabperations on these sorts. There are two kinds of modules:
axiomatizes the set of transition systems, and it is thewl usefunctional modules and system modules. Each module is

to state variougjualitative and quantitative properties of the declared with the key terms:

systems. For example, gualitative property could bé'Can f nod <Mobdul eName> i s nmod <Mbdul eNane> i s
an agent have inconsistent beliefs (contradictory costént <Decl arations And <Decl arations And
its working memory); and quantitative properties could be odf mSt atement s> endi atement s>

“an agent will always derive contexp in ¢ time steps while
exchanging fewer than messages’or “every request of an
agenti will be responded by agentin ¢ time steps) among
others.

where a functional module begins withnod keyword
and ends witrendf mkeyword, and a system module begins
with mod keyword and ends with the keyworghdm The
<Modul eNane> represents the name of the module, and
the body of a moduleDecl ar at i onsAndSt at ement s>
represents all the declarations and statements in betvireen t

In this section, we present the basic foundation of Mauddeginning of the module and the end of it. The body of
following [18] and give an overview of Maude LTL model a functional module<Decl ar at i onsAndSt at enent s>
checking. In Maude, a rewriting theo® = (X, E, R), consists  defines data types and operations on them by means of
of a sighature:, a setk’ of equations, and a sé& of rules. The  equational theoryE only. In contrast, the body of a sys-
static part of a system is specified in an equational sulelogitem module<Decl ar at i onsAndSt at enent s> specifies
of rewriting logic (membership equational logic) by mearfis o0 a rewrite theory, which contains an equational thedty
equationsE. The system dynamics (concurrent transitions orplus rewriting rulesR. Like any other model checking tool,
inferences) is specified by means of ruleshat rewrite terms, verification in Maude requires a system specification and a
representing parts of the system, into other terms. Theinle property specification. The system specification is pravilg

IV. MAUDE REWRITING SYSTEM AND FORMAL
VERIFICATION



a rewrite theory, whereas the property specification isrglwe
LTL formulas.

of sortCont ext . Therefore, the arguments of a Context may
contain constants and variables all of which are of 3ertm
The sortCont ext is declared as a subsort of the st

We chose the Maude LTL model checker because it cag,  ing memory), and a concatenation operator is declared
model check systems whose states involve arbitrary algxabraOn sortWMwhich is the double underscore:

data types. The only assumption is that the set of stateb-reac
W WM -> WM [ conm assoc]

able from a given initial state is finite. This simplifies médg op _ _

of the agents (first-order) rules and reasoning strategies. This operation is in mixfix notation and it is commutative

eXamp"?’ the variables appear in a rule can be represent%%d associative. This means that working memory elements

directly in the Maude encoding, without having to generdite a ;o 5 set of Contexts whose order does not matter. In order

ground instances resulting from possible variable suligiits. to maintain time stamp for each Context, a sortmeC is
declared whose elements are of the fdrnt C ], where

A. Maude encoding t represents the time stamp of cont€xthat indicating when

We take advantage of Maude’s modular structuring mechthat Context was added to the working memory. The sort
anisms to implement our context-aware systemC(azocs 11 MeC is declared as a subsort of the sditme\W and a
model). We construct a generic functional module and a set gfoncatenation operator is declared on sartreWMwhich is
functional and system modules to represent the system. Ea@hso the double underscore and commutative and associative
agent in the system has a configuration (local state) and the op_ _: Ti meVWM Ti meWM >Ti meWM [ comm assoc]
composition of all these configurations (local states) nthke ] ] )
configuration (global state) of the system. The types necgss  Note that updating oMM and Ti meWM take place si-
to implement the local state of an agent (working memorymultaneously, for example, whenever a contéxis added
rule-based program, reasoning strategy, message countel@ VW the corresponding elemefitt : C ] is also added
memory bound, timestep etc.) are declared in a generic agelft Ti "eWM for an appropriate time cycle. Context time

configuration functional module and its structure is givan i Stamps are maintained to implement reasoning strategies. |
Listing 1. Lprocs, We have used only rule priority strategy to resolve

Trod Aaent Confiavodul o i the conflicting rule instances, however, in this encoding we
rr%rot%%n ng Nap oaute s have also implemented other strategies often used in agee

protecting BOOL .

protecting QD . )
sorts Constant Context Term Rul e Agenda WM Ti meC .
sorts TineWM Config .

