
Modeling and verifying context-aware
non-monotonic reasoning agents

Abdur Rakib
School of Computer Science

University of Nottingham
Malaysia Campus

Email: Abdur.Rakib@nottingham.edu.my

Hafiz Mahfooz Ul Haque
School of Computer Science

University of Nottingham
Malaysia Campus

Email: khyx2hma@nottingham.edu.my

Abstract—This paper complements our previous work on
formal modeling of resource-bounded context-aware systems,
which handle inconsistent context information using defeasible
reasoning, by focusing on automated analysis and verification. A
case study demonstrates how model checking techniques can be
used to formally analyze quantitative and qualitative properties
of a context-aware system based on message passing among
agents. The behavior (semantics) of the system is modeled
by a term rewriting system and the desired properties are
expressed as LTL formulas. The Maude LTL model checker is
used to perform automated analysis of the system and verify
non-conflicting context information guarantees it provides.

Keywords—Formal modeling, Model checking, Context-aware
systems, Rule-based reasoning, Defeasible reasoning, Multi-agent
systems.

I. I NTRODUCTION

Context-aware computing systems have been emerging
as anticipated solutions to many social complex problems,
including e.g., health care [1], [2], [3]. A system is said tobe
context-aware if it can extract, interpret, and is able to adapt its
behavior to the current context of use [4]. These systems which
include multiple interacting devices and human users can
often be usefully modeled as multi-agent reasoning systems.
Non-human agents in such a system may be running a very
simple program, however they are increasingly designed to
exhibit flexible, adaptable and intelligent behavior. A common
methodology for implementing the latter type of agents is
implementing them as rule-based reasoning agents. However,
while the incorporation of reasoning abilities into agentsbrings
great benefits in terms of flexibility and ease of development,
these approaches also raise new challenges for the system
developer, e.g., to perform system analysis and ensure the
correctness of system designs. These problems become even
more challenging when the system being designed or analyzed
consists of several communicating agents which exchange
information via messages. In practice, system failures may
happen with various reasons including e.g., a false alarm could
be caused by a wrong reasoning, a system produces conflicting
(inconsistent) contextual information, and/or a system’srea-
soning process takes undesired time to produce the desired
contexts, among others. There are many cases where the time
taken to do the reasoning is of critical importance. As an
example, in a multi-agent context-aware system, an agent may

be able to derive reasonably correct contexts (e.g., a health
planner agent can infer a patient’s current status based on the
contextual information it has received from other heart rate
and/or blood pressure measurement sensor agents) and sends
the contextual information to another agent (e.g., patient’s
caregiver) to reach its goal, but if the overall reasoning and
interaction take too long the result may be irrelevant, e.g.,
patient might already be in a very dangerous condition or
even die before any action can be taken. These defects could
only be exhibited during system deployment. This is because
it is often impossible to capture all execution scenarios at
development state. Thus, there is a need of a systematic formal
approach to their specification and verification which can
allow addressing these problems. Namely, how to ensure the
correctness of context-aware rule-based designs (will a system
produce the correct output for all legal inputs), termination
(will a system produce an output at all) and response time (how
much computation a system have to do before it generates an
output). In this paper, we complement our previous work on
resource-bounded non-monotonic context-aware systems [5],
which handle inconsistent context information using defeasible
reasoning, by focusing on automated analysis and formal ver-
ification using model checking techniques. More specifically,
we show how aLDROCS [5] model can be encoded using a
standard model checker such as for example the Maude LTL
model checker [6] and its interesting properties can be verified.

The rest of the paper is structured as follows. In Section II,
we briefly discuss context and a context-modeling approach.
In Section III, we describe a formal context-aware system
modeling framework. In Section IV, we briefly review Maude
rewriting system and LTL model checking and show how
we encode aLDROCS model in Maude. In Section V, we
model an illustrative example system and verify its interesting
properties, in Section VI we present related work, and conclude
in Section VII.

II. CONTEXT AND A CONTEXT-MODELING APPROACH

In context-aware computing, even though a good deal of
research has been carried out on this topic, the termcontext
is not yet a well defined concept and more often researchers
define this term in various ways to fit into their projects. Schilit
et al. [7] have used the term relatively long ago, who define
context as specific entities, such as location or object. In [8],
Brown et al. define context as location, identity of nearby
people, time of a day, among others. Other researchers looked

at context from a more conceptual point of view, and not only
define the context to characterize the status of an entity but
also emphasize on the relationships and structure of contextual
information. For example, in [9] Dey et al. define context
as information that characterize the situation of an entity. In
this paper, we also understand under the termcontext any
information that can be used to identify the status of an entity.
An entity can be a person, a place, a physical or a computing
object. This context is relevant to a user and application, and
reflects the relationship among themselves.

A context can be formally defined as a subject, predicate,
and object triple〈subject, predicate, object〉 that states a
fact about the subject where — the subject is an entity
in the environment, the object is a value or another entity,
and the predicate is a relationship between the subject and
object. According to [9],“if a piece of information can be
used to characterize the situation of a participant in an
interaction, then that information is context”. For example,
we can characterize user’s current status of a context-aware
system based on the contexts“Mary has fever categorized
as High” as 〈Mary, hasFever,High〉 and “Mary has a
carer named Fiona”as〈Mary, hasCarer, F iona〉. Here, the
caregiver Fiona of a patient Mary is dynamically identified
based on the care status of Fiona. These contexts can be
written using first order formulas ashasFever(’Mary, ’High)
and hasCarer(’Mary, ’Fiona) respectively. Here and for the
rest of this paper constants are preceded by a single quote,
and ’ and′ have the same meaning.