subsort Context < .

subsort Rul e < Agenda .

subsort Q d < Constant .

subsort TimeC < Ti neWM .

subsorts Constant < Term.

ops void rule : -> Context .

op [_ : _l/\M: Nat Context -> TimeC .

op _~_ " WWM-> WM [comm assoc] .

op _ _ : TineWM Tine -> Tine comm assoc
op _ _ : Agenda Agenda -> Agenda [conm assoc
op < : _->>: Nat TineWwM TineC -> Rule .
op Ask : Naf Nat Context -> Context .

op Tell : Nat Nat Context -> Context .

op Not Cont ext -> Context .

var ¢ : Context .

var M: WM.

var C: TineC .

var nz : NzNat .

var TM: Ti meWM . o )
---Checking if a context is in the working nmenory-
op i nVWM : ntext WMV -> Bool

eq inWM c, c?w=true.

eq in\Mc, c = true .

eq in c, M = false [ow se]

---End Checking if a context is in the working
- Menory-

endf m

Listing 1. Sorts declaration and their relationships

systems such as Depth strategy, Breadth strategy, Specifici
strategy (simplicity), and Specificity strategy (comptgki
Different agents in the system may use different types of
reasoning strategy.

The rules of each agent are defined using an operator which
takes as arguments a sdtat specifying the priority, a set
of contexts (of sorfTi neWW) specifying the antecedents of
the rule and a single context (of sdrt neP) specifying the
consequent, and returns an element of $urt e. The sort
Rul e is declared as a subsort of the sé&genda, and a
concatenation operator is declared on sayenda which is
also the double underscore and commutative and associative

op_ _: Agenda Agenda->Agenda [ conm assoc]

Therefore, each rule of an agents an element of sort
Rul e. These rules are represented using Maude equations,
one equation for each rule. As an example, the rutd® :
P1(?x), P2(?x, ?y}»»P3(?y)>, and<11:P3(?x)— TELL(1,2,
P3(?y))> of agentl (say) can be represented as follows (the
angle brackets are used here to indicate the beginning and
ending of a rule):
c5g [ EL AL PR L2 PR P ) -
rul el nsl <10: [t 1: . P E’?x)]7 t2: Zg\ix, ?y)]- >¥_0: P3(?y)]>
AR L P ] b el oo
(not'invw'(PS(gy), wg) ree RS

A number of Maude library modules such BAT, BOOL,
andQ D have been imported into thRgent Conf i gMbdul e
func(tgional module. ThF()a moduld’SAr?I'kgand BOCOL a?e used to Sf% ;r“'[?'lf‘%ﬁé’xs”: F’i(?é? lre|T (1!\"2) |:33g?xé) 1>
define natural and Boolean values, respectively, whereas trLU' e{ nsl <,1)§)j [T%/i Pﬁﬂ( )’-’X?f] -;E?i iTﬁIAI Q(E#da, P3(?x))1>
module QI D is used to define the set of constant symbols<ii :[t1: égr?x? 1->[0% Tell(1,2, Pg(’?x))] > A\
(constant terms of the rule-based system). The set of Variab(not i nW( Tell(1,2,P3(?x)), M) .
symbols (variable terms of the rule-based system) are gimpleg rulelnsi(A, TM, M = void-rule [owise]
Maude variables of so@ D. Both variables and constants are
subsorts of sorffer m A context is declared as an operator  In the rule, the numbers) and11 represent rule priorities
whose arguments are of sofer m and returns an element and the place holdersl and ¢2 represent time stamp of
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Fig. 1. A partial view of the context modelling ontology

Rules:

BodyTemperature(?temp), Person(?p), hasBodyTemperature(?p, 7temp), greaterThan(?temp, "95"), lessThan({?temp, "99") -> hasFever(?p, "Normal")
hasDBCategory(?p, "Hyperglycaemia") -> Tell 3, 1, hasDBCategory'(?p. "Hyperglycaemia")

Temperature(?temp), greaterThan(?temp, "18"), lessThan{?temp, "25") > hasTemperature(?temp, "Normal")

OccupancySensor(?x) == SmartHomerSensor(?x)

AuthorizedPersoniD(?apid), Person(?p), hasAuthorizedPersonlD(?p, ?apid) -~ isAuthorizedPerson(?p, "Yes")

Tell 7, 10, hasWarningSign'(?p, 7loc) == hasWarningSign(?p, ?loc)

Tell 8, 17, BurglarAlarm'(?x) - Alarm(?x)

Tell 2, 1, hasBloodPressure’(?p, "Normal") -» hasBloodPressure(?p, "Normal")

Tell 10, 6, hasAmbulanceCallFor(?p, ?loc) -+ hasAmbulanceCallFor(?p, ?loc)

hasBloodPressure(?p, "Prehypertension") -> Tell 2, 1, hasBloodPressure'(?p, "Prehypertension”)

Tell 9, 8, hasGPSLocation'(?p. ?loc) == hasGPSLocation(?p. ?loc)

Caregiver(?¢), hasAlarmFor(?p, 7loc), hasCaregiver(?p, 7c) -> logAlarm(?¢, 7p)

Tell 2, 1, hasBloodPressure’(?p, "Hypotension") -» hasBloodPressure(?p, "Hypotension")

hasQccupancy(?p. "No") > Tell 19, 18, hasOccupancy'(?p, "No")

Tell 3, 1, hasDBCategory'(?p. "Hypoglycaemia") -~ hasDBCategory(?p, "Hypoglycaemia")

BodyTemperature(?temp), Person(?p), hasBodyTemperature(?p, ?temp), greaterThanOrEqual(?temp, "99"), lessThan{?temp, "101") > hasFever(?p, "High")

DiastolicBP{?dbp), Person(?p). SystolicBP(?sbp), hasDiastolicBP(?p. ?dbp), hasSystolicBP{?p, ?sbp), greaterThan(?dbp, "90"), greaterThan(?sbp, "140"), lessThan(?dbp.
"100"), lessThan(?sbp, "160") > hasBloodPressure(?p. "Stage1hypertension")

Fig. 2. Some rules of the smart environment ontology



the corresponding context. Each equation may give rise tahich update status based on the current contexts. In case of a critical
more than one rule instance depending on the current centextondition, for example, a patient has very high fever or patient's pulse
in the agent's working memory. To prevent the regeneratioriate is abnormal then an emergency alarm may be activated to alert
Of the same rule |nstance, the Condltlonal equa“on Check%areglvers. to take approprlf’:lte actions. Th|S .Smart home ?nVIronment
whether the rule instance and its consequent are alreadyS© considers some security agents to monitor unauthorized persons
present in the agenda and working memory. The inferenc r prohibited activities at home. Fig. 1 and Fig. 2 depict partial view

ine is imol ted usi t of Maud nd some rules of the smart environment ontology, Fig. 3 depicts an
engine is implemented using a set of Maude rulsterate,  jqiqualized smart environment ontology, and Fig. 4 depicts smart

Choi ce, Appl y, I dl e, andCommuni cat i on. TheGenerate  gpace context-aware agents and their possible interactions. However,
rule causes each agent to generate its conflict set by callinge complete ontology and rules can be found ofline
recursively rule equations like those defined above.

r_|>[ Generat e] : <S1[ A1| RL1| TML| ML| t 1| ni| msgl| 1] 1S| | C, conp Property assertions: 'Philip
< SI[ rulelnsl(Al, RL1, TML, M) Al| RL1| TML| ML|t 1] mi| Object property, assartions

nsgl| 1]1S || C, con® .
i@ hasBloodSugarLevelBeforeMeal "256

In the Gener at e rule aboveS1[ Al | RL1 | TML | ML ®m hasRelative 'Alice
| t1 | mL | msgl | 1 ] 1Srepresents local state of agenand
the variableC of type Confi g represents local states of all other I hasPatientliD "POO1
agents in the system, and all these states are composed usitjg the . y
operator. The structures of the individual and multi-agent module @ hasAmbulanceCallFor 'KFCKajang

are shown in Listing 2. = hasBodyTemperature '104
frod Agent-i is ) . E

protecting Agent Confighbdul e . ® hasDiastolicBP '88

op Si[_|_|_l_l_I_I_l_|]_]iS: Agenda Agenda Ti ne\WM

VW Nat Nat Nat Nat -> Config . @ hasSystolicBP '134
. = jogAlarm 'KajangTown Van3d

endfm I

mod Ml ti Agent Syst em i s ® hasCaregiver 'Maria

protecting Agent-i
: B hasPulse 120

sort masConfig .
sort Phase .