In the literature, various techniques have been proposed
to develop context-aware systems, including rule-based tech-
niques [10], [3], [11]. In rule-based techniques, a context-aware
system composed of a set of rule-based agents, and firing
of rules that infer new contexts determine context changes
and represent overall behavior of the system. In this work,
we model context-aware systems as multi-agent rule-based
defeasible reasoning systems. In order to model contexts and
rules we use ontological approach. An ontology can represent a
model of a domain of discourse that introduces a vocabulary to
specify the concepts relevant to the domain and their relation-
ships. The logic behind ontological knowledge representation
is known as description logic (DL). The ability to model a
domain and the decidable computational characteristics make
DLs the basis for the widely accepted ontology languages
such as OWL [12]. For context modeling we use OWL 2 RL,
a profile of the new standardization OWL 2, and based on
pD∗ [13] and the description logic program (DLP) [14]. We
choose OWL 2 RL because it is more expressive than the
RDFS and suitable for the design and development of rule-
based systems. An OWL 2 RL ontology can be translated
into a set of Horn clause rules based on DLP technique [14].
Furthermore, we express more complex rule-based concepts
using SWRL [15] which allow us to write rules using OWL
concepts.

III. A FORMAL CONTEXT-AWARE SYSTEM MODELING
FRAMEWORK

In our framework, we consider systems having constraint
on various resources namely time, memory, and communi-
cation. This is because many context-aware systems often
run on tiny resource-bounded devices including PDAs, mobile

phones, smart phones, GPS system, and wireless sensor nodes.
These devices usually operate under strict resource constraints,
e.g., battery energy level, memory, processor, and qualityof
wireless connection. In our earlier work [5], we have presented
a formal framework for modelling context-aware systems and
developed a logicLDROCS which extends the temporal logic
CTL∗ with belief and communication modalities and incorpo-
rates defeasible reasoning [16] technique. The logicLDROCS

allows us to describe a set of context-aware non-monotonic
rule-based reasoning agents with bounds on memory and com-
munication resources. We provided an axiomatization of the
logic and proved it is sound and complete, and using a simple
example we have shown how we can express some interesting
resource-bounded properties of a desired system [5]. Each
agent’s memory usage is modeled as the maximal number of
contexts to be stored in the agent’s memory at any given time.
That is, we assume that each agent in a system has bounded
memory size which allows maximal number of contexts to be
stored at any given time. Similarly, each agent has a communi-
cation counter, which starts with value0 and incremented by
1 each time while interacting (sending/receiving a message)
with other agents, and is not allowed to exceed a preassigned
threshold value.

We briefly describe the systems which can be modeled
usingLDROCS . We model a context-aware system as a multi-
agent defeasible reasoning system which consists ofnAg(≥ 1)
individual agentsAg = {1, 2,, nAg}. Defeasible reasoning
is a simple rule-based reasoning technique that has been used
to reason with incomplete and inconsistent information [17].
A defeasible logic theory consists of a collection of rules
that reason over a set of facts to reach a set of defeasible
conclusions. It also supports priorities among rules to resolve
conflicts. Each agenti ∈ Ag has a program, consisting of a
finite set of strict and defeasible rules, and a working memory,
which contains facts (current contexts). If an agenti has a rule:

Patient(?p), hasFever(?p, ’High)→ hasSituation(?p,
’Emergency)

and the contextsPatient(’Mary), hasFever(’Mary, ’High)
are in the agent’s working memory andhasSituation(’Mary,
’Emergency)is not in the agent’s working memory in state
s, then the agent can fire the rule which adds the con-
text hasSituation(’Mary, ’Emergency)to the agent’s working
memory in the successor states′. While deriving this new
context, an existing context in the agent’s working memory
may get overwritten, and this happens if agenti’s memory
is full or a contradictory context arrives in the memory
(even if the memory is not full). We say that two con-
texts are contradictory iff they are complementary with re-
spect to∼, for example,hasSituation(’Mary, ’Emergency)and
∼hasSituation(’Mary,’Emergency)are contradictory contexts.
Whenever newly derived context arrives in the memory, it
is compared with the existing contexts to see if any conflict
arises. If so then the corresponding contradictory contextwill
be replaced with the newly derived context, otherwise an
arbitrary context will be removed if the memory is full. For
example, in this casehasSituation(’Mary, ’Emergency)will be
a contradictory context if∼ hasSituation(’Mary, ’Emergency)
is present in the agent’s working memory, a more detailed ex-
planation can be found in [5]. Note, however, that later in this
paper in the Maude encoding we useNot(hasSituation(’Mary,

’Emergency))instead of∼ hasSituation(’Mary, ’Emergency)
for technical reasons.

In addition to firing rules, agents can exchange messages
regarding their current contexts. To model communication
between agents, we assume that agents have two special
communication primitivesAsk(i, j, P) and Tell(i, j, P) in
their language, wherei and j are agents andP is an atomic
context not containing anAsk or a Tell . Ask(i, j, P) means
‘ i asksj whether the contextP is the case’ andTell(i, j, P)
means ‘i tells j that contextP ’ (i 6= j).

The exchange of information between agents work like
this: if an Ask(i, j, P) (or a Tell(i, j, P)) is in agent i’s
working memory in states, Ask(i, j, P) (or Tell(i, j, P)) is
not in the working memory of agentj, and agentj has not
exceeded its communication bound then in the successor state
s′, Ask(i, j, P) (or Tell(i, j, P)) can be added to agentj’s
working memory and its communication counter incremented.
This action may also overwrite agentj’s memory as discussed
above. We view the process of producing new contexts from
existing contexts as a sequence of states of an agent, starting
from an initial state, and producing the next state by one of
the following actions:

Rule firing a matching rule instance in the current state
(possibly overwriting a context from the previous
state);

Copy if agenti has anAsk(i, j, P) (or a Tell(i, j, P))
in its current state, then agentj can copy it to
its next state (possibly overwriting a context from
the previous state);

Idle which leaves its configuration unchanged.