ops com exec : -> Phase . Data property assertions
var phase : Phase . < i “
op _||_: Config Config -> Config [conm assoc] . WisSmokeDetected "Yeas

op <, _>: Config Phase -> nasConfig [ctor]
: @ hasOccupancy "Yes"

endm @ hasBloodPressure "StageiHypertension”
Listing 2. Structure of multi-agent module W hasSituation "OnCall”

Similarly, the Choi ce rule causes each agent to apply its rea- @ hasAirconFor "On"
soning strategy, thAppl y rule causes each agent to execute the rule - “ "
instances selected for execution, thel e rule executes only when WisGlassBroken "Yes
there are no rule instances to be executed (the application bfithe
rule advances the cycle time of an ageénteaving everything else
unchanged), and communication among agents is achieved using t| Hegative ahject property assertions
Communi cat i on rule. When agents communicate with each other,
one agent copies the communicated context from another agent
working memory. Copying is only allowed if the context to be copied | Negative data property assertions
is not already in the working memory of the agent intending to copy M hasSituation "Emergency”
and the agent has not exceeded its communication bound.

Fig. 3. An individualized smart environment ontology
V. A SMART ENVIRONMENT EXAMPLE SYSTEM
_ _ The agents in Fig. 4 are designed using the translated Horn clause
We develop a multi-agent non-monotonic context-aware systemyles of the ontology. The translation process is automated which
whose rules are derived from a smart environment domain ontologyyses a java-based translator using OWL API [22] version 3.4.10. The
The example scenario is adopted from [19], [20], [21], which is fur-OWL API is a high level application programming interface (API)
ther extended based on the system users’ requirements. This exampiat supports the creation and manipulation of OWL ontologies. It is a
system aims to facilitate residents in an intelligent home care enVij-ava based API for |0adingy Saving’ parsing and Seria”zing ont0|ogies
ronment that address residents’ needs based on the currenttsonteXn a variety of different syntaxes (defined in W3C specifications) such
The aim is to create an automated assisted living environment fogs RDF/XML, OWL/XML, functional syntax, etc. We choose Eclipse
needy people to live a safe life and provide ease, comfort and securiyevelopment framework to translate ontology axioms (OWL 2 RL
to them. In this system design we consider a number of intelligennd SWRL rules) into a set of plain text Horn-clause rules. This
context-aware agents to monitor the current status of a person anghnslator requires ontology IRI (International Resource Identifier) to
the home environment. For example, a number of essential health
care devices are considered to monitor a patient’s vital information, https:/dl.dropboxusercontent.com/u/34803034/OntpAonlSystemFiles.zip




access the elements from the ontology. Each ontology has an ontologycoding the system into Maude, the complete set of translated rules
IRI to identify ontology and their classes, properties and individualsfor each of the three system designs can be found dnlineorder

We use the OWL API to parse the ontology and extract the set ofo model this first scenario we have derivédb Horn clause rules
axioms and facts. The design of the OWL API is directly based onfrom the smart environment ontology and distributed them to the
the OWL 2 Structural Specification and it treats an ontology as a setgents as working memory facts and knowledge base rules. E.g., the
of axioms and facts which are read using the visitor design patterrknowledge of agent contains45 rules, agen® is modeled using 0

The OWL API does not have a direct support for reading and writingrules, and so on. Whenever agent 1 receives most recently ¢ethera
ontologies in different syntaxes. The uses of parser and renderer tontexts from other agents, it infers current status of a patient and
the reference implementation of OWL APl make this task easier taleclares whether the patient has an emergency situation or not. The
customize ontologies in different syntaxes. When a specific parserore inspiration is that each agent keeps the most recently derived
is selected, ontologies are loaded and saved back in the same forneintexts in the memory by overwriting an existing context, and this
from which it is parsed. The translator’s core functions are:(1) Systenmappens if agent's memory is full or a contradictory context arrives in
Prompt user to choose ontology, (2) Load ontology files (an output filehe memory (even if the memory is not full). We verified a number of
of the Proége editor [23]) as an input from link where it is published interesting resource-bounded properties of the system including the
online, (3) Extract the set of logical axioms from the ontology, which following non-conflicting contextual properties to see for example,
can either be TBox axiom or ABox axiom, (4) We use OWL parser towhen there is an emergency situation for a patient then the system
parse ontology into OWL API objects to extract the set of TBox andshould not produce non-emergency situation at the same time.

ABox axioms, (5) The set of TBox axioms are already in the form p,...,1 1. p(B, hasSituation (' Philip, Emergency))

of OWL 2 RL rules, we translate these set of axioms into a plain set

of text in Horn clause rules format, (7) DL safe rule axioms are infropl.2: F(B; Not(hasSituation(’ Philip,” Emergency)))

the form of SWRL rules (in the ontology) which can be extracted t0prop1.3: G(B; ~ (hasSituation(’ Philip, Emergency)A

transform into plain text of Horn-clause rules format. Not(hasSituation(’ Philip,” Emergency))))

A. Specifying and verifying the system The initial working memory facts (contexts) and rules are as-
signed to the agents in such a way that the system can

We have considered three facets of the system while specifyinghfer both hasSituation('Philip;Emergency))and Not(hasSitua-
and verifying its interesting properties using the Maude LTL modeltion('Philip;Emergency)))contexts that are conflicting. The operator
checker. This is partly because to observe and compare model-check; ysed in the properties to state that agértelieves a context
ing performace and scalability. The first system is modelled using fivgin other words certain context appears in the agemtworking
agents, namely,2,3,4 and 5 which monitors the residents’ (e.9., memory); and as usua¥ stands for always (globally)e’ stands for
patient's) vital information such as Pulse Rate, Body Temperaturegyentually (in the future), an& stands for next step. The truth of
Blood Sugar Level etc. The system infers appropriate contexts basfle first two properties ensure that indeed both these contexts can be
on the current contextual information of the patient whether e.g., thergferred in the future, while the truth of the third property ensures
is an emergency situation or not, among others. In this system, th@at both of them never appear in the agent’s memory at the same
agents2, 3,4 and5 are able to infer high-level contexts from sensed time. The above properties are verified as true and Maude reported the
low-level contexts using Horn clause rules in their knOWledge'baseﬁqumber of states explored and time required to verify them1age
These agents can classify current blood pressure, blood sugar, agnd 30m.s(milliseconds) forPropl.1, 280 and 45ms for Propl.2,
pulse rate into different categories based on their current measaremeand 2332 and 384ms for Propl.3. While verifying these properties
values. E.g., agertt's knowledge-base contains rules including the minimum memory space required by agentvas 12 units and it

following: exchanged! messages.
e Sensor ightSensor

Person(?p), SystolicBP(?sbp), DiastolicBP(?dbp), hasSystoligBP(?

?sbp), hasDiastolicBP(?p, ?2dbp), greaterThan(?sbp,120),
detector (13 )
(14)
\ oo ’

lessThan(?sbp,140), greaterThan(?dbp,80), lessThan{Ad)
— hasBloodPressure(?p, 'Prehypertension) ;

Person(?p), SystolicBP(?sbp), DiastolicBP(?dbp), hasSystoligBP(?
(21)

Blood Pressure
Agent(2)

Diabetes.
Tester(3 )

?sbp), hasDiastolicBP(?p, 2dbp), greaterThan(?sbp,140),
lessThan(?sbp,160), greaterThan(?dbp,90), lessThan(ZA00) —
hasBloodPressure(?p, 'Stagelhypertension) ;

Patient Care oncall Agent
Agent(1) (8)

Emergency
Monitoring

Agents(7)

hasBloodPressure(?p, 'Stagelhypertensien)Tell(2,1, hasBlood-
Pressure(?p, 'Stagel-hypertension)) .

smoke Sensor
(16)

GPS Sensor

The first rule classifies that the person has blood pres-
sure categoryPrehypertensionif her Systolic Blood Pressure is
greater than120 and Diastolic Blood Pressure is greater than — p—
80. That is, agent2 may infer high-level contexhasBloodPres- [“*"‘“‘” ] [“@*“‘“" ]
sure('Philip, 'Prehypertension)when the rule matches with the
agent's working memory contexts, e.g.,Person(Philip), Sys- g 4. Context-aware agents and their possible interastio
tolicBP('134), DiastolicBP('88), hasSystolicBP('Philip, '134), hasDi-
astolicBP('Philip, '88), greaterThan('134,120), lessThan('1340), The second system that we consider for the verification is modeled
greaterThan( '88,80), lessThan('88,90and so on. The third rule is ysing 11 agents, namely},2,3,4,5,6,7,8,9,10 and 11, and to
a communication rule of ageatthrough which it interacts with agent  model this second scenari3 Horn clause rules have been used.
1 and passes the contexasBloodPressure('Philip, 'Prehypertension) This system, in addition to inferring the residents’ health status,
when it believes thaPhilip has Prehypertensionat the moment.  interacts with various other agents to take appropriate actions. This
Similar to the above, agetand all other agents in the system have enhances the services and making system more complex. For exam-