That is, each transition (result of an action) corresponds to
a single execution step and takes an agent from one state to
another. States consist of the rules, facts (contexts), andother
resource counters of the agent. Astepof the whole system is
composed of the actions of each agent, in parallel. We measure
time requirements for a problem as the number of such system
steps. The key idea underlying the logical approachLDROCS

of context-aware systems is to define a formal logic that
axiomatizes the set of transition systems, and it is then used
to state variousqualitative and quantitativeproperties of the
systems. For example, aqualitative property could be“Can
an agent have inconsistent beliefs (contradictory contexts in
its working memory)”, and quantitative properties could be
“an agent will always derive contextϕ in t time steps while
exchanging fewer thann messages”or “every request of an
agenti will be responded by agentj in t time steps”, among
others.

IV. M AUDE REWRITING SYSTEM AND FORMAL
VERIFICATION

In this section, we present the basic foundation of Maude
following [18] and give an overview of Maude LTL model
checking. In Maude, a rewriting theoryR = (Σ, E, R), consists
of a signatureΣ, a setE of equations, and a setR of rules. The
static part of a system is specified in an equational sub-logic
of rewriting logic (membership equational logic) by means of
equationsE. The system dynamics (concurrent transitions or
inferences) is specified by means of rulesR that rewrite terms,
representing parts of the system, into other terms. The rules in

R are appliedmodulo the equations inE. Maude computes
normal form of a term by applying equations from left to
right iteratively, then an applicable rewrite rule is arbitrarily
chosen and applied from left to right. Thus, data types are
defined algebraically by equations and the dynamic behavior
of a system is defined by rewrite rules which describe how
a part of the state can change in one step. A rewrite theory
is often non-deterministic and could exhibit many different
behaviors.

In Maude, a term is either a constant, a variable, or the
application of an operator to a list of argument terms. A ground
term is a term containing no variables, but only constants
and operators. Unconditional equations are declared usingthe
keywordeq, followed by an (optional)[<LabelName>] :,
followed by aterm (its left hand side), the equality sign=,
then aterm (its right hand side), optionally followed by a list
of statement attributes.

eq [<LabelName>]:<Term-1>=<Term-2>[<OptionalStatement
Attributes>] .

The general form of conditional equations is the follow-
ing:

ceq [<LabelName>]:<Term-1> = <Term-2> if <EqCond-1>
/\ ... /\<EqCond-k> [<OptionalStatementAttributes>] .

In Maude equations, variables appearing in the right-hand
side term must also appear in its left-hand side term. Uncondi-
tional rules are declared using the keywordrl, followed by an
(optional)[<LabelName>] :, a term (its left hand side),
the Rightarrow sign=>, then aterm (its right hand side).

rl [<LabelName>] : <Term-1> => <Term-2> .

Conditional rules are declared using the following syntax:

crl [<LabelName>]:<Term-1>=><Term-2> if <RuleCond-1>
/\.../\<RuleCond-k> .

The fundamental concept of Maude is themodule, which
represents the basic units of specification and programming.
A module is essentially a collection of sorts and a set of
operations on these sorts. There are two kinds of modules:
functional modules and system modules. Each module is
declared with the key terms:

fmod <ModuleName> is mod <ModuleName> is
<Declarations And <Declarations And
Statements> Statements>

edfm endm

where a functional module begins withfmod keyword
and ends withendfm keyword, and a system module begins
with mod keyword and ends with the keywordendm. The
<ModuleName> represents the name of the module, and
the body of a module<DeclarationsAndStatements>
represents all the declarations and statements in between the
beginning of the module and the end of it. The body of
a functional module<DeclarationsAndStatements>
defines data types and operations on them by means of
equational theoryE only. In contrast, the body of a sys-
tem module<DeclarationsAndStatements> specifies
a rewrite theory, which contains an equational theoryE
plus rewriting rulesR. Like any other model checking tool,
verification in Maude requires a system specification and a
property specification. The system specification is provided by

a rewrite theory, whereas the property specification is given by
LTL formulas.

We chose the Maude LTL model checker because it can
model check systems whose states involve arbitrary algebraic
data types. The only assumption is that the set of states reach-
able from a given initial state is finite. This simplifies modeling
of the agents (first-order) rules and reasoning strategies.For
example, the variables appear in a rule can be represented
directly in the Maude encoding, without having to generate all
ground instances resulting from possible variable substitutions.

A. Maude encoding

We take advantage of Maude’s modular structuring mech-
anisms to implement our context-aware system (aLDROCS

model). We construct a generic functional module and a set of
functional and system modules to represent the system. Each
agent in the system has a configuration (local state) and the
composition of all these configurations (local states) makethe
configuration (global state) of the system. The types necessary
to implement the local state of an agent (working memory,
rule-based program, reasoning strategy, message counters,
memory bound, timestep etc.) are declared in a generic agent
configuration functional module and its structure is given in
Listing 1.

fmod AgentConfigModule is
protecting NAT .
protecting BOOL .
protecting QID .
sorts Constant Context Term Rule Agenda WM TimeC .
sorts TimeWM Config .
subsort Context < WM .
subsort Rule < Agenda .
subsort Qid < Constant .
subsort TimeC < TimeWM .
subsorts Constant < Term .
ops void rule : -> Context .
op [_ : _] : Nat Context -> TimeC .
op _ _ : WM WM -> WM [comm assoc] .
op _ _ : TimeWM TimeWM -> TimeWM [comm assoc] .
op _ _ : Agenda Agenda -> Agenda [comm assoc] .
op <_ : _->_> : Nat TimeWM TimeC -> Rule .
op Ask : Nat Nat Context -> Context .
op Tell : Nat Nat Context -> Context .
op Not : Context -> Context .
var c : Context .
var M : WM .
var C : TimeC .
var nz : NzNat .
var TM : TimeWM .
---Checking if a context is in the working memory-
op inWM : Context WM -> Bool .
eq inWM(c, c) = true .
eq inWM(c, c M) = true .
eq inWM(c, M) = false [owise] .

---End Checking if a context is in the working
---memory-
--

.

.