other deduction and communication rules for other categories. Notgle, agentl interacts with Emergency monitoring agent and OnCall
that, the ontology driven rules do not have priority and a system

designer is responsible to provide appropriate rule priorities while 2https:/dl.dropboxusercontent.com/u/34803034/OntpfonlSystemFiles.zip

Relative Agent




agent which in turn interact with various other agents to locate GP$he encoding in that model checker does not return true for arbitrary
coordinate points to call Ambulance via Telephone agents. Upowalues ofn, memory and message counters. Note that, verification
receiving message from ageh®, ambulance could move to GPS of true formulas take longer than verification of false formulas since
located point to rescue a patient. In addition, Caregiver is also notified model checker will find a counterexample faster than it takes to
by OnCall agent about the emergency situation with GPS coordinatesxplore the whole model.

point of the patient. We verified a number of interesting resource-

bounde_d properties of this system including those we considered VI]. RELATED WORK
above in the first system.
Prop2.1: F(Bj;hasSituation(' Philip, Emergency)) ~ There has been considerable work in context-aware computing
literature focusing on various domains including health care [24],
Prop2.2: F(B;Not(hasSituation(’ Philip,’ Emergency))) [25], [3] just to mention but a few. Much of this work concentrate
Prop2.3: G(Bj ~ (hasSituation(’ Philip,’ Emergency)A on representing and reasoning about contexts. However, unlike many
Not(hasSituation(’ Philip,” Emergency)))) other context-aware application systems, in many cases health care
Prop2.4: G(Bg(Tell(1,8,hasSituation(’ Philip,” Oncall))A systems are con_sidere_d as safety critical _systems [2]. In SUCh Sysu?m
(Tell(9, 8, hasGPSLocation (' Philip,! KFCKajang Town)) — not meeting design objectives may result in tremendous loss including
X" Bg Tell(8, 11, hasAlarmFor(’ Philip,” KFCKagjangTown)) possibly human lives. In [26], a formal system modeling framework is

presented for analyzing pervasive computing systems, which covers
the fourth property above specifies that whenever ageiatsd 9 various aspects of pervasive computing systems including context-
tell agents thatPhilip hasOnCall situation and his GPS location is at awareness and concurrent communication. The authors have ddopte
KFCKajangTown within n time steps agers sending an alarming CSP like hierarchical modeling language to model desired systems,
message to ageritl. All the above properties are verified as true which could be used to encoded and verify system properties using
and Maude reported the number of states explored and time requirgkisting model checking techniques. Their proposed approach has
to verify them are282 and60ms for Prop2.1, 640 and 131ms for been demonstrated by modeling a health care case study and desired
Prop2.2, 4336 and1048ms for Prop2.3, and4336 and1050ms for ~ properties of the system have been verified using the PAT model
Prop2.4. While verifying these properties minimum memory space checker [27]. However, it is not clear whether the predefined rules
required by agent was14 and ageng by 8 units and the value af written in Drools are considered in the verification process and
was4 (i.e., within 4 time steps agerst sending a alarming message how those rules are encoded while verifying the system properties.
to agentl1). The messages that the agents exchanged were: hgent In [28], the Adaptation Finite-State-Machine (A-FSM) is proposed for
5, agent2: 1, agent3: 1, agent4: 1, agent5: 1, agent6: 1, agent7: modeling and verifying context-aware adaptive behavior of mobile
3, agent8: 3, agent9: 2, agent10: 2, and agenti1: 1. applications. The authors have proposed some algorithms that are
. . e used to automatically detect fault patterns based on the A-FSM. A-
_The third system that we consider for the verification is modeledeg); getects adaptation faults by exhaustively exploring the space
using all the21 agents, and to model this scenazol Horn clause  consiructed by all possible value assignments to context variables used
rules have been used. This system models very complex scenarigs 5 context-Aware Adaptive Application’s (CAAAs) rules. In [29],
and deals with a very high level of comblnf_:ltorlal aspects. It 'nd“de%uthors have used SPIN model checker to model a Smart Home
some smart home sensor agents to provide ease, comfort, securfifironment and discussed consistency in context-aware behavior.
and healthy life in the_smart home. In this system, the sensor agenqshey have emphasized the good rule design practices based on
(agents12 — 21) monitor the basic safety measures at home andyeneral observations, and shown how rules of a context-awarersyste
inform to relatives of the patient for any kind of mishap occurrencecqyyiq pe inconsistent and may lead to undesired system behavior.
in the smart home. For example, burglar alarm will ring in case|, (30}, authors have proposed a context-aware design and védfica
€.g., smoke is detected by the Smoke sensor agent, and then OnCgllmework based on Role-Oriented Adaptive Design (ROAD) [31],
agent immediately interact with the Relative agent to take appropriatgy, they have used ROAD4Context approach to model context-aware
actions. This system also checks the existence of a person in a roofyeractions, abstract processes and invariant properties of thedlesir
and automatically switch on/off the light and air-condition based ongystems, The functional behavior of the desired system is modeled
the current contexts. So saving energy is the additional requiremenfsing UML-based process models, which are further translated into
of the system. However, by adding more agents the system designggyi nets-based formal models, while invariant properties of the
can make the system much more complex. We verified a number Qfysiems are expressed as LTL formulas. Compared to these modeling
interesting resource-bounded properties of this system including thgp,q verification approaches, our proposégrocs provides formal