.
endfm

Listing 1. Sorts declaration and their relationships

A number of Maude library modules such asNAT, BOOL,
andQID have been imported into theAgentConfigModule
functional module. The modulesNAT andBOOL are used to
define natural and Boolean values, respectively, whereas the
module QID is used to define the set of constant symbols
(constant terms of the rule-based system). The set of variable
symbols (variable terms of the rule-based system) are simply
Maude variables of sortQID. Both variables and constants are
subsorts of sortTerm. A context is declared as an operator
whose arguments are of sortTerm, and returns an element

of sortContext. Therefore, the arguments of a Context may
contain constants and variables all of which are of sortTerm.
The sortContext is declared as a subsort of the sortWM
(working memory), and a concatenation operator is declared
on sortWM which is the double underscore:

op _ _ : WM WM -> WM [comm assoc] .

This operation is in mixfix notation and it is commutative
and associative. This means that working memory elements
are a set of Contexts whose order does not matter. In order
to maintain time stamp for each Context, a sortTimeC is
declared whose elements are of the form[t : C], where
t represents the time stamp of contextC that indicating when
that Context was added to the working memory. The sort
TimeC is declared as a subsort of the sortTimeWM, and a
concatenation operator is declared on sortTimeWM which is
also the double underscore and commutative and associative:

op_ _:TimeWM TimeWM->TimeWM [comm assoc] .

Note that updating ofWM and TimeWM take place si-
multaneously, for example, whenever a contextC is added
to WM the corresponding element[t : C] is also added
to TimeWM for an appropriate time cyclet. Context time
stamps are maintained to implement reasoning strategies. In
LDROCS , we have used only rule priority strategy to resolve
the conflicting rule instances, however, in this encoding we
have also implemented other strategies often used in rule-based
systems such as Depth strategy, Breadth strategy, Specificity
strategy (simplicity), and Specificity strategy (complexity).
Different agents in the system may use different types of
reasoning strategy.

The rules of each agent are defined using an operator which
takes as arguments a sortNat specifying the priority, a set
of contexts (of sortTimeWM) specifying the antecedents of
the rule and a single context (of sortTimeP) specifying the
consequent, and returns an element of sortRule. The sort
Rule is declared as a subsort of the sortAgenda, and a
concatenation operator is declared on sortAgenda which is
also the double underscore and commutative and associative:

op_ _: Agenda Agenda->Agenda [comm assoc] .

Therefore, each rule of an agenti is an element of sort
Rule. These rules are represented using Maude equations,
one equation for each rule. As an example, the rules<10 :
P1(?x), P2(?x, ?y)→P3(?y)>, and<11:P3(?x)→ TELL(1,2,
P3(?y))> of agent1 (say) can be represented as follows (the
angle brackets are used here to indicate the beginning and
ending of a rule):
ceq ruleIns1(A,[t1:P1(?x)] [t2:P2(?x,?y)] TM, M) =
<10 : [t1: P1(?x)] [t2:P2(?x,?y)]->[0:P3(?y)]>
ruleIns1(<10:[t1: P1(?x)] [t2:P2(?x,?y)]->[0:P3(?y)]>
A,[t1:P1(?x)] [t2:P2(?x,?y)] TM,M) if (not inAgenda(
<10 : [t1: P1(?x)] [t2:P2(?x,?y)]->[0:P3(?y)]>, A)/\
(not inWM(P3(?y), M)) .

ceq ruleIns1(A,[t1:P3(?x)] TM, M) =
<11 : [t1:P3(?x)] -> [0: Tell(1,2, P3(?x))]>
ruleIns1(<11 :[t1:P3(?x)]->[0:Tell(1,2,P3(?x))]>
A, [t1:P3(?x)] TM, M) if (not inAgenda(
<11 :[t1:P3(?x)]->[0: Tell(1,2, P3(?x))]>, A)/\
(not inWM(Tell(1,2,P3(?x)), M)) .

eq ruleIns1(A, TM , M) = void-rule [owise] .

In the rule, the numbers10 and11 represent rule priorities
and the place holderst1 and t2 represent time stamp of

Fig. 1. A partial view of the context modelling ontology

Fig. 2. Some rules of the smart environment ontology

the corresponding context. Each equation may give rise to
more than one rule instance depending on the current contexts
in the agent’s working memory. To prevent the regeneration
of the same rule instance, the conditional equation checks
whether the rule instance and its consequent are already
present in the agenda and working memory. The inference
engine is implemented using a set of Maude rules:Generate,
Choice, Apply, Idle, andCommunication. TheGenerate
rule causes each agent to generate its conflict set by calling
recursively rule equations like those defined above.

rl[Generate]:<S1[A1|RL1|TM1|M1|t1|m1|msg1|1]1S||C,com>
=>
< S1[ruleIns1(A1, RL1,TM1,M1) A1| RL1|TM1|M1|t1|m1|
msg1|1]1S || C, com> .

In the Generate rule above,S1[A1 | RL1 | TM1 | M1
| t1 | m1 | msg1 | 1]1S represents local state of agent1 and
the variableC of type Config represents local states of all other
agents in the system, and all these states are composed using the||
operator. The structures of the individual and multi-agent modules
are shown in Listing 2.

fmod Agent-i is
protecting AgentConfigModule .
op Si[_|_|_|_|_|_|_|_|_]iS : Agenda Agenda TimeWM

WM Nat Nat Nat Nat -> Config .
.
.
.

endfm

mod MultiAgentSystem is
protecting Agent-i .
.
.
.
sort masConfig .
sort Phase .
ops com exec : -> Phase .
var phase : Phase .
op _||_ : Config Config -> Config [comm assoc] .
op <_,_> : Config Phase -> masConfig [ctor] .
.
.
.

endm

Listing 2. Structure of multi-agent module

Similarly, theChoice rule causes each agent to apply its rea-
soning strategy, theApply rule causes each agent to execute the rule
instances selected for execution, theIdle rule executes only when
there are no rule instances to be executed (the application of theIdle
rule advances the cycle time of an agenti, leaving everything else
unchanged), and communication among agents is achieved using the
Communication rule. When agents communicate with each other,
one agent copies the communicated context from another agent’s
working memory. Copying is only allowed if the context to be copied
is not already in the working memory of the agent intending to copy
and the agent has not exceeded its communication bound.

V. A SMART ENVIRONMENT EXAMPLE SYSTEM

We develop a multi-agent non-monotonic context-aware system
whose rules are derived from a smart environment domain ontology.
The example scenario is adopted from [19], [20], [21], which is fur-
ther extended based on the system users’ requirements. This example
system aims to facilitate residents in an intelligent home care envi-
ronment that address residents’ needs based on the current contexts.
The aim is to create an automated assisted living environment for
needy people to live a safe life and provide ease, comfort and security
to them. In this system design we consider a number of intelligent
context-aware agents to monitor the current status of a person and
the home environment. For example, a number of essential health
care devices are considered to monitor a patient’s vital information,

which update status based on the current contexts. In case of a critical
condition, for example, a patient has very high fever or patient’s pulse
rate is abnormal then an emergency alarm may be activated to alert
caregivers to take appropriate actions. This smart home environment
also considers some security agents to monitor unauthorized persons
or prohibited activities at home. Fig. 1 and Fig. 2 depict partial view
and some rules of the smart environment ontology, Fig. 3 depicts an
individualized smart environment ontology, and Fig. 4 depicts smart
space context-aware agents and their possible interactions. However,
the complete ontology and rules can be found online1.

Fig. 3. An individualized smart environment ontology

The agents in Fig. 4 are designed using the translated Horn clause
rules of the ontology. The translation process is automated which
uses a java-based translator using OWL API [22] version 3.4.10. The
OWL API is a high level application programming interface (API)
that supports the creation and manipulation of OWL ontologies. It is a
java based API for loading, saving, parsing and serializing ontologies
in a variety of different syntaxes (defined in W3C specifications) such
as RDF/XML, OWL/XML, functional syntax, etc. We choose Eclipse
development framework to translate ontology axioms (OWL 2 RL
and SWRL rules) into a set of plain text Horn-clause rules. This
translator requires ontology IRI (International Resource Identifier) to

1https://dl.dropboxusercontent.com/u/34803034/OntologyAndSystemFiles.zip

access the elements from the ontology. Each ontology has an ontology
IRI to identify ontology and their classes, properties and individuals.
We use the OWL API to parse the ontology and extract the set of
axioms and facts. The design of the OWL API is directly based on
the OWL 2 Structural Specification and it treats an ontology as a set
of axioms and facts which are read using the visitor design pattern.
The OWL API does not have a direct support for reading and writing
ontologies in different syntaxes. The uses of parser and renderer in
the reference implementation of OWL API make this task easier to
customize ontologies in different syntaxes. When a specific parser
is selected, ontologies are loaded and saved back in the same format
from which it is parsed. The translator’s core functions are:(1) System
Prompt user to choose ontology, (2) Load ontology files (an output file
of the Prot́eǵe editor [23]) as an input from link where it is published
online, (3) Extract the set of logical axioms from the ontology, which
can either be TBox axiom or ABox axiom, (4) We use OWL parser to
parse ontology into OWL API objects to extract the set of TBox and
ABox axioms, (5) The set of TBox axioms are already in the form
of OWL 2 RL rules, we translate these set of axioms into a plain set
of text in Horn clause rules format, (7) DL safe rule axioms are in
the form of SWRL rules (in the ontology) which can be extracted to
transform into plain text of Horn-clause rules format.

A. Specifying and verifying the system

We have considered three facets of the system while specifying
and verifying its interesting properties using the Maude LTL model
checker. This is partly because to observe and compare model check-
ing performace and scalability. The first system is modelled using five
agents, namely1, 2, 3, 4 and 5 which monitors the residents’ (e.g.,
patient’s) vital information such as Pulse Rate, Body Temperature,
Blood Sugar Level etc. The system infers appropriate contexts based
on the current contextual information of the patient whether e.g., there
is an emergency situation or not, among others. In this system, the
agents2, 3, 4 and5 are able to infer high-level contexts from sensed
low-level contexts using Horn clause rules in their knowledge-bases.
These agents can classify current blood pressure, blood sugar, and
pulse rate into different categories based on their current measurement
values. E.g., agent2’s knowledge-base contains rules including the
following:

Person(?p), SystolicBP(?sbp), DiastolicBP(?dbp), hasSystolicBP(?p,
?sbp), hasDiastolicBP(?p, ?dbp), greaterThan(?sbp,’120),
lessThan(?sbp,’140), greaterThan(?dbp,’80), lessThan(?dbp,’90)
→ hasBloodPressure(?p, ’Prehypertension) ;

Person(?p), SystolicBP(?sbp), DiastolicBP(?dbp), hasSystolicBP(?p,
?sbp), hasDiastolicBP(?p, ?dbp), greaterThan(?sbp,’140),
lessThan(?sbp,’160), greaterThan(?dbp,’90), lessThan(?dbp,’100) →
hasBloodPressure(?p, ’Stage1hypertension) ;

hasBloodPressure(?p, ’Stage1hypertension)→ Tell(2,1, hasBlood-
Pressure(?p, ’Stage1-hypertension)) .

The first rule classifies that the person has blood pres-
sure categoryPrehypertensionif her Systolic Blood Pressure is
greater than120 and Diastolic Blood Pressure is greater than
80. That is, agent2 may infer high-level contexthasBloodPres-
sure(’Philip, ’Prehypertension)when the rule matches with the
agent’s working memory contexts, e.g.,Person(’Philip), Sys-
tolicBP(’134), DiastolicBP(’88), hasSystolicBP(’Philip, ’134), hasDi-
astolicBP(’Philip, ’88), greaterThan(’134,’120), lessThan(’134,’140),
greaterThan(’88,’80), lessThan(’88,’90), and so on. The third rule is
a communication rule of agent2 through which it interacts with agent
1 and passes the contexthasBloodPressure(’Philip, ’Prehypertension)
when it believes thatPhilip has Prehypertensionat the moment.
Similar to the above, agent2 and all other agents in the system have
other deduction and communication rules for other categories. Note
that, the ontology driven rules do not have priority and a system
designer is responsible to provide appropriate rule priorities while