following: framework to model structural and behavioral aspects of context-
Prop3.1: G(Bg(Tell(1, 8, hasSituation(’ Philip,’ Oncall))A aware systems considering their resource-bounded features and ho
(Tell(9, 8, hasGPSLocation(’ Philip,” KFCK ajang Town)) — such models can be encoded and verified using the Maude LTL model

X" B Tell(8, 11, hasAlarmFor (' Philip,” KFCKajang Town)) checker. In [11], it has been shown how context-aware systems can
Prop3.2 : G(B;;(Tell(8, 11, hasAlarmFor (' Philip,’ KFCKajang— be modeled as resource-bounded rule-based systems using orstologie
Town)) — X™BiylogAlarm(’ Alice,’ Philip)) however it is based on monotonic reasoning where beliefs of an

agent cannot be revised based on some contradictory evidence.
the first property is same d3rop2.4 above, while second prop- In [32], [33] authors have presented automated verification of resou
erty above specifies that whenever agerells agentl1 that Philip requirements of reasoning agents using the Mocha model checker.
has alarming situation and his GPS location iK&CKajangTown In [34] the same authors presented preliminary work considering
within n time stepsAlice (caregiver agent1) noticing this. Both the first order Horn clause rules and Maude LTL model checker, and
above properties are verified as true and Maude reported the numbiustrated the scalability of their approach by comparing it to results
of states explored and time required to verify them 38210 and presented in [32]. In [35] authors presented framework to verify
165461ms for Prop3.1, and 379210 and 164321ms for Prop3.2, heterogeneous multi-agent programs based on meta-APL, where a
and the value of: in Prop3.2 is 2. However, when we assign a value heterogeneous multi-agent program is initially translated to meta-
to n which is less thant in Prop2.4 , and less thar2 in Prop3.2 APL and then resulting system is verified using Maude. In this work,
the properties are verified as false and the model checker returnge specify and verifyCprocs models using Maude because it can
counterexamples. Similarly, when we assign a value to memory sizenodel check systems whose states involve arbitrary algebraic data
(or message counter) which is less than the minimal required valuaypes. Furthermore, unlike [33], Rule variables can be represented
properties are verified as false. This also ensures the correctness difectly in the Maude encoding, without having to generate all ground



instances resulting from possible variable substitutions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we show howAprocs [5] model can be encoded
using the Maude LTL model checker [6] and its interesting propertie
can be verified automatically. Using an example system, we show ho

to analyze and verify non-conflicting context information guarantees

it provides. In future work, we plan to extendprocs logical

framework to specify and verify heterogeneous multi-context systems[zu
which will allow different reasoning techniques (logics) to be used
for different agents and contextual information flow among agents

will be modeled via bridge rules.
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