encoding the system into Maude, the complete set of translated rules
for each of the three system designs can be found online2. In order
to model this first scenario we have derived105 Horn clause rules
from the smart environment ontology and distributed them to the
agents as working memory facts and knowledge base rules. E.g., the
knowledge of agent1 contains45 rules, agent2 is modeled using10
rules, and so on. Whenever agent 1 receives most recently generated
contexts from other agents, it infers current status of a patient and
declares whether the patient has an emergency situation or not. The
core inspiration is that each agent keeps the most recently derived
contexts in the memory by overwriting an existing context, and this
happens if agent’s memory is full or a contradictory context arrives in
the memory (even if the memory is not full). We verified a number of
interesting resource-bounded properties of the system including the
following non-conflicting contextual properties to see for example,
when there is an emergency situation for a patient then the system
should not produce non-emergency situation at the same time.

Prop1.1 : F (B1hasSituation(′Philip,′ Emergency))

Prop1.2 : F (B1Not(hasSituation(′Philip,′ Emergency)))

Prop1.3 : G(B1 ∼ (hasSituation(′Philip,′ Emergency)∧
Not(hasSituation(′Philip,′ Emergency))))

The initial working memory facts (contexts) and rules are as-
signed to the agents in such a way that the system can
infer both hasSituation(’Philip,’Emergency))and Not(hasSitua-
tion(’Philip,’Emergency)))contexts that are conflicting. The operator
Bi used in the properties to state that agenti believes a context
(in other words certain context appears in the agenti’s working
memory); and as usualG stands for always (globally),F stands for
eventually (in the future), andX stands for next step. The truth of
the first two properties ensure that indeed both these contexts can be
inferred in the future, while the truth of the third property ensures
that both of them never appear in the agent’s memory at the same
time. The above properties are verified as true and Maude reported the
number of states explored and time required to verify them are172

and 30ms(milliseconds) forProp1.1, 280 and 45ms for Prop1.2,
and2332 and384ms for Prop1.3. While verifying these properties
minimum memory space required by agent1 was 12 units and it
exchanged4 messages.

Fig. 4. Context-aware agents and their possible interactions

The second system that we consider for the verification is modeled
using 11 agents, namely,1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, and to
model this second scenario133 Horn clause rules have been used.
This system, in addition to inferring the residents’ health status,
interacts with various other agents to take appropriate actions. This
enhances the services and making system more complex. For exam-
ple, agent1 interacts with Emergency monitoring agent and OnCall

2https://dl.dropboxusercontent.com/u/34803034/OntologyAndSystemFiles.zip

agent which in turn interact with various other agents to locate GPS
coordinate points to call Ambulance via Telephone agents. Upon
receiving message from agent10, ambulance could move to GPS
located point to rescue a patient. In addition, Caregiver is also notified
by OnCall agent about the emergency situation with GPS coordinates
point of the patient. We verified a number of interesting resource-
bounded properties of this system including those we considered
above in the first system.

Prop2.1 : F (B1hasSituation(′Philip,′ Emergency))

Prop2.2 : F (B1Not(hasSituation(′Philip,′ Emergency)))

Prop2.3 : G(B1 ∼ (hasSituation(′Philip,′ Emergency)∧
Not(hasSituation(′Philip,′ Emergency))))

Prop2.4 : G(B8 (Tell(1 , 8 , hasSituation(′Philip,′ Oncall))∧
(Tell(9 , 8 , hasGPSLocation(′Philip,′ KFCKajangTown)) →
X nB8Tell(8 , 11 , hasAlarmFor(′Philip,′ KFCKajangTown))

the fourth property above specifies that whenever agents1 and9
tell agent8 thatPhilip hasOnCall situation and his GPS location is at
KFCKajangTown, within n time steps agent8 sending an alarming
message to agent11. All the above properties are verified as true
and Maude reported the number of states explored and time required
to verify them are282 and60ms for Prop2.1, 640 and131ms for
Prop2.2, 4336 and1048ms for Prop2.3, and4336 and1050ms for
Prop2.4. While verifying these properties minimum memory space
required by agent1 was14 and agent8 by 8 units and the value ofn
was4 (i.e., within 4 time steps agent8 sending a alarming message
to agent11). The messages that the agents exchanged were: agent1:
5, agent2: 1, agent3: 1, agent4: 1, agent5: 1, agent6: 1, agent7:
3, agent8: 3, agent9: 2, agent10: 2, and agent11: 1.

The third system that we consider for the verification is modeled
using all the21 agents, and to model this scenario201 Horn clause
rules have been used. This system models very complex scenarios
and deals with a very high level of combinatorial aspects. It includes
some smart home sensor agents to provide ease, comfort, security
and healthy life in the smart home. In this system, the sensor agents
(agents12 − 21) monitor the basic safety measures at home and
inform to relatives of the patient for any kind of mishap occurrence
in the smart home. For example, burglar alarm will ring in case
e.g., smoke is detected by the Smoke sensor agent, and then OnCall
agent immediately interact with the Relative agent to take appropriate
actions. This system also checks the existence of a person in a room
and automatically switch on/off the light and air-condition based on
the current contexts. So saving energy is the additional requirement
of the system. However, by adding more agents the system designer
can make the system much more complex. We verified a number of
interesting resource-bounded properties of this system including the
following:

Prop3.1 : G(B8 (Tell(1 , 8 , hasSituation(′Philip,′ Oncall))∧
(Tell(9 , 8 , hasGPSLocation(′Philip,′ KFCKajangTown)) →

X nB8Tell(8 , 11 , hasAlarmFor(′Philip,′ KFCKajangTown))

Prop3.2 : G(B11 (Tell(8 , 11 , hasAlarmFor(′Philip,′ KFCKajang−
Town)) → X nB11 logAlarm(′Alice,′ Philip))

the first property is same asProp2.4 above, while second prop-
erty above specifies that whenever agent8 tells agent11 that Philip
has alarming situation and his GPS location is atKFCKajangTown,
within n time stepsAlice (caregiver agent11) noticing this. Both the
above properties are verified as true and Maude reported the number
of states explored and time required to verify them are379210 and
165461ms for Prop3.1, and379210 and 164321ms for Prop3.2,
and the value ofn in Prop3.2 is 2. However, when we assign a value
to n which is less than4 in Prop2.4 , and less than2 in Prop3.2
the properties are verified as false and the model checker returns
counterexamples. Similarly, when we assign a value to memory size
(or message counter) which is less than the minimal required value,
properties are verified as false. This also ensures the correctness of

the encoding in that model checker does not return true for arbitrary
values ofn, memory and message counters. Note that, verification
of true formulas take longer than verification of false formulas since
a model checker will find a counterexample faster than it takes to
explore the whole model.

VI. RELATED WORK

There has been considerable work in context-aware computing
literature focusing on various domains including health care [24],
[25], [3] just to mention but a few. Much of this work concentrate
on representing and reasoning about contexts. However, unlike many
other context-aware application systems, in many cases health care
systems are considered as safety critical systems [2]. In such systems,
not meeting design objectives may result in tremendous loss including
possibly human lives. In [26], a formal system modeling framework is
presented for analyzing pervasive computing systems, which covers
various aspects of pervasive computing systems including context-
awareness and concurrent communication. The authors have adopted
CSP like hierarchical modeling language to model desired systems,
which could be used to encoded and verify system properties using
existing model checking techniques. Their proposed approach has
been demonstrated by modeling a health care case study and desired
properties of the system have been verified using the PAT model
checker [27]. However, it is not clear whether the predefined rules
written in Drools are considered in the verification process and
how those rules are encoded while verifying the system properties.
In [28], the Adaptation Finite-State-Machine (A-FSM) is proposed for
modeling and verifying context-aware adaptive behavior of mobile
applications. The authors have proposed some algorithms that are
used to automatically detect fault patterns based on the A-FSM. A-
FSM detects adaptation faults by exhaustively exploring the space
constructed by all possible value assignments to context variables used
in a Context-Aware Adaptive Application’s (CAAAs) rules. In [29],
authors have used SPIN model checker to model a Smart Home
environment and discussed consistency in context-aware behavior.
They have emphasized the good rule design practices based on
general observations, and shown how rules of a context-aware system
could be inconsistent and may lead to undesired system behavior.
In [30], authors have proposed a context-aware design and verification
framework based on Role-Oriented Adaptive Design (ROAD) [31],
and they have used ROAD4Context approach to model context-aware
interactions, abstract processes and invariant properties of the desired
systems. The functional behavior of the desired system is modeled
using UML-based process models, which are further translated into
Petri nets-based formal models, while invariant properties of the
systems are expressed as LTL formulas. Compared to these modeling
and verification approaches, our proposedLDROCS provides formal
framework to model structural and behavioral aspects of context-
aware systems considering their resource-bounded features and how
such models can be encoded and verified using the Maude LTL model
checker. In [11], it has been shown how context-aware systems can
be modeled as resource-bounded rule-based systems using ontologies,
however it is based on monotonic reasoning where beliefs of an
agent cannot be revised based on some contradictory evidence.
In [32], [33] authors have presented automated verification of resource
requirements of reasoning agents using the Mocha model checker.
In [34] the same authors presented preliminary work considering
first order Horn clause rules and Maude LTL model checker, and
illustrated the scalability of their approach by comparing it to results
presented in [32]. In [35] authors presented framework to verify
heterogeneous multi-agent programs based on meta-APL, where a
heterogeneous multi-agent program is initially translated to meta-
APL and then resulting system is verified using Maude. In this work,
we specify and verifyLDROCS models using Maude because it can
model check systems whose states involve arbitrary algebraic data
types. Furthermore, unlike [33], Rule variables can be represented
directly in the Maude encoding, without having to generate all ground

instances resulting from possible variable substitutions.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper, we show how aLDROCS [5] model can be encoded
using the Maude LTL model checker [6] and its interesting properties
can be verified automatically. Using an example system, we show how
to analyze and verify non-conflicting context information guarantees
it provides. In future work, we plan to extendLDROCS logical
framework to specify and verify heterogeneous multi-context systems,
which will allow different reasoning techniques (logics) to be used
for different agents and contextual information flow among agents
will be modeled via bridge rules.

REFERENCES

[1] Bricon-Souf, N., Newman, C.R.: Context awareness in health care: A
review. International Journal of Medical Informatics 76(1), 2–12 (2007)

[2] Bardram, J.E., , Nørskov, N.: A context-aware patient safety system
for the operating room. In: Proceedings of of the 10th international
conference on Ubiquitous computing. pp. 272–281 (2008)

[3] Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L., Colella, R.: A
framework for context-aware home-health monitoring. LNCS, vol. 5061,
pp. 119–130. Springer (2008)

[4] Byun, H.E., Chevers, K.: Utilizing context history to provide dynamic
adaptations. Applied Artificial Intelligence 18(6), 533–548 (2004)

[5] Rakib, A., Haque, H.M.U.: A logic for context-aware non-monotonic
reasoning agents. In: Proceedings of the 13th Mexican International
Conference on Artificial Intelligence, MICAI 2014. LectureNotes in
Computer Science, vol. 8856, pp. 453–471. Springer (2014)

[6] Eker, S., Meseguer, J., Sridharanarayanan, A.: The maudeLTL model
checker and its implementation. In: Ball, T., Rajamani, S.K. (eds.)
SPIN2003. LNCS, vol. 2648, pp. 230–234. Springer-Verlag (2003)

[7] Schilit, B., Adams, N., Want, R.: Context-aware computingapplications.
In: Proceedings of the First Workshop on Mobile Computing Systems
and Applications. pp. 85–90. IEEE Computer Society, Washington, DC,
USA (1994)

[8] Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: from
the laboratory to the marketplace. IEEE Personal Communications 4(5),
58–64 (1997)

[9] Dey, A., Abwowd, G.: Towards a better understanding of context and
context-awareness. Technical Report GIT-GVU-99-22, Georgia Institute
of Technology (1999)

[10] Daniele, L., Costa, P.D., Pires, L.F.: Towards a rule-based approach
for context-aware applications. In: EUNICE. Lecture Notesin Computer
Science, vol. 4606, pp. 33–43. Springer (2007)

[11] Rakib, A., Haque, H.M.U., Faruqui, R.U.: A temporal description logic
for resource-bounded rule-based context-aware agents. In: Context-Aware
Systems and Applications. LNICST, vol. 128, pp. 3–14. Springer (2014)

[12] Patel-Schneider, P..F., Hayes, P., Horrocks, I.: OWL WebOntology
Language Semantics and Abstract Syntax, W3C Recommendation, World
Wide Web Consortium, 10 February, (2004)

[13] ter Horst, H.J.: Completeness, decidability and complexity of entailment
for RDF Schema and a semantic extension involving the OWL vocabu-
lary. Web Semantics: Science, Services and Agents on the World Wide
Web 3(2-3), 79–115 (2005)

[14] Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic
programs: Combining logic programs with description logic. In:
WWW2003. pp. 48–57. ACM Press (2003)

[15] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B.,
Dean, M.: SWRL: A Semantic Web rule language combining OWL and
RuleML. Acknowledged W3C submission, standards proposal research
report: Version 0.6 (April 2004)

[16] Pollock, J.L.: Defeasible reasoning. Cognitive Science 11(4), 481–518
(1987)

[17] Antoniou, G., Billington, D., Governatori, G., Maher,M.J.: Represen-
tation results for defeasible logic. ACM Transactions on Computational
Logic 2(2), 255–287 (2001)

[18] Clavel, M., Duŕan, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer,
J.: All About Maude - A High Performance Logical Framework, Lecture
Notes in Computer Science, vol. 4350. Springer-Verlag (2007)

[19] Bikakis, A., Antoniou, G., Hasapis, P.: Strategies forcontextual reason-
ing with conflicts in ambient intelligence. Knowledge and Information
Systems 27(1), 45–84 (2011)

[20] Leijdekkers, P., Gay, V.: Personal heart monitoring system using smart
phones to detect life threatening arrhythmias. In: Computer-Based Med-
ical Systems, 2006. CBMS 2006. 19th IEEE International Symposium
on. pp. 157–164. IEEE (2006)

[21] Moreno, A.: Medical applications of multi-agent systems. Computer
Science & Mathematics Department, Universitat Rovira i Virgili ETSE.
(2007)

[22] Horridge, M., Bechhofer, S.: The OWL API: A java API for working
with OWL 2 Ontologies. In: 6th OWL Experienced and Directions
Workshop (OWLED) (October 2009)

[23] Prot́eǵe: The Prot́eǵe ontology editor and knowledge-base framework
(Version 4.1). http://protege.stanford.edu/ (July 2011)

[24] Bardram, J.E.: Hospitals of the future ubiquitous computing support
for medical work in hospitals. In: Proceedings of UbiHealth’03 the 2nd
international workshop on ubiquitous computing for pervasive healthcare
applications (2003)

[25] Paganelli, F., Giuli, D.: An ontology-based context model for home
health monitoring and alerting in chronic patient care networks. In: Pro-
ceedings of the 21st International Conference on Advanced Information
Networking and Applications Workshops, 2007, pp. 838–845 (2007)

[26] Liu, Y., Zhang X., Dong J.S., Liu Y., Sun J., Biswas J., and Mokhtari M.:
Formal analysis of pervasive computing systems. In: 17th International
Conference on Engineering of Complex Computer Systems (ICECCS),
pp. 169-178. IEEE, (2012)

[27] Sun, J., Liu, Y., Dong, J.S., and Pang, J.: PAT: Towards Flexible
Verification under Fairness. In: Proceedings of the 21th International
Conference on Computer Aided Verification (CAV’09), LNCS 5643, pp.
709-714 (2009)

[28] Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D. S., and Wang, Z.:
Context-aware adaptive applications: Fault patterns and their automated
identification. In: IEEE Transactions on Software Engineering, vol. 36,
no. 5, pp. 644-661, (2010)

[29] Preuveneers, D., Berbers, Y.: Consistency in context-aware behavior:
a model checking approach. In: Intelligent environments (workshops),
ambient intelligence and smart environments, vol 13, IOS Press, pp
401412 (2012)

[30] Tran, M. H., Colman, A., Han, J., and Zhang, H.: Modeling and
verification of context-aware systems. In: 19th Asia-PacificSoftware
Engineering Conference (APSEC), vol. 1, pp. 79-84. IEEE, (2012)

[31] Colman, A.: Role-Oriented Adaptive Design, PhD Thesis,Faculty of
Information and Communication Technologies, Melbourne: Swinburne
University of Technology (2006)

[32] Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time
and communication costs of rule-based reasoners. In: Peled, D.A.,
Wooldridge, M.J. (eds.) MoChArt2008. LNCS, vol. 5348, pp. 1–14.
Springer,Heidelberg (2008)

[33] Alechina, N., Jago, M., Logan, B.: Modal logics for communicating
rule-based agents. In: Proceedings of the 17th European Conference on
Artificial Intelligence A. pp. 322–326 (2006)

[34] Alechina, N., Logan, B., Nga, N.H., Rakib, A.: AutomatedVerification
of Resource Requirements in Multi-Agent Systems Using Abstraction.
In: van der Meyden, R., and Smaus, J. G., (eds.) MoChArt2010. LNCS,
vol. 6572, pp. 69-84. Springer,Heidelberg (2010)

[35] Doan, T.T., Yao, Y., Alechina, N., Logan, B.: Verifyingheteroge-
neous multi-agent programs. In: Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems. pp. 149–
156. International Foundation for Autonomous Agents and Multiagent
Systems (2014)